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Primitive Associations

Erik Ernst

University of Aarhus, Denmark
eernst@daimi.au.dk

Abstract

This position paper presents a very simple mechanggimitive
associationsand argues that this mechanism is worth careful con-
sideration in connection with the kind of support for program cor-
rectness that grows out of mechanisms for ownership, controlled
aliasing, sharing, escape analysis, and so on.

Categories and Subject Descriptors D.3 - PROGRAMMING
LANGUAGES [D.3.3 - Language Constructs and FeatJrd3ata
types and structures

Keywords Ownership, confinement, alias control, primitive asso-
ciations, inverse fields, path-restricted features.

1. Primitive Associations
Almost all object-oriented programming languages support a no-

tion of references. A reference provides access to a specific object

and type systems are often mainly focused on specifying which
(kinds of) objects are reachable from a given object. However, nor-
mally only little is known about the set of references referriog

a given object—which we will designate asxoming references

Linear types [13], ownership types [9, 4, 3, 1, 11], escape ana-
lysis [10, 2], and other kinds of mechanisms and analyses help
in establishing invariants or knowledge about these incoming ref-

1

Figure 1. A primitive association is eithefULL or cyclic

On the other hand, the dynamic flexibility of ownership by
primitive associations provides fewer guaranteed properties at run-
time. E.g., an inconsistency arises if the primitive association is
modified during the execution of some operation which is only
permitted for owners.

Primitive associations are closely relate¢ptrent-child attrib-
utesor inverse fieldsn JavaFX [12], because they also involve bid-
irectional references with language support for simultaneous updat-
ing. However, in this context we are interested in the ability to help

'managing uniqueness relationships rather than maintaining prob-

lem domain related constraints.

Note that it is easy to build associations of different arity than 1—
1 based on primitive associations; for example, an array of length
may be used as an intermediate object to modelkaaksociation.

2. Derived Correctness Properties

erences, and this may simplify reasoning about program correct- The main idea behind ownership is that it is easier to reason about
ness, especially because the sources of changes to objects and olthe correctness of a program when ownership related invariants can
ject graphs are simpler. However, we believe that it is useful to be used to show that other invariants are maintained. The ownership
complement these techniques with a dynamic mechanism, namelyrelated invariants are generally concerned with the exclusion of a
primitive associationsbecause it is useful, simple, flexible, and un-  (large) class of possible incoming pointers.
derstandable. Consider for instancelaist data structure which uses a number
We define primitive associations to mean bidirectional refer- of ListCell objects to represent a linking structure and keep a
ences, i.e., a pair of references in two objects that refer to eachreference to each of the contained objects. Now, invariants about
other, see Fig. 1. Changes to these references must be restricted bthe structure of eadhi st object, including itd.istCells, is easier
the language semantics to enforce this invariant at all timesisf to reason about if eadhistCell is owned by one particuldrist
an object andd . £ is a field in A that is part of a primitive associ-  object, and access to list cells is thereby restricted to come from
ation, then either . f is NULL or it refers to an objecB such that the owner list or the list cells themselves. Conventional ownership
B has a fieldB . g which is the other half of that primitive asso- mechanisms are well suited for this type of purpose; they associate
ciation, andB . g refers to the objectl. Hence, the language must each owned object (e.g., eathstCell) with an owner (aList)
support statically decidable pairing of fields, and the run-time ma- at creation time, and never change this binding during the lifetime
nipulation of fields which take part in a primitive association must of the owned object.
occur atomically. However, it is not always convenient to bind each owned object
Given that the language semantics enforces this invariant, it is to one particular owner for its entire life-time. For example, it
known for any given objecd having a primitive association to  may be useful to move owned objects from one “owning context”
another objectB that no other objec3’ (respectivelyA’) is in to another. The main benefit of using primitive associations for
the same relation tol (resp.B). This may be interpreted as an  ownership management is exactly this dynamic flexibility of being
ownership relation—thati owns B, or vice versa. able to change owner during the lifetime of the owned object.
However, this ownership relation differs from more traditional This property, however, creates challenges for exploiting own-
ownerships by being more dynamic, because it may be changed byership, i.e., to derive other correctness properties, because it gets
assignment. Other ownership related mechanisms would specify anharder to maintain a complex invariant that expresses a structural
owner via type declarations or type arguments and fix it at creation relation in the object graph of owned and owning objects when
time for each owned object, thus disallowing the change of owner an assignment to a primitive association may suddenly change the
during the life-time of the owned object. owner. However, for the simple relationship that only involves the



two objects directly connected by a primitive association, thereisa 4. Conclusion
potential for reconciling these to opposing forces.

The concept required to express this is that phéh-restricted
feature i.e., a feature of an object that is only accessible via a
specified path. Consider the pseudo-code example in Box 1 below:

This position paper presented some preliminary thoughts about the
usefulness of the very simple construct of primitive associations
(aka inverse fields), used to express a dynamic kind of ownership.
The notion of path-restricted features was created as a consequence
of this analysis, as a special case of earlier work on so-called

class Person { invisible mixins. We believe that this combination of mechanisms
E:;V;:i’("fzitﬂ::lﬁ; E-> owner; // pr.ass. provides a simple and useful complement to traditional ownership
if (wlt.has(value)) { mechanisms.
wlt.take(value); return value;
} else { Acknowledgments
} // error bandling The IWACO reviewers provided some very helpful comments on
} this work.
}
class- Wallet { References
private Person owner <-> wlt; // pr.ass.
private int contents; [1] Jonathan Aldrich and Craig Chambers. Ownership domains:
public bool has(int value) { Se_parating alia_sing policy from mechanism. In Martin Odgrsky
return (contents>=value); editor, Proceedings ECOOPvolume 3086 ofLecture Notes in
Computer Sciencepages 1-25. Springer, 2004. ECOOP 2004 -
restricted(wlt) void take(int value) { Object-Oriented Programming, 181h_ European Conference, Osl
contents -= value; Norway, June 14-18, 2004, Proceedings.
} Box [2] Bruno Blanchet. Escape analysis: Correctness prooflementation
} 1 and experimental results. Proceedings POPL '98pages 25-37.
ACM SIGACT and SIGPLAN, ACM Press, 1998.
In this example, the instances of the classasson andwallet [3] Dave Clarke and Sophia Drossopoulou. Ownership, endafisn
are connected by a primitive association whose ends are named and the disjointness of type and effect. In Cindy Norris and
wlt andowner. In classWallet there is a methodake which Jr. James B. Fenwick, editorgroceedings of the 17th ACM
is path-restricted by1t. This means that an invocation téke is conference on Object-oriented programming, systems,uapes,

and applications (OOPSLA-02yolume 37, 11 ofACM SIGPLAN
Notices pages 292-310, New York, November 4-8 2002. ACM
Press.

only allowed if it is on the formwlt.take(...) wherewlt is the
opposite end of a primitive association that conne@smson and
thiswallet. The effectis that only thewner is allowed to call this ] ] ] ) ]
method. Note that this differs from traditional ownership in thatthe ~ [4] David Clarke. Object Ownership and ContainmenPhD thesis,

School of Computer Science and Engineering; University; efvN
person may choose to transfer the wallet to some other person. South Wales, Australia, July 12 2001.

. L . . [5] Erik Ernst. gbeta — A Language with Virtual Attributes, Block

3. Integrating Primitive Associations into gbeta Structure, and Propagating, Dynamic InheritancéhD thesis,
Primitive associations and the corresponding mechanism of path- BaEth'jsE' DDeer?nigrrTllegltjr?; (fgg‘gp“ter Science, University of Aarhus,
restricted features are currently being implemented in the language _ ' o . '
gbeta [5, 8], where they complement a more traditional notion of  [6] Erik Ernst. Family polymorphism. In Jargen Lindskov Knudse
ownership which is expressed using family polymorphism [6] and editor, Proceedings ECOOP'QILNCS 2072, pages 303-326,
invisible mixins [7]. Heidelberg, Germany, 2001. Springer-Verlag.

Family polymorphism includes a restricted form of dependent [7] Erik Ernst. Reconciling virtual classes with generjcin Proceedings
types: Classes are features of objects and thus two nested classes JMLC'06, LNCS 4228, pages 57-72, Oxford, UK, September 2006.

—

Outer andInner give rise to a unbounded set of distinct types at Springer-Verlag.

runtime, because each instanceéater contains its own, distinct [8] Erik Ernst, Klaus Ostermann, and William R. Cook. A virtatass
class corresponding to the declaration namegler. An invisible calculus. InProceedings POPL'Ofpages 270-282, Charleston, SC,
mixin is a mixin which is guaranteed to have a zero effect on the USA, 2006. ACM.

type of any class that it is added to—in other words, an invisible  [9] James Noble, John Potter, David Holmes, and Jan Vitek. itsiex
mixin can only add implementation, not interface. A consequence alias protection. IProceedings of ECOOP'9@russels, Belgium,
of this is that no code outside the mixin can refer to its declared July 20 - 24 1998.

features. Note that the notion of invisible mixins is in fact built on  [10] voung Gil Park and Benjamin Goldberg. Escape analysiksts In
the notion of path restriction, because most of the characteristics of Proceedings of the 5th ACM SIGPLAN Conference on Progragimin

an invisible mixin are specified in terms of restrictions on paths. Language Design and Implementatj@ages 116-127, 1992,

Putting the two together, traditional ownership can be expressed [11] Alex Potanin, James Noble, Dave Clarke, and Robert Bid@eneric
by declaring owned classes in an invisible mixin. This is now com- ownership for generic java. In Peri L. Tarr and William R. ®po
plemented with the ability for owned object structures to include editors Proceedings OOPSL Aages 311-324. ACM, 2006.
temporary ownership based on primitive associations and path re-

[12] Inc. Sun Microsystems. Javafx script — an overvieWttp:

strictions. //www.sun.com/software/javafx/script/, July 2007.

It is our impression so far that this combination of life-time
ownership and temporary ownership makes it easier to express (13]
practical program designs and still have a better basis for reasoning
about the possible run-time object structures than that which is
offered through traditional ownership or traditional unrestricted
(un-owned) objects.

Philip Wadler. Linear types can change the world! In Mo
and C. Jones, editor®rogramming Concepts and Method3ea
of Galilee, Israel, April 1990. North Holland. IFIP TC 2 Wank
Conference.



Maintaining Invariants Through Object Coupling Mechanisms

Eric Kerfoot

Steve McKeever

Oxford University Computing Laboratory

{eric.kerfoot, steve.mckeever}@comlab.ox.ac.uk

Abstract

Object invariants are critical components to the specification of
object-oriented systems, which define valid states for objects and
how they may be interrelated. A complex problem is created when
an invariant relies on objects that are externally aliased and mod-
ified, since the invariant’s class cannot ensure that modification to
these objects preserves the invariant. This paper informally intro-
duces a method of coupling objects called the Colleague Tech-
nique, which creates strong relationships between objects whose
invariants rely on one another and defines additional conditions to
ensure these invariants. The technique builds on the classical tech-
nique by providing a method of ensuring object-dependent invari-
ants are maintained by the operations of an object-oriented system.
We demonstrate our technique using the Java programming lan-
guage and the JML specification language.

1. Introduction

An object’s invariant is a predicate stating conditions for its mem-
bers which defines the valid states of the object. This predicate is
expected to be maintained by the object’s operations if their con-
tracts are met, and by clients if members are modified directly.
This leads to the expectation that well-formed conditions would
ensure this soundness property in the Design-by-Contract (DbC)
technique [14]. However sources of unsoundness are present even
with well-defined conditions, one primary cause being the situa-
tion where an invariant relies on an object for its condition that is
aliased outside the invariant’s object. The implication of this situa-
tion is that this dependee object could be modified by another in a
valid way, but which may still invalidate the invariant that depends
upon it.
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Figure 1. The Indirect Invariant Effect

To illustrate the example, consider Figure [I] that illustrates the
object a whose invariant depends on object b. If b were modified
by object c this could invalidate a’s invariant without violating any
of a’s method contracts. The problem was first identified in [14]]
where it is described as the Indirect Invariant Effect. Invariants that
experience the effect are dependent on instances of another object
type, which are said to be vulnerable to such an invariant.

Although the problem is simply stated, it is found in many
common design patterns and idioms in object-oriented systems
where it can be a significant source of error. In these situations the
assumption of soundness, which is that an invariant will be satisfied

if method contracts are met, no longer holds. This is a result of the
fact that objects can be modified in ways that satisfy their contracts,
and so also their invariants, but break the invariants of other objects
that depend on them.

For example, a set of iterators depend on the collection over
which they iterate for their invariant conditions, such that if the
collection were to have too many objects removed, an iterator
may refer to a position in the collection that no longer exists. The
problem also occurs in self-referential classes whose invariants rely
on instances of themselves. An example is a person class with
a spouse attribute and an invariant which states that the spouse’s
spouse must be the current this object. In this case it may occur
that one spouse is assigned a new spouse and so breaks the old
spouse’s invariant. Any additional invariant that such a class may
have would rely on the assumption of marriage being an exclusive
bidirectional relationship between two objects.

The effect is addressed in [11] which presents a solution as an
axiomatic verification methodology. The verification methodology
is stated in terms of Hoare logic and concludes with a scheme of
proof obligations for invariants and method conditions. The added
obligations are complex and cumbersome, requiring a degree of
global reasoning. This is a result of the need to globally verify that
all vulnerable objects do not at any point invalidate invariants that
depend on them.

Another solution to the problem of objects being vulnerable to
an invariant is found in confined type and object ownership mod-
els [2, 14115, 110]], where the type system prevents objects from being
aliased outside of their creator object. Such a method may result
in runtime systems organized into hierarchical series of references
with upper level objects owning those below. An object’s invariant
may only depend on objects that are owned, which are safe from
third part modification, thus preventing the Indirect Invariant Ef-
fect. This condition on invariants and the required confined/owned
properties can be statically checked, such as in the Universe type
system [7, [15] that encodes object ownership as special reference
types.

What ownership requires is that the invariant of an object can
only rely on owned objects, which only the invariant’s object may
reference and directly modify. This ensures that an object’s invari-
ant cannot be broken when objects it depends on are modified, since
the conditions of the object’s methods ensure that any modification
is always valid.

The hierarchical nature of object organization that ownership
creates has certain limitations in how objects may be related. For
example, straight-forward ownership disallows iterators whose in-
variants depend on data structures that they do not own, recursive
data structures such as linked lists, or recursive types like the per-
son class where a person cannot own its spouse. Different own-
ership techniques address these issues, such as the visibility tech-
nique [16] that weakens the ownership requirements at the cost of
greater proof obligations, but which again add to the complexity of
verifying correctness.



The solution [3]] used in the Boogie methodology is quite similar
to the proposed solution in this paper. Using special language
constructs, objects can relate themselves to “friend” objects that
share responsibility for their friend’s invariant. This builds on the
Boogie methodology described in [17] that partially addresses the
issue with a form of ownership. However this methodology relies
on these specialized constructs, additional auxiliary variables, and
specialized assertion statements, thus is more difficult to apply in
a more general DbC approach. A more preferable approach would
define a method that can be used with existing DbC analysis and
verification approaches.

The root problem with the Indirect Invariant Effect is that in-
variants reliant on other objects create dependency relationships
that are weakly represented, and so a method of defining these
relationships more concretely would lead to a solution. Our Col-
league Technique addresses this dependency problem by provid-
ing a mechanism of coupling objects whose invariants rely on one
another, and defining additional invariant conditions which ensure
that no modification to either object invalidates the other’s invari-
ant. The disadvantage of this method is reduced software reuse
that’s a consequence of close coupling, however this is outweighed
by the ability to soundly predicate invariants on external objects.
What the technique does not provide is an encapsulation mecha-
nism, which can be provided using an ownership methodology that
prevents the internal representation of an object from being exter-
nally aliased.

Collegiality is defined as an additional technique that is used
with classical DbC methods, such that if a specification is correct
classically then applying the Colleague Technique will result in a
correct specification. This resulting specification will also use in-
variants and conditions as defined in the classical technique, and
so allows existing analysis, verification, and code generation tech-
niques to be applied in conjunction with collegiality. The technique
is described using Java [9] and JML [12] as the specification lan-
guage which it extends with a new annotation. Thus existing tools
and analysis techniques developed for JML can be used in conjunc-
tion with the technique.

This section has discussed the Indirect Invariant Effect and its
consequences. The remainder of this paper will discuss the Col-
league Technique as a solution to this problem. Firstly, the tech-
nique will be defined as an additional concept to classical DbC
constructs. Object types that are suitable as colleague types must
meet certain requirements that are discussed next. This is followed
by a description of how additional invariant conditions are formu-
lated which protect invariants from being invalidated by operations
on dependee objects. Finally the technique will be applied to the
Iterator and Person examples discussed in this section.

2. The Colleague Technique

The previous section has outlined the Indirect Invariant Effect prob-
lem and how it introduces unsoundness in the classical invariant
technique. This section will describe the Colleague Technique and
how it creates strong relationships between objects whose invari-
ants rely on one another. These relationships are used to define ad-
ditional conditions on the invariants of both objects such that mod-
ification to one will not invalidate the invariant of the other.

2.1 Definition

The relationship between objects used by the Colleague Technique
is defined by stating that each object type has an attribute that refers
to an instance of the other type, or is a set of such references. These
two attributes are declared as being each other’s colleague, and the
types they reside in as colleague types. The Colleague Technique
is thus an additional specification concept with specific semantic

requirements that solves the problem of predicating invariants on
other objects.

The Indirect Invariant Effect is caused when an invariant is al-
lowed to rely on any arbitrary object. With the Colleague Technique
an invariant may rely on an object if it is referred to by one of the
object’s colleague attributes. This restriction limits which objects
an invariant may rely on, and adds the knowledge to the specifica-
tion of a colleague type that its instances may be relied upon by
the invariants of other objects. With this knowledge the invariant
of a colleague type can be augmented with additional conditions
that prevent modifications which would invalidate their colleague’s
invariant.

Definition Two object types A and B are colleague types if A has
an attribute b which is a single or a set of B references, and B
has an attribute aa which is a single or a set of A references, and
aa is defined as being collegial with A .bb and bb as collegial with
B.aa. The invariants of A and B may only rely on objects referred
to in these attributes, owned objects, and primitive values.

An instance of A, a, and one of B, b, are collegial if a reference
to B is stored in a.bb and a reference to a is stored in'b . aa. This is
illustrated in Figure[2| Both a and b are responsible for maintaining
that the relationship holds by ensuring the cross referencing and
removing references when the relationship is established between
them or when either object is removed from the system.
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Figure 2. The Collegial Solution

This concept of explicit relationships between the attributes of
two object types is similar to that used by the object-based Booster
specification language [6]. Booster is descendent from Z [18]] and
the B Method [1]], but is a domain-specific language that targets
database systems. The explicit relationships are used as a means
of maintaining associations between data, and through the use of
Weakest Precondition [8]] methods to auto-generate conditions that
ensure the relationship.

This bidirectional binding between objects creates ad-hoc con-
texts [S] that are similar to ownership contexts, except that there is
no owner/owned relationship, but a partnership between objects. If
a collegial attribute is a reference value then that object may have
only one colleague of that type, and if it is a set then it can have
multiple colleagues.

The purpose of having this bidirectional relationship is so that
an assumption about responsibility can be made by both collegial
partners. If an object has a reference to a colleague object, then
it can be assumed that the colleague will reference it as well.
Thus an object’s specification can assume that these colleagues will
not allow any modification to themselves that breaks the invariant
conditions that depend on them.

Figure [2] illustrates how a depends on b since its invariant
includes the predicate P(bb) and bb stores a reference to b. The
specification for type A can safely define such an invariant since
the assumption exists that b’s attribute aa will alias a, and that B’s
invariant will include a condition on aa that prevents modifications
that would invalidate P. Thus the bidirectional property of the
relationship is critical to the technique, and so certain requirements
and facilities must be present to ensure that the relationship is



created and broken correctly. These requirements are discussed in
the next section.

2.2 Requirements

The colleague relationship imposes requirements on the invariants
and methods of object types that must be met for them to be
used as colleague types. These requirements are necessary for the
technique to correctly guarantee invariants:

e A colleague object type can only have one collegial attribute
for any colleague object type. For example, an object type A
cannot define two attributes to both be collegial with attributes
of object type B, even if the attributes are different. Otherwise
an object type can be defined to be collegial with any number
of other object types.

This restriction prevents situations where a contradiction may
arise between two conjuncts of an object’s invariant. If an object
type A were allowed to have two attributes that were collegial
with two attributes of B, then instances of A and B could become
double collegial through these two means of association. It
would then be possible for invariant conditions to be placed on
the collegial attributes that would be contradictory if they were
asserted for the same object. This also eliminates the possibility
of circular dependency of invariants between two objects.

Each invariant is responsible in maintaining its colleagues’ in-
variant, and so colleagues must be defined in a way such that
they and parts of their invariants are visible to one another. This
may require that the invariants be declared as publicly visible
and only rely on public members.

This is needed since an invariant of an object will be augmented
with added conditions that reflect the invariants of colleagues.
If the colleague objects’ invariants were not public, that is they
were not publicly visible or relied on non-public members, then
these added conditions could not be formulated or would be
required to access non-public members.

Both invariants may only rely on objects that are colleagues of
their objects or this.

They may also only rely on the members of these objects — but
not members of members — which do not evaluate to regular
reference types nor depend on regular reference types for their
values. This restricts how complex invariants can be, but any de-
gree of complexity can be created by classes providing appro-
priate methods that return useful information. Such methods,
for example, may calculate values that can be used in specifica-
tions that requires other objects.

The purpose of this restriction is to limit which objects are de-
pendees of an invariant. If an invariant were allowed to state a
condition dependent on regular objects, even if they were ref-
erenced by attributes of a colleague object, then this would re-
introduce the Indirect Invariant Effect. This prevents the situ-
ation where, if an invariant includes a predicate of the form
“P(this.x.y.foo())” where the value of foo is of interest, both ob-
jects x and y become dependees. In this situation x will not have
sufficient invariant conditions to prevent invalidating modifica-
tions to y, since y is accessed directly and not through a method
of x, which would be able to perform an invariant check which
would prevent invalidating modifications to y.

If a method is used in an invariant, this requires that the
method’s return value depend only on colleague objects, prim-
itive values, or other methods of same object that are similarly
restricted. These methods must also be pure, that is they are
side-effect free.

This technique has limitations in that each colleague must be
pre-defined to be part of a collegial relationship, as opposed to own-
ership where any arbitrary object can be owned by another. Greater
coupling between objects reduces reusability, however invariants
that rely on other objects already create this coupling, which the
Colleague Technique formalizes.

Collegiality provides a method to closely couple two object
types, whose instances may be aliased in different parts of a system,
in a way that wouldn’t be permitted with ownership. From the
perspective of a software module, it allows an object that relies on
the module’s internal state to be passed over the module’s public
interface boundary to the client. This object is used to provide
some functionality of the module, but since it relies on the internal
structure it must be defined in a way that does not adversely affect
this state but also allows it to be aliased by the modules’s client
objects. The Colleague Technique aims to provide a method of
specifying such objects so that this can be achieved.

Constructing and breaking the collegial relationship is impor-
tant since the cross referencing must be maintained. If one object
was collegial with another, then it relies on that colleague object
to alias it and so prevent operations that would break its invariant.
If the relationship between two objects was malformed in that it
became unidirectional, then the assumption about invariant respon-
sibility breaks down.

What this implies is that creating and breaking the relationship
are specific operations that the code of an object type should not
be responsible for. Although the technique can be defined purely as
a specification, it is helpful to describe these operations in terms
of helper methods that define the criteria for determining when
two objects are collegial and managing the relationship between
colleagues:

e To access collegial references, an accessor is defined for each
collegial attribute that returns the reference value if the type is a
singleton or an iterator if the type is a set. This accessor is called
‘getY ()’ for an attribute named Y, eg. an attribute named ‘foo’
is accessed by ‘getfoo()’.

A colleague type must have a boolean-returning method
‘isAssociated’ for every type X thatitis collegial with, which
takes a reference of type X and determines if it is an object that
is a colleague of the current object.

Determining if an association relationship can be formed is
performed by a method called ‘isAssociable’ that accepts the
colleague candidate as an argument.

A colleague type must have a void-returning method
‘associate’ for every type X that it is collegial with. This
method takes as the single argument a reference of type X which
it adds to the collegial attribute. The method ‘associate’
is then called on the argument object, passing this as the
argument.

A fourth method for a collegial type called ‘disassociate’
is defined for every collegial type X which has the corollary
effect of disengaging two objects from a collegial relationship,
by assigning null to singleton types or removing the given
reference from the collegial set type.

Thus a set of requirements are defined that an object type must
meet so as to be useable as a colleague type, and a set of helper
methods are described which are essential to the operation of the
technique. These methods need not be concrete but may be abstract
methods in a specification, however if colleague relationships need
to be concrete in the implementation of the system then these
methods would need to be as well. The next section will build on



the collegial relationship and discuss how this is used to construct
new invariant conditions that ensure invariant soundness.

2.3 Invariant Conditions

The purpose of entering two objects into a collegial relationship
is to allow one or both to predicate their invariants on the other,
such that each object’s specification has the information to ensure
the object’s methods do not violate the others invariant. This is
achieved by adding extra conditions to an object’s invariant that
ensure the properties its colleagues require of it.

These extra conditions are derived from the part of the object’s
invariant predicated on the colleague attribute, which are then ex-
pressed in terms of the colleague object itself. Taking a condition
placed on a member of a colleague attribute and replacing the name
of the attribute with this restates the condition from the perspec-
tive of the colleague object itself. This new condition, which states
the same property but from the perspective of the other colleague
object, can then be used as the needed additional condition.

Given the object types A and B from the above discussion and
their respective invariants /4 and Ip, the part of I4 predicated on
bb is denoted by P which must be in a form where every member
access must explicitly begin with ‘this.’ (called normal form in
this context):

Iy = ...P(bb)...
Iy =..Yi:bb|SeP(i)..
Ii=..3i:bb|SePi)..

—if bb is a singleton type
—if bb is a set type, given S
—if bb is a set type, given S

These three forms of the invariant for A relate members of
bb, either attributes or values returned from pure method calls, to
members of A or constant values. P is stated in the perspective from
A to B, and so to reverse the perspective and produce an invariant
for B, the roles of this and bb must be reversed. This takes P and
produces a mirror P, stated in terms of aa.

If aa is a singleton attribute then there are two forms of the
mirror P, predicate:

Pn(aa) == P[this, this.aa/this.bb, this)
—if bb is a singleton
Py(aa) == S[this, this.aa /i, this| = P|this, this.aa/i, this]

—if bbis a set

If aa is a set attribute then the two forms are quantified over the
elements of the set:

Py(aa) == Vi : this.aa e Plthis, i/this.bb, this]
—if bb is a singleton
Py(aa) == Vi : this.aa | S[this, i/i, this] e P[this,i/i, this

—if bbis a set

Therefore the invariant of B has the additional requirement of
maintaining the predicate P,,(aa):

Ig = ... \ Py(aa)

The predicate P states relationships between the members of the
classes A and B, and P, states the same relationships but from
the perspective of the other colleague type. This has the effect of
swapping collegial references with this wherever they occur in P
and reverses the direction of the predicate.

If, for example, P represented the expression ‘this.bb.m<10’,
then the mirror P,, would equal ‘this.m<10’, which would ensure
that the required property of m would be maintained. For a more

complex example take P to represent ‘this.bb.m==this.n()’ for
some method n, then the mirror P,, is ‘this.m==this.aa.n()’.

There is another possible original form of the invariant other
than the three given above. If bb is a singleton which may be set
to null (that is it is nullable in JML terms) then the P predicate
would be false when this occurs, thus an implication relation is
used to guard against this possibility:

Iy = ...bb # null = P(bb)...

The mirror invariant of this form is derived by taking P and
applying the above transformation. If aa is a set type then this
P,, becomes the resulting invariant, but if it is a singleton that is
nullable then a guard implication is used in this instance as well:

Ig = ...aa # null = P,(aa)...

In the presence of inheritance where an object type can inherit or
implement a colleague type, it is not difficult to see that behaviour
subtyping [13] is necessary for the technique to work. If this were
not the case then an object type may inherit from a collegial type
and not be responsible for the inherited mirror invariant, thus even
if it remains internally consistent the invariants of dependent ob-
jects may be invalidated.

2.4 Results

The Colleague Technique as described is used to make explicit the
relationships created by invariant dependencies. The purpose in do-
ing so is to develop a means of preventing the Indirect Invariant
Effect from allowing invariants to become invalidated without con-
tractual violations. The additional conditions that are added to the
invariants of colleague types achieve this, and are dependent upon
the fact that only their colleague types will depend on them for their
invariants.

To understand how the technique provides this guarantee, con-
sider the conditions that the classical DbC technique places on a
method call. The precondition and invariant of an object must hold
before a method begins, and since the mirror invariant must also
be asserted here then the object is guaranteed to be in a state that
does not break the invariant of another. When a method exits, the
postcondition and invariant is asserted which again makes the valid
state guarantee. By encoding the reciprocal responsibilities that col-
legial objects have to one another as invariant conditions, the Col-
league Technique uses existing DbC methodologies to safeguard
object-dependent invariants. Thus the Colleague Technique does
not require additional proof obligations in addition to those used in
a pre-existing verification methodology.

An implementation, in Java and using JML, of the iterator prob-
lem discussed previously demonstrates how the technique prevents
an instance of unsoundness in the classical DbC approach. An addi-
tional “collegial” annotation is used to declare those attributes that
are collegial with which other object type, and with what attribute.

Figure |3| lists the code for this example. It states that the at-
tribute iterators of List is collegial with List or Listlterator. The
invariant of ListIterator that relies on the instance of List it iterators
over states that its size must not be less than what it was when the
iterator was instantiated:

this.list.size()>=this.last

To ensure that this does not happen, List must have an invariant
that ensures its size is never less than the last attribute of any
associated iterators:

(\forall ListIterator i; this.iterators.contains(i);
this.size()>=i.last)

Since the associate method constructs the relationship correctly,
this additional invariant prevents the removal of enough elements



from an instance of List to break an associated iterator’s invari-
ant. To allow the removal of elements again from a List instance,
it would be required to disassociate collegial iterators, which oc-
curs when they are no longer needed and are removed from the
system. Thus collegiality forces coordination between iterators and
collections, which is implicitly required by the fact that iterators
are dependent on their collection’s state.

This invariant was generated using a prototype Java tool that
has been successfully used with this example and the Person ex-
ample in described below. The tool analyzes the invariants of in-
put Java classes, generates mirror invariants using the methodology
outlined in this paper, and outputs the classes again with the mirror
invariants and helper methods added. The resulting classes can be
compiled into standard Java using the Common JML Toolﬂ which
adds runtime assertion checks to the compiled bytecode. The re-
sultant classes have been analyzed through testing and successfully
provide runtime checks that prevent the Indirect Invariant Effect.

This tool demonstrates how the described technique can be used
in conjunction with existing DbC techniques to close the unsound-
ness gap created by object-dependent invariants. With only the ad-
ditional collegial annotation augmenting standard JML, the tool
produces resulting code that has only standard JML annotations
and standard Java code, such that other tools that analyze and trans-
form JML-annotated Java code can be subsequently used. A more
sophisticated tool may be able to identify attributes of classes that
need to be collegial without the additional collegial annotation,
thus without adding significantly new specification constructs or
methodologies that other solutions require, the Colleague Tech-
nique effectively addresses the problem of object-dependent invari-
ants and can be employed with a relatively simple code-generating
tool.

The second discussed example involved self-referential types,
such as the spouse example in Figure [d The invariant of the class
requires that one’s spouse be married to one’s self. The method by
which associate operates, which ensures the cross-referencing
of colleague objects, would guarantee that this invariant would
always be true if the spouse parameter was collegial as the code
defines. Invariants that state conditions on members of colleagues
can also be used in this instance, but would still require additional
conditions stating the same property for the local attributes.

3. Conclusion

This paper has described the Colleague Technique, and its associ-
ated ownership technique, that is stated as a solution for the Indirect
Invariant Effect. The effect is a critical problem with the classical
DbC invariant technique since many common design patterns and
programming idioms rely on the aliasing of objects within a sys-
tem.

This technique defines a method of correctly constructing a rela-
tionship between objects whose invariants depend on one another,
and how additional conditions ensure that operations on either will
not invalidate the other’s invariant. This discussion has been done
in terms of concrete Java methods and attributes, however the tech-
nique can be defined in terms of abstract model variables entirely
in some cases and without the concrete helper methods. Either as
a concrete or abstract component of a specification, the purpose
of the technique is to make explicit the relationship between ob-
jects that are created when an invariant relies on other objects for
its conditions. What the technique does not provide is a method
of guaranteed encapsulation, which is best accomplished using a
lightweight method of ownership.

The net result of this technique is to close the unsoundness
gap created in the classical DbC technique cause by invariants

Uhttp://sourceforge.net/projects/jmlspecs/

class List {

}

private /*@ spec_public @/
ArraylList items = new ArrayList();
private /*@ collegial ListIterator.list; @*/
Set iterators = new LinkedHashSet();

// The mirror invariant derived from ListIterator
//@ invariant (\forall ListIterator i;
//@ this.iterators.contains(i); this.size()>=i.last);

//@ requires o != null;
//@ ensures this.items.contains(o);
public void add(Object o) { this.items.add(o); }

//@ requires i>=0 && i<this.size();
//@ ensures \result == this.items.get(i);
public /*@ pure @*/ Object get(int i)

{ return this.items.get(i); }

//@ ensures: \result == this.items.lengthQ);
public /*@ pure @/ int size()
{ return this.items.length(); }

//@ requires i >= 0 && i < this.size();

//@ ensures !this.items.contains(

//@ \old(this.items.get(i)));

public void remove(int i) { this.items.remove(i); }

public ListIterator iterator()
{ return new ListIterator(this);}

class ListIterator {

private /*@ nullable collegial List.iterators; @/
List list;
private /*@ spec_public @*/ int position=0, last;

//@ invariant this.position<=this.last;

// The invariant dependent on the colleague object
//@ invariant this.list!=null ==>
//@ this.list.size()>=this.last;

//@ requires this.isAssociable(l);

//@ ensures this.isAssociated(1l);

public ListIterator(List 1){ this.associate(l);
this.last=1.size(); }

//@ requires this.list != null;
//@ ensures \result == this.position<this.last;
public /*@ pure @*/ boolean hasNext ()

{ return position<=last; }

//@ requires this.hasNext();
//@ ensures this.position==\old(this.position)+1;
//@ ensures \result==this.list.get(\old(this.position));
public Object next(){ this.positiont+;
return this.list.get(this.position-1); }

protected void finalize()
{ this.disassociate(this.list); }

Figure 3. Iterator Collegial Example



class Person {
private /*@ nullable collegial Person.spouse @/
Person spouse;

//@ invariant this.spouse != null ==>
//@ this.spouse.spouse == this;

Figure 4. Marriage Example

relying on externally aliased objects. Allowing invariants to be
predicated on objects is an important component when specifying
complex layered object structures, and so a method that ensures the
soundness of the technique, i.e. if the conditions of operations are
met then the invariants will remain valid, contributes significantly
to the correctness and applicability of this formal method to real-
world complex software engineering challenges.

This paper has informally defined and discussed the Colleague
Technique by examining the problem and the proposed solution.
Future work with the technique will elaborate on how it can be
integrated with JML and be used as an abstract or concrete specifi-
cation technique. Proving the property that colleague specifications
derived from correct specifications are themselves correct, and that
it does solve the problem of soundness with object-dependent in-
variants, is also part of future research with the technique. Through
induction on the method of creating mirror invariants from origi-
nal invariants, the proof must show that the mirror invariants are
well-formed, well-typed, and do not represent new restrictions on
the system. To prove that the technique does solve the soundness
problem, it will be necessary to formally express an invariant’s de-
pendence on objects, and use this to demonstrate that the technique
correctly guards against invalidating modifications. The develop-
ment of tool support is also planned, whose objective is to analyze
and possibly prove the correctness of programs that use the tech-
nique.
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Introduction  Since Hoare’s seminal paper on data abstraction [5], class Subject { class Observer {

the class invariant has been the foundation for verifying object-  List obs; int val; Subject sub;

oriented programs. Experience has shown that there are two com- Subject() int cache;

plications in scaling class invariants to real programs: (1) invariants ~ { obs = new List(); } Observer(Subject s) {

need to depend on multiple objects; and (2) invariants need to be "°'g. regI;Ste;(dObs?r"er °) this.sub :lff _

temporarily broken owing to call-backs. There are several pro- {Z:]S;;if;'(a)_ }(0)' s-register(this);

posals in the literature, which extend class invariants to partially — ,4ig update'(int n) { void notify()

address these two problems. The time seems to be right to pose the  this.val = n: { this.cache = s.get(); }

following (deliberately provocative!) question: “Is the class invari- foreach(Observer o:0bs) int val()

ant the correct foundation for verifying object-oriented programs?” o.notify(); { return cache; }
The basic unit of a Java program is a class, but interesting pro- } }

grams use more than one class. They are decomposed into aggreg- int get() { return this.val; }

até' structures, containing many inter-related classes collaborat-

ing in some function of the system. The aggregate structure is the Figure 1. Source code for subject/observer pattern
key concept in any object-oriented program. Hence our verification
method needs to describe invariants of these aggregate structures.

The class invariant can only reason about a single object. Using can be specified with the following predicate definition:
ownership based methodologies [1-4, 7, 8] we can extend the class def
invariant to some aggregate structures, and allow an objects in-  Sub0Obs(s, 0,v) = Sub(s,0,v) A Vo € O.0bs(0, 5, v)
variant to depend on objects it owns completely. However, in more Here s is the Subject, O is a set (list) ofObservers and v is
complex examples the ownership is less clear cut. Consider twothe current value of th&ubject. In the definition,Sub(s, O, v)
collaborating classes: neither owns the other and each has an inyepresents &ubject objects, that hasO Observers, and current
variant depending on the state of the other. Any update to one ob-ya|ye, v; and Obs(o,s,v) represents arDbserver object, with
ject will potentially invalidate the invariant of the other object. SO Sypject s that had value last time it was notified. The ownership
how can we update this co-dependent structure? Ideas such as pegjroperties are captured directly by using separation logic (see [9,
invariants [6], friends and update guards [3], and history proper- 10] for more detailsf.We give the definitions of the predicates in
ties [7], have been used to extend the idea of a class invariant, sorigyre 2.
that it can depend, soundly, on other objects. But is the complexity The SubObs predicate can be seen as the invariant of the ag-
of these proposals a sign that the class invariant is not the correctgregate structure. Accordingly, it should hold on the entry and exit
foundation? . of every public method of the aggregate (this is just a generaliza-

Our position is to take a step back and consider a more generaltion of a class invariant). So the “aggregate invariant” should hold
foundation. Our approach uses predicates [9, 10] to simply specify on the entry and exit of the two constructors, tipelate method of
the properties of aggregate structures. A class invariant is then justthe Subject, and theval method of theDbserver. The other meth-
a particular (useful!) predicate. ods fegister, notify andget) are internal to the aggregate structure.

We present the specifications of the methods and constructors in

Subject/Observer The subject/observer pattern, given in Figure 1, Figure 2.

exhibits many of the difficulties in reasoning with class invari- When verifying theSubject methods, we use the definition of
ants. We would like to specify an invariant for tibserver that SubObs and Sub predicates, and verifying th@bserver methods
this.sub.val = this.cache. However, this invariant does not al- We can use botl§ubObs and Obs definitions. Hence, thBubject
ways hold, because there is a time between whgtate is called is independent of th®bserver, and vice-versa, but they are both
on aSubject, andnotify is called on theDbserver where the in-  dependent on the aggregate structure to which they belong, hence
variant is not satisfied. our reasoning remains modular._ o

Instead of trying to write a property of the individual classes, let _ We present an example verification of the constructor of the
us consider a property of the aggregate structure. A siigigect Observer:

object will have manyObserver objects. We expect that, if we . .
update theSubject object, then all theDbserver objects will be {5ubObs(s, O, v) + this subr—_x this.cache—}

notified and their status suitably updated. The aggregate structure; Separation logic in a footnot&eparation logic is an extension to Hoare

logic that allows reasoning about heap data-structures. It has two new
connectives:P = Q means the state can be split into two disjoint parts,
1Here we meamggregaten its most general sense to capture additionally  one satisfyingP and the othef); z.f — y means the object has a field

the UML meanings o&ssociatiorandcomposition f containingy; and®;c (5, ,...,i,,}-P (i) meansP(i1) * ... x P(in).

tn



Predicates Method | Pre-condition | Post-condition

SubObs(s, O,v) s=Subject() |emp SubObs(s, 0, )
def s.register(o) | Sub(s, O,v) * Obs(o,s, ) | Sub(s,0 :: O,v) * Obs(o,s,v)
= Sub(s,O Ob

Sub Sz:) (3,0, 0) * @oco Obs(o, 5,v) s.update(n) | SubObs(s, O,v) SubObs(s, O, n)
gef(s’ ) ret=s.get() Sub(s, O,v) Sub(s, O,v) A ret=v
= 3l sval—v  s.obsol x list (1, O) o=Observer(s)|SubObs(s, O, v) SubObs(s,0 :: O,v)

Obs(o, s,v) o.notify() Sub(s, O,v) * Obs(o, s, )| Sub(s, O,v) x Obs(o, s,v)
def | cachesv % 0.subios ret=o.val() SubObs(s, O,v) Ao € O |SubObs(s,O,v) A ret=v

whereo € (o' :: O7) def b= o' Voe O ando e p LF false

Figure 2. Specification of subject/observer pattern

this.sub = s; [10] M. J. Parkinson and G. M. Bierman. Separation logic and abstraction.
{SubObs(s, O, v) * this.subrs * this.cache—_} In POPL, pages 247-258, 2005.
{SubObs(s, O, v) * Obs(this,s, )}
{Sub(s, 0, v) * (®oco Obs(o,s,v)) * Obs(this,s, )}
s.register(this);
{Sub(s, this::0,v) * (®oco Obs(o,s,v)) * Obs(this,s, v)}
{Sub(s, this::0,v) * (® ¢ this..0) Obs(0,5,v))}
{SubObs(s, this::O,v)}

Interestingly, theDbserver’s constructor causes problems for class
invariant based verification, because it calls another class’s method,
which in turn calls back into th®bserver. This complicated call-

ing pattern is forbidden in the class invariant approach, and requires
additional machinery [1]. Simply by using predicates over aggreg-
ates we avoid such constraints.

Conclusion We have demonstrated a straightforward proof of the
subject/observer pattern. We have not invented new methodology
or ownership types. We have simply considered a property of an
aggregate structure. These properties, we claim, are the key to
verifying object-oriented programs, and should not be shoehorned
into class invariants. Class invariants have taken us a long way, but
properties of aggregate structures should now form the foundation
of verification.

Acknowledgments We thank Gavin Bierman, Sophia Drossopoulou,
and Peter O’Hearn for encouraging me to write this position paper.
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Abstract

We extend an existing points-to analysis for Java in two ways. First,
we fully support .NET which has structs and parameter passing
by reference. Second, we increase the precision for calt®me

analyzablemethods. A method is non-analyzable when its code
is not available either because it is abstract (an interface metho

or an abstract class method), it is virtual and the callee cannot be

statically resolved, or because it is implemented in native code (as ; ; ;
ecalls to non-statically resolvable calls such as interface calls, vir-

opposed to managed bytecode). For such methods, we introduc

extensions that model potentially affected heap locations. We also

propose an annotation language that permits a modular analysi
without losing too much precision. Our annotation language allows
concise specification of points-to and read/write effects. Our analy-
sis infers points-to and read/effect information from available code
and also checks code against its annotation, when the latter is pro
vided.

Categories and Subject Descriptors  F.3.2 Logics and Meanings
of Program$. Semantics of Programming Languages—Program
Analysis

General Terms Object-oriented programming, static analysis,
points-to analysis, effects analysis

Keywords object-oriented, points-to analysis

1. Introduction

Diego Garbervetsky

Departamento de Computacion, FCEyN, UBA
diegog@dc.uba.ar

Managed C++, etc. Unlike Java, the CLR adds support for struct
types and parameter passing by reference via managed pointers,
i.e., garbage collector controlled pointers. For each method in the
application we compute a summary describing a read/write effects

and a points-to graph that approximates the state of the heap at the

dmethod’s exit point.

The more important extension is the inclusion of additional sup-
port for non-analyzablecalls. We can analyze programs that have

tual calls, and native calls while being less pessimistic than Sal-
cianu’s analysis. We define a concise yet expressive specification
anguage to describe points-to and read/write effects for a method.
The method annotations are used (i) as summaries, to analyze code
involving calls to non-analyzable methods; (ii) to enable modular
analysis, i.e., when analyzing a methadhat invokes a method

m, we (a) use the annotatiad(m) in the analysis of the body

of n and (b) we checkn against its specificationd(m); (iii) as
documentation and contracts to impose restrictions on eventual im-
plementations [18]. This allows our analysis to work even without
computing a precise call graph.

In this work we apply our analysis primarily for checking
method puritybut it can be used for any other analysis that requires
aliasing information and/or conservative read/write effect informa-
tion. Purity is informally understood to mean that a method has no
effect on the state. Formally, however, there are different levels of
purity [6]. Our analysis computes weak purity, i.e., it infers weak
purity and it checks whether a method annotated as being weakly

Object-oriented languages, as C# or Java, strongly rely on the ma-pure lives up to its contract. Weakly puremethod does not mutate

nipulation (read/write) of dynamically allocated objects. As a con- any object that was allocated prior to the beginning of the method’s
sequence, static analysis tools for these languages need to computexecution. Because a weakly-pure method can return newly allo-
some heap abstraction. Here, we focus our attention on a static anal<ated objects and since object equality can be observed by clients,
ysis for determining the side-effects of statements and methods. there may be further restrictions on weakly-pure methods in order

Side effect information can be used for program analysis, spec- to use them in specifications [10].
ification, verification and optimization. If it is known that a method The main contributions of the paper are:

m has no side-effects, then during the analysis of a calecan

be handled in a purely functional way. Furthermaregan be used

in assertions and specifications [13, 5]. Side effect-free methods
enable several optimizations such as caching the computed results
and automatic parallelization.

Analysis of side-effects in mainstream OO languages is not
simple as (i) different variables or fields may refer to the same
memory location (aliasing); (ii) the relationship between objects
can be very complex (shape); (iii) the number of objects can be
unbounded (scalability); and (iv) it can be difficult or impossible to
statically determine the control flow because of dynamic binding or
because not all the code is not available at analysis time, e.g., when
analyzing a class library or programs that use native code.

We extend an existing points-to and effect analysis presented by
Salcianu et al. [22] to infer read and write effects for code targetting 11 TheProblem
the .NET Common Language Runtime (CLR) [11]. The CLR is Consider the following simple, but realistic example. Figure 1
the common infrastructure for languages such as C#, Visual Basic, contains a method written by a programmer to copy a list of inte-

e An interprocedural read/write effect inference technique, built
on the top of the points-to analysis, for the .NET memory model
that relaxes thelosed worldassumption.

e A new set of annotations for representing points-to and effect
information in a modular fashion. The annotations are consid-
ered valid for interprocedural analysis when the methods are
called, and verified when the implementations of the methods
are analyzed.

e An implementation integrated into the Spec# compiler [23] to
infer and verify method purity and for checking the admissibil-
ity of specifications in the Boogie methodology [5].
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Li st <i nt > Copy(| Enuner abl e<i nt > src) 1.2 Paper structure

List<int> | = new List<int>(): First, we review the essential ideas from Salcianu’s analysis in Sec-
foreach (int x in src) tion 2 and present our extensions to deal with .NET memory model

| . Add(X) ; and non-analyzable calls. Section 3 presents our annotations and
ret 'ur ni: ' the extensions to Salcianu’s analysis needed to process the points-

} to graphs they represent. Our preliminary experimental results ap-
pear in Section 4. Some related work is reviewed in Section 5 and
our conclusions are presented in Section 6.

Figure 1. A simple use of an iterator in C#.

2. Salcianu’sAnalysis
Salcianu et al. [22] created an analysis for Java programs that

Li st <i nt > Copy( | Enumer abl e<i nt> src) performs an intra-procedural analysis of each method to obtain a
) ) ) ) method summary that models the result of the analysis at the end
List<int> 1 = new List<int>(); of the method’s execution. We briefly review their analysis.
I Enunmerator<int> iter = Their analysis relies on having a precise precomputed call graph
src. Get Enunerat or () ; for the entire application. Methods are traversed in a bottom up
while (iter.MveNext()){ fashion, using already computed method summaries at each call
int x = iter.get_Current(); site. To deal with recursion, a fixpoint computation operates over
I Add(X); every strongly-connected component (i.e., group of mutually recur-
sive methods). When a method invokes another method, the current
return |; state of the caller and the method summary for the callee are unified
} to represent the caller’s state after the call.
The intra-procedural analysis is a forward analysis that com-
Figure2. “Desugared” version of the iterator example. putes a points-to graph (PTG) which over-approximates the heap

accesses made by a methedduring all its possible executions.
Given a methodn and a program locatiopc, a points-to graph
Preis atriple(I, O, L), wherel is the set of inside edge6) the
gers. In C#, théoreachis syntactic “sugar” which the compiler ex- ~ Set of outside edges aridthe mapping from locals to nodésThe
pands (“desugars”) into the code shown in Figure 2. (Programmers Nodes of the graph represent heap objects; there are basically three
are also able to directly write the de-sugared version.) The desug-different types of nodesnside nodesepresent objects created by
ared version shows that there is one method call from the interface™. While parameter nodesepresent the value of an object passed

I Enumerable(T) and two from the interfacéEnumerator(T). as an argument to. Load nodesare used as placeholders for un-
In addition, the constructor for the tydaist(T") is called, as is its known objects or addresses. A load node represents elements read
Add method. from outsidem.

A points-to analysis produces the set of memory locations that ~ Relations between objects are represented using two kind of
are read and written b§fopy. That information can then be used edges:inside edges model references created inside the body of
to determine ifCopy is (weakly) pure. It clearly mutates the list ™ and outside edges model heap references read from objects
that it creates and returns, but that list is created after entry into reachable from outside, e.g., through parameters or static fields.
the method and the original collection from which the integers are ~ When the statement at the program paintis a method call,
drawn is unchanged. Thus, we desire an analysis that is preciseop: the analysis uses a summary of the calRg;..—a PTG
enough to recognize its purity. representing the callee effect on the heap—and computes an inter-

Salcianu’s analysis would not be able to analyze the calls to the Procedural mapping.; :: Node — P(Node). It relates every
interface methods. It would make the conservative approximation Noden € nodes(Pcaice) In the callee to a set of existing or fresh
that the parametesrc could escape to any location in memory hodes in the callefnodes(P7;) Unodes(P.p)) and is used to bind
and that the method has a (potential) write effect on all accessible the callee’s nodes to the caller's by relating formals with actual
locations, such as all static variables. This preclufegy from parameters and also to try to match callee’s outside egdes (reads)
being pure and, perhaps more importantly, pollutes the analysisWith caller’s inside egdes (writes). _
of any method that calls it because those effects then become the For each program point withim, the analysis also records the
effects of the caller. locations that are written to the heap. The summary of a method

We have created a specification language for concisely describ-represents the abstract state at the method's exit point in term of
ing the points-to graph and read/write effects of a method. The de- its parameters. It contains all reachable nodes from the (original)
sign of such a language is subject to common engineering tradeoffs:Parameter nodes.
it should be precise enough to enable the recognition of common .
programming idioms while at the same time be concise enough for 21 Extensionsfor the NET Memory Model
programmers to use in everyday practice. We extend this analysis to support features of the .NET platform

We add annotations written in the language to method signa- not present in Java: parameter passing by reference and struct
tures. At call sites, we trust the annotation of the called method; types. Struct types hawaluesemantics; they encompass both the
annotations are then verified when analyzing a method implemen- primitive types like integers and booleans as well as user-defined
tation. Annotations are inherited: they must be respected in every record types. To accommodate both references and structs, we add
subtype by overriding methods. We use the set of annotations to
model non-analyzable calls with better precision than previously 1the set of nodes is implicitly described by the two sets of edges and the

possible while still computing a conservative points-to graph and |ocal variables map. Salcianu’s analysis also has one more elefgtie
read and write effects of the callee. The annotations describe anescaping node set. Instead, we represent an escaping node by connecting it

approximation of the read and write effects of the method. to a special node that represent the global scope.
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anew level of dereference usiagdress nodesn this model, every m?2 it would be unsound to consider only an effect owérf1 in

variable or field is represented by an address node. In the casethe caller. We need some mechanism to updatezhen more in-

of objects (or primitive types) the address node then refers to the formation becomes available (e.g., when bindingvith its caller).

object itself. A struct value is represented directly by its address. To

access an object we first get a reference to an address node and theh2-1  Omega Nodes

follow that to the value. In the case of structs we directly consider \We introduce a new kind of node, am node, to model the set

the address as the starting offset of the struct. Thus, an addressf reachable nodes from that node. At binding time, instead of

node for an object has outgoing edges labeled with the “contents- mapping a load (or parameter) node with the corresponding node

of” symbol **", while an address node for a struct value has one in the callerw nodes are mapped to every node reachable from the

outgoing edge for each field of the struct: the labels are the field corresponding starting node in the caller. For instance, aode

names. for a parameter in the callee will be mapped to every node reachable
This distinction is used in the assignment of objects and structs. from the corresponding caller argument.

For objects, we just copy the value pointed to by the address node,  Figure 5 shows an example of hawnodes are mapped to caller

and for structs we also copy all the values pointed to by its fields. nodes during the inter-procedural binding. Suppose that somehow

Figure 3 shows the representation of object and struct values andwe know the non-analyzable method call creates a reference from

how the assignment of struct values is done. Address nodes aresome object reachable fropi to some object reachable fropa.

depicted as ovals, values as boxes. Since we don’t know which fields are used on the access path, we
In [4] we formally present the concrete and abstract semantics yse a new edge labél, that represents any field. At binding time

of the extended model. Basically we support the statements thatwe know that fromu1 we can reaci N1 andZ N2. Thus, we must

operate on managed pointers. For instance the statement that loadgdd a reference from both nodes to the nodes reachableiftom

anaddresa = &b assigns ta the address di. If the type ofb is We want to distinguish between a node being merely reachable
a struct typea will contain a reference to it. Thug,can be usedas  from it being writable (e.g., an iterator may access a collection
if it were an object. The pair of statements indirect loads= *b, for reading but not for writing). For this purpose, we introduce a

and indirect storera = b, allows indirect access to values and variant ofw nodeswC nodes. Th& stands foconfined a concept
are typically used to implement parameter passing by reference. Weporrowed from the Spec# ownership system [2]. These nodes have
also keep track of read effects by registering every field reference the same meaning as nodes for binding a callee to a caller, but
(load operation). they represent only nodes reachable from the caller through fields
Figure 4 shows a simple method and three points-to graphs atit owns Ownership is specified on the class definition: a figld
different control points in the method. All of the addresses in the marked as being aswningfield in classI” means that an objeet
figure refer to objects. One node models all globally accessible of typeT owns the object pointed to by iffield, o. f (if any).
objects. The graph on the left shows the points-to graph as itexists  To model potential read or writes we udedges to mean that
at the entry point of the method. The middle graph shows the effect the method may generate a reference using an unknown field for
of executing the body of the method: the points-to graph is shown at any object reachable from the object(s) represented by the source
the exit point of the method. Finally, the right graph is the summary node to the object(s) represented by the target node. As we want a
points-to graph for the method. It represents the method's behavior conservative approximation of the callee’s effect, we only generally
from a caller’s point of view. Notice that the initial value of the introduce inside edges in non-analyzable methods because they
parameter has been restored since a caller would not be able to do not disappear when bound with the caller's edges. We use
detect that it is re-assigned within the method. The summary for the another wildcard edge labé| that includes only a subset of the
method is a triple made up of a points-to graph that approximates |abels denoted by. $ denotes only non-owned fields and allows

the state of the heap, a write 341, and a read seR. distinguishing between references to objects that can be written by
a method, from references that can only be reached for reading (see
2.2 Extensionsfor Non-analyzable M ethods Section 3 in particular th&/ riteCon fined attribute). This is the

distinction that allows the use of impure methods while retaining
guarantees that some objects are not written. For the worst case
acenario we connect every parametarode of the non-analyzable
method to other parameter nodes and to themselves using edges
labeled ag to indicate potential references created between objects

summary nodes for non-analyzable methods. A load node (in par- reachable from the parameters. Section 3 presents our annotation

ticular, a parameter node) is a placeholder for unknown objects thatlanguage that helps eliminate some of these edges.

may be re.sollved in the caller's context. In the case of analyzable 5 5 5 Interprocedural binding

calls, at binding time the analysis tries to match every load node ) )

with nodes in the caller. A match is produced when there is a path T0 deal with the new nodes and edge labels, we adapt the inter-

starting from a callee parameter that unifies with a path in the caller, Procedural mapping.. Recall thatu is a mapping from nodes in

That means that a read or write made on a callee’s load node cor-the callee to nodes in the callee and the caller. Thus, for every

responds to a read or write in the caller. As reads and writes in the Noden;.~ we compute the closure pf(n;,. ) by adding the set of

callee are represented by edges in the points-to graph, those edgekeachable nodes from(nk.”) to itself.

must be translated to the caller. When computing the set of reachable nodes matching@n
Non-analyzable calls may have an effect on every node reach- node we consider only paths that pass through owned fiahs?

able from the parameters. That means that, unlike analyzable calls,edges. Note that we reject paths that confagniges.

some effects might not be translated directly to the caller points- Finally, we convert any load nodeﬂgc, contained in the set

to graph as it may not have enough context information to do the y(nk.”) tow nodes. This is because these nodes could be resolved

binding. For instance, a non-analyzable calleé may modify when more context is available, at which point we still need to

pl.f1.f2.f3 to point to another parametp® and a caller that apply the effect of the non-analyzable call to those nodes. For

performs the method cath2(al, a2) may have points-to informa-

tion only aboutal.f1. As we don’t know “a priori” the effect of 2We mean “owned fields” as defined in the Boogie methodology [2].

Salcianu’s analysis computes a conservative approximation of the
heap accesses and write effects made by a method. A call to a non
analyzable method causes all arguments to escape the caller an
also to cause a write effect on a global location [22].

For a more precise model of non-analyzable calls, we generate
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Befare v1 = v2 After v1 = v2

Figure 3. Modeling objects and structs. On the leftis the address afi, which is a value of a struct type with two fielgd and f2. (vo
can be thought of as an object, e.g., if the struct is passed to a method that takes an object as a parametesultehe aboxedvalue.)
The type off1 is also a struct type with one fielgwhich is of an object type. The type ¢ is an object type. The center and right figures
show an assignment of two variables of struct type.

nodes reachable from outside (in this case the return value) to
the receiver. Note that we do not annotate iCagture. This

is why the edge between the return value and the collection is
labeled as$ which means that the receiver is reachable from
outside but only for reading. ACapture annotation would
generate & edge. There are no edges starting fromdhsode
pointed by&this because of the default annotation for the
receiver adV rite( false).

instance in Figure 5, before the binding all nodes reachable from
al are inside nodes. Those nodes do not change at binding time
as they were created by the caller itself and are not place holders
for unknown objects. Thus, no more context is necessary to solve
the binding between1 and pl. However,a2 can reach the load
node L4 meaning that more context might be necessary to resolve
nodes reachable fronR. That is why we converf4 to anw node.
Full details on the modified computation for the inter-procedural
mappingy is in [4].

We also modify the operation that models field dereference to
support the? and$ edges. It considers those edges as “wild cards”
allowing every field dereference to follow those edges.

e The method is annotated as not accessing globals. This means
that there is no global node (and so no write or read effects on
the global state).

We believe these are reasonable constraints on the behavior of
3. Annotations GetEnymgrator. The points-to graph fOMoveN_ea:t is also

shown in Figure 6. It corresponds to these annotations:
Table 1 summarizes our annotation language. The annotations pro-
vide concise information about points-to and effect information and
allows us to mitigate the effect of non-analyzable calls. Annotating
a method as pure is the same as marking each parameter as not be-
ing writable (unless it is an out parameter). A method annotated as
being write-confined is shorthand for marking every parameter as

e The method is annotated & riteCon fined, which means
that it can only mutate objects it owns. This is represented using
an wC node for the receiver. Note how this is implemented.
The parameter node has two edges. The edge labeled as
which leads back to the reciever means that the method can

write-confined. Obviously not all combinations of the attributes are
allowed. For example, it would be contradictory to label a method
as being both pure and as writing globals.

The full details for mapping the attributes into points-to and
write effect information are found in [4]. Basically their impact is
to a) remove? edges, b) replace nodes by inside nodes, and c)

avoid registering write effects over parameters or the global scope.

We explain the effect of the annotations using some of the
methods in our running example. Figure 7 presents the full list of
annotations. Th&'et Enumerator method returns an object that
is modified later on inC'opy. Notice that the loop would never
terminate unlesster.MoveNext returns false at some point. So

perform any write to nodes in its ownership cone. The other
edge labeled a8 leads to a separate node. That means that
objects reachable using not-owned fields can be read but not
modified. Thus, edges labeled®do not need to be considered
when computing write effects for the method.

class List<T> {

[ G obal Access(fal se)]
public List<T>();

[ G obal Access(fal se)]
public void Add(T t);

either the loop never executes or else some state somewhere must . . .

change so that a different value can be returned. If the state changé
interface | Enuner abl e<T>{

involves global objects, thefopy is not pure so let us assume that
the change is to the objeéter itself. As long as that object was
allocated byGet Enumerator, changes to it would not violate
the weak purity ofCopy. We expectGet Enumerator to return

a fresh object: the iterator. At the same time, it is likely that the

[return: Fresh]

[ Escapes(true)] // receiver spec
[ G obal Access(fal se)]

| Enuner at or <T> Get Enunerat or () ;

returned iterator has a reference to the collection. We need a wayij nt er f ace | Enuner at or <T> {

to distinguish the write effects ilfoveNext so that we do not
conclude that it modifies the collection.

Figure 6 shows the points-to graph f6fet Enumerator. It
corresponds to the following annotations.

e The return value is annotated &%esh. This generates the
inside node for the return value instead of.anode.

e The receiver fhis variable) is annotated aEscapes which

means that the points-to graph must introduce edges from the
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[WiteConfined] bool MveNext();

T Current { [d obal Access(false)] [Pure] get; }

[WiteConfined] void Reset();

Figure 7. The methods needed for analyzidgppy along with
their annotations.
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Figure5. Effect of omega nodes in the inter-procedural mapping

Attribute Name Target Default | Meaning

Fresh out Parameter | False The returned value is a newly created object.

Read Parameter True The content can be transitively read.

Write Parameter False The content can be transitively mutated.

WriteConfined Parameter False The content can transitively mutate only captured ¢b-
jects.

Escape(bool) Parameter False Will any object reachable from the parameter be reach-
able from another object in addition to the caller’s arqu-
ment

Capture(bool) Parameter False Will some caller object own the escaping-parameter’s
objects ?

GlobalRead(bool) Method True Does the method read a global?

GlobalWrite(bool) Method True Does the method write a global?

GlobalAcccess(booly Method True Does the method read or write a global?

Pure Method False The method can not mutate any object from its prestate
except for out parameters

WriteConfined Method False The method mutates only objects owned by the param-
eters (captured).

Table 1. The set of attributes used to summarize the points-to graph and the read and write sets. The &irdsiitesd F'scape also are
allowed on the “return value” of the method since we model that as an extra (out) parameter. In C#, attributes on return values are specified
at the method level with an explicit target, efgr,et ur n: Fresh] .
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Figure 6. The evolution ofC'opy’s points-to graph after callingr c. Get Enurnrer at or andi t er . MoveNext . We use the special field

$ to indicate thakrc is reachable froniter butiter is able to mutate objects only using fields ti¥at-'s class owns. For simplicity we do
not show the evolution of the newly created objects pointed to by the list

4. Experimental Results ship types [9] while Leino et al. use data groups [16]. In [14], an

Our implementation is integrated into the Spec# compiler pipeline EfT€Ct System using annotations is proposed: it allows effects to be
and can also be run as a stand alone application. We analyze BoogigPecified on a field or set of fields (regions). It also has a notion of
[3], a program verification tool for the Spec# language [2]. Boo- unshared” fields that corresponds to our ownership system. Using
gie is itself written in Spec# and so already has some annotations. 2 PUrely intra-procedural analysis, they verify methods against their
In this case we use our tool to verify methods annotated as pure. 2notations. However, it seems that it doesn’'t compute points-to-
We analyzed the eight application modules using three different !nformatlon._ Compare_d to their approac_:h, our annotation Iangue_tge
approachedntra-procedural:We analyze each method body inde- is less precise, but still allows enough information about escaping
pendently. In the presence of method calls we use any annotation nd captured parameters. JML [15] and_ Spect [2] are spemﬁce_mon
provided by the callegnter-procedural (bottom up with fixpoint):  anguages that allow specification of write effects. One of the aims
This is a whole program analysis. We compute a partial call graph of our technique is to assist the Spec# compiler in the verification
and analyze methods in a bottom up fashion in order to have the &1d inférence of the read and write effects. We use the purity analy-
callee precomputed before any calls to that method. To deal with SIS to check whether a method can be used in specifications. Javari
recursive calls we perform a fixpoint computation over the strongly [24] Uses atype system to specify and enforce read-only parameters
connected graph of mutually recursive caltger-procedural (top and fields. To cope with caches in real ap.pllcatlons, Javari allows
down with depth 3)Again, a whole program analysis with inline the programmer to declare mutable fields; such fields can be.mu-
simulation. For every method we analyze call chains to a maximum f@ted even when they belong to a read-only object. Our technique
length of three. computes weak purity so mutation of prestate objects are not al-

Table 2 contains the results for the three kinds of analysis. lowed in methods. To automatically deal with caching writes, it is

We show only modules that contain purity annotations. The intra- nec:s.sattrytto .|n]fer obf.ervar:lonallly put:e methodds E6]'. fer side ef
procedural analysis is only slightly less precise than the other oints-1o Information has also been used to infer side er-

two analyses. Furthermore, when using annotations with intra- [€¢tS [21, 19, 8, 7]. Our analysis, as well as Salcianu's analysis [22],

procedural analysis, the precision is substantially better than a full 'sb‘?‘bl‘f to d;ﬁtlngws? ?e“’ﬁ‘“ ObJ%(IZtS aIIociated by tft1e metrllod a_r;d
inter-procedural analysis without annotations. For this application ° Jtecz |nf el prftes ate. 'tIS clana es us to tcompku (a\]/vea pur:jy
we don't find a big difference between the two inter-procedural NSt€ad of only strong purity. In more recent work, L.herem an

analyses. This is because most of the methods are not recursive. ugina [7] present a new inter-procedural analysis that generates

One interesting thing is that we found that many of the methods method signatures that give information about effects and escap-

declared pure in Boogie were not actually pure. Some are observa-INd information. It allows control of the heap depth visibility and
tionally pure, but others either record some logging information in 1€!d branching, which permits a tradeoff between precision and

static fields, or else were just incorrectly annotated as being pure. Scalability. Our analysis also computes method summaries con-
taining read and write effect information that are comparable with

the signatures computed by their analysis but our technique is able
5. Related work to deal with non-analyzable library methods with a concise set of
Our analysis is a direct extension of the points-to and effect anal- annotations that can be checked when code is available. AliasJava
ysis by Salcianu et al. [22]. We add support for a more complex [1] is an annotation language and a verification engine to describe
memory model (managed pointers and structs) and provide a dif- aliasing and escape information in Featherweight Java. Our work
ferent approach for dealing with non-analyzable methods. Insteadalso uses annotations to deal with escape, aliasing and some own-
of assuming that every argument escapes and the method writesership information but also some minimal description about read
the global scope, we try to bound the effect of unknown callees and write effects in order to compensate for information lacking at
using annotations. Using their analysis it is difficult to decide that non-analyzable calls. Hua et al. [20] proposed a technique to com-
a method is pure when it calls a non-analyzable method (e.g., thepute points-to and effect information in the presence of dynamic
iterator example). One alternative is to generate by hand all the loading. Instead of relying on annotations, they only compute infor-
information about the callee (points-to and effects) but it has to be mation for elements that may not be affected by dynamic loading
done for every implementation of an interface or abstract class. Our and warn about the others.

annotation language simplifies that task and allows us to verify the

annotations when code becomes available. .

Type and effect systems have been proposed by Lucassen et al.6' Conclusionsand Future Work
[17] for mostly functional languages. There has been a significant We have implemented an extension to Salcianu’s analysis [22] that
amount of work in specification and checking of effect information works on the complete .NET intermediate language CIL. The ex-
relying on user annotations. Clarke and Drossopoulou use owner-tensions involve several non-trivial details that enable it to deal
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Project #Meths DP || Using Annotations Without Annotations

Intra % | Inter 3 % IF % Intra % | Inter 3 % IF %
Absint 348 66 66 | 100% 66 | 100% 66 | 100% 51| 77% 51| 77% 51| 77%
AlFramework 15063 | 3514 || 2702 | 77% 2725 7% | 2730 | 78% || 1631 | 46% 1688 | 48% | 1688 | 48%
Graph 97 20 14 70% 14 70% 14 70% 10 | 50% 10 | 50% 10 | 50%
Core 9628 | 1326 || 1164 | 88% 1224 | 92% | 1224 | 92% 709 | 53% 729 | 55% | 729 | 55%
ByteCodeTrans 5564 | 984 781 79% 845 | 86% | 863 | 88% 255 | 26% 297 | 30% | 297 | 30%
VCGeneration 2050 | 187 171 91% 171 91% | 171 | 91% 155 | 83% 155 | 83% | 155 | 83%
Compiler Plugin 55 12 10 83% 10 83% 10 83% 8 | 66% 8 | 66% 8 | 66%

Table2. Results for Boogie showing the number of methods annotated as pure that were verified as pure by our analysis. The “DP” (declared
pure) column lists the number of methods in each module that were annotated as pure. The column labeled “Intra” shows the number of
methods verified using the intra-procedural analysis, “Inter 3" the inter-procedural top-down analysis limited to a call-chain depth of three,
and “IF” is the full bottom-up inter-procedural analysis.

with call-by-reference parameters, structs, and other features of theAcknowIedgements
.NET platform. Our model provides a simple operational semantics
for a useful part of CIL. Full details are presented in an accompa-
nying technical report [4].

We have extended the previous analysis by includingodes
that model entire unknown sub-graphs. Together with our annota- Refer ences
tion language, this allows treatment of otherwise non-analyzable
calls without losing too much precision.

We would like to thank the anonymous reviewers for their com-
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Abstract extension of Clarke and Wrigstadsternal uniquenesgroposal

_(Joline) [14, 32] (without inheritance), and the syntactic overhead

éjue to additional annotations is surprisingly small given the ex-
pressiveness of the language. Not only can we encode the three
forms of immutability mentioned above, but we can encode some-
hing akin to thearg mode from Flexible Alias Protectior2f],

Programming in an object-oriented language demands a fine bal
ance between high degrees of expressiveness and control. At on
level, we need to permit objects to interact freely to achieve our
implementation goals. At a higher level, we need to enforce archi-

tectural constraints so that the system can be understood by ne

developers and can evolve as requirements change. To resolve thi%ra.lCtIonaI Pllermlllstsr:ongk]];'land the cpnt?;:t-based |mml:jtab|!|ty tOf
tension, numerous explorers have ventured out into the vast land- niverses §4], all the while preserving the owners-as-dominators

scape of type systems expressing ownership and behavioural re_encapshjllatlon invariant. ngt?ermprr]e,bats our Systte".' IS bllased (t)n
strictions such as immutability. (Many have never returned.) This OWNership types, we can distinguish between outgoing aliases to

work in progress reports on our consolidation of the resulting dis- €X{€fnal, non-rep objects and aliases to internal objects and allow
coveries into a single programming language. Our langubs modification of the former (but not the latter) through a read-only
imposes little additional syntactic overhead, yet can encode power-€férence.

ful patterns such as fractional permissions, and the reference modes  ©OU' s()j/stem |s”c|osest in SD'”ttto SaffeJalxa]a, put Wg a“?W afc-
of Flexible Alias Protection. tess modes on all owner parameters of a class, read-only references

and an interplay between borrowing and immutable objects that can
. encode fractional permissions.
1. Introduction

Recent years have seen a number of proposals put forward to addL.2 Why We Could Add Read-Only To Java (AImost)

more structure to object-oriented programming languages, for ex- | his paper “Why We Shouldn’t Add Read-Only To Java (Yeg] [

ample, via ownership types f], or to increase the amount of con-  john Boyland criticises existing proposals for handling read-only
trol over objects by limiting how they can be accessed by other references on the following points:

objects, via notions such as read-only or immutability. Immutabil-

ity spans the following spectrun€lass immutabilityensures that 1. Read-only arguments can be silently captured when passed to

all instances of a class are immutable, for example, Java’s String ~ methods;

class objectimmutabilitensures that some instances of a class are 2 A read-only annotation cannot express whether

immutable, though other instances may remain mutable resudt S

only—or reference immutability-prevents modifications of an ob- (@) the referencedbjectis immutable, and hence the reference

ject via certain references, without precluding the co-existence of can be safely stored;

normal and read-only references to the same object. (b) a read-only reference is unique and thus immutable, as no
Immutable objects help avoid aliasing problems and data races aliases exist which could be used to mutate the object;

in multi-threaded programel] 18], and also enhance program un-

derstanding, as read-only or immutable annotations are verified to

hold at compile-time 31]. According to Zibin etal. 5], immut-

ability (including read-only references) can be used for modelling,

verification, compile- and run-time optimisations, refactoring, test

input generation, regression oracle creation, invariant detection, Joe; addresses all of these problems. Fidstes supports owner-

specification mining and program comprehension. Read-only ref- polymorphic methods, which can express that a method does not

erences have been used in proposals to strengthen object encafzapture one or all of its arguments. Second, we decorate owners

(c) mutable aliases of a read-only reference can exist, imply-
ing that the referenced object should be cloned before used,
to prevent it being modified underfoot resultingabserva-
tional exposuré

sulation and manage aliasing. Kniesel and Theigghuse read-  with modes that govern how the objects owned by that owner will
only references to allow and to manage side-effects due to aliasing.be treated in a context. Together with auxiliary constructs inherited
Noble, Vitek and Potter]/] introduce ararg reference modetoal-  from Joline, the modes can express immutability both in terms of

low aggregates to rely only on immutable parts of external objects. 2.a) and 2.b), and read-only which permits the existence of mutable
Hogg's Islands 19] and Muller and Poetzsch-Heffter’s Universes  aliases (2.c). Moreovetjoes supports fractional permissions—
[24] use read-references to allow temporary representation expos-converting a mutable unique reference into several immutable ref-

ure in a safe fashion. erences for a certain context. This allows safe representation expos-
o ure without the risk for observational exposure (2.c).
1.1 Our Contributions Joes allows class, object and reference immutability. Unique

The programming languagépes, we propose in this paper of-  references, borrowing and owner-polymorphic methods allow us to
fers ownership and uniqueness to control the alias structure of ob-
ject graphs, and lightweight effects and a mode system to encodel Observational exposure occurs when changes to state are observed through
various notions of immutability. It is a relatively straightforward a read-only reference.
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simulate fractional permissions and staged, external initialisation of side owner. Types are formed by instantating the owner para-
immutable objects through auxiliary methods. As we base modific- meters,this:List<owner>. An object with this type belongs
ation rights on owners (in the spirit dbe;’s effects system), we to the representation of the current object and has the right to

achieve what we caltontext-basedmmutability, which is essen- reference objects owned bywner. There are two nesting re-
tially the same kind of read-only found in iler and Poetzsch-  lations between owners, inside and outside. They exist in two
Heffter's UniversesZ4]. forms each, one reflexivafside/outside) and one non-reflexive

Joes allows both read-only references and true immutables in (strictly-inside/strictly-outside). Thus, going back to
the same language. This provides the safety desired by Boyland,our list example, a typehis:List<this> denotes a list object
but also allows coding patterns which do rely on observing changes beloning to the current representation, storing objects in the cur-
in an object. Apart from the fact that we do not yet consider rentrepresentation.
inheritance, which we believe to be a straightforward extension, A more detailed introduction is given in SectiBnApart from

we conclude that we could indeed add read-only to JavaZ.now ownership types, the key ingredientslises are the following:
Outline  Section2 introduces theJoes language through a set of e (externally) unique types (writtemique [p] : Object), a spe-
motivating examples—different nestings of mutable and immut- cial borrowing construct for temporarily treating a unique type
able objects, context-based immutability, immutable objects, and  non-uniquely, andwner castsor converting unique references
staged construction of immutables. Sect®gives a brief formal permanently into normal references.

account ofJoes. Section4 outlines a few simple but important
extensions—immutable classes and Greenhouse and Boyland style
regions [L7]—describes how they further enhance the system and
discusses how to encode the modes of Flexible Alias Protection
[27]. Section5 surveys related work not covered above. Secion e an effects revocation clause on methods which states which

e modes on owners—mutable’; read-only =’, and immutable
‘*’. These appear on every owner parameter of a class and
owner polymorphic methods, though not on types.

contains an outlook for the future, and Sectibconcludes. owners will not be modified in a method. An object’s default set
of rights is derived from the modes on the owner parameters in
2. MeetJoe; the class declaration. An additional example of a usesobke

is found at the end of Sectigh2

In this section we describdoes with the help of a couple of mo-
tivating examplesJoes is a class-based, object-oriented program- Annotating owners at the level of classes (that is, for all in-
ming language with deep ownership, owner-polymorphic methods, stances) rather than types (for each reference) is a trade-off. Rather
ownership transfer through external uniqueness, an effects (revocathan permitting distinctions to be made using modes on a per ref-
tion) system and a simple mode system which decorates ownerserence basis, we admit only per class granularity. Some potential
with permissions to indicate how references with the annotated expressiveness is lost, though the syntax of types does not need
owners can be used. Beyond the carefully designed combination ofto be extended. Nonetheless, the effects revocation clauses regain
features, the annotation of owners with modes is the main novelty some expressiveness that per reference modes would give. Another
in Joes. The modes indicate that a reference may be read or written virtue of using per class rather than per reference modes is that we
(+) or only read £), or that the reference is immutable)( Read avoid some covariance problems found in other proposals (see re-
and immutable annotations on an owner in the class header represtated work) as what you can do with a reference depends on the
ent a promise that the code in the class body will not change objectscontext and is not a property of the reference. Furthermore, our
owned by that owner. The key to preserving and respecting immut- proposal is statically checkable in a modular fashion. We also need
ability and read-only inJoes is a simple effects system, rooted no run-time representation of the modes.
in ownership types, and inspired by Clarke and Drossopoulou’s
Joe; [11]. Classes, and hence objects, have rights to read or modify
objects belonging to certain owners; only a minor extension to the
type system of Clarke and Wrigstad'sline [14, 32] is required to The following examples illustrate the range of constraints that can
ensure that these rights are not violated. be expressed itloes.

The syntax ofloes (shown in Figureb) should be understand-
able to a reader with insight into ownership types and Java-like %_1_1 A Mutable List With Immutable Contents
languages. Classes are parameterised with owners related to eac o ) ) )
other by an inside/outside nesting relation. An owner is a permis- The code in Figurel shows parts of an implementation of a list
sion to reference the representation of another object. Class header§lass. The owner parametsta is decorated with the mode read-

2.1 Motivating Examples

have this form: only (denoted +"), indicating that the list will never cause write
effects to objects owned hiata.
class List<data outside owner> { ... } The owner of the list is calledwner and is implicitly declared.
The methogetFirst () is annotated witlhrevoke owner, which
Each class has at least two owner parametgiss andowner, means that the method will not modify the object or its transitive

which represent the representation of the current object and thestate. This means the same asifier- andthis- would have

representation of the owner of the current object, respectively. appeared in the class head. This allows the method to be called in
In the example above, theist class has an additional permis-  gbjects where the list owner is read-only.

sion to reference objects owned kyta, which is nested out- This list class can be instantiated in four different ways, depend-
ing on the access rights to the owners in the type held by the current
2While the syntactic price of our proposal is no doubt steep when added context:

to Java, adding it to a language with ownership types and uniqueness, such

as Joline, is virtually for free. On a side-note, the authors believe that if e both the list and its data objects are immutable, which only

ownership types is ever to make it into mainstream languages, simple but  gjjows getFirst () to be invoked, and its resulting object is
powerful extensions, such as external uniqueness, read-only references and immutable:

immutability will be crucial in convincing programmers of the virtues of
the added complexity. ¢ both are mutable, which imposes no additional restrictions;
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class Link<data- strictly-outside owner> {
data:0bject obj = null;
owner:Link<data> next =

}

null;

class List<data- strictly-outside owner> {
this:Link<data> first = null;

void addFirst(data:0bject obj) {
this:Link<data> tmp = new this:Link<data>();
tmp.obj = obj;
tmp.next = this.first;
this.first = tmp;

}

void filter(data:Object obj) {
this:Link<data> tmp = this.first;
if (tmp == null) return;
while (tmp.next != null)
if (tmp.next.obj obj)
tmp.next = tmp.next.next;
else
tmp = tmp.next;
if (this.first != null && this.first.obj == obj)
this.first = this.first.next;

}

data:0bject getFirst() revoke owner {
return this.first.obj;
}
}

Figure 1. Fragment of a list class. As tldata owner parameter is
declared read-only (via-') in the class header, no methodlitst
may modify an object owned byata. Observe that the syntactic
overhead is minimal for an ownership types system.

class Writer<o+ outside owner, data- strictly-outside o> {
void mutateList(o:List<data> list) {
list.addFirst(new data:0bject());
}
}

class Reader<o- outside owner, data+ strictly-outside o> {
void mutateElements(o:List<data> list) {
list.elementAt (0) .mutate();
}
}

class Example {
void example() {
this:List<world> list = new this:List<world>();
this:Writer<this, world> w =
new this:Writer<this, world>();
this:Reader<this, world> r =
new this:Reader<this, world>();
w.mutateList(list);
r.mutateElements(list);
}
}

Figure 2. Different objects can have different views of the same
list at the same timer can modify the elements dfist but not
the 1ist itself, w can modify thelist object, but not the list's
contents, and instances®fample can modify both the list and its
contents.

to the context-based read-only in Universes-based sys&hia]].
In contrast, however, we do not allow representation exposure via
read-only references.

2.1.3 Borrowing Blocks and Owner-polymorphic Methods

Before moving on to the last two examples, we need to intro-
duce borrowing blocks and owner-polymorphic methotly B2,

e the listis mutable but the data objects are not, which imposes no 10], which make it easier to program using unique references and

additional restrictions, thougtetFirst () returns a read-only
reference; and

¢ the data objects are mutable, but the list not, which only allows
getFirst () to be invoked, though the resulting object is mut-
able.

The last form is interesting and relies on the fact that we can
specify, thanks to ownership types, that the data objects are not

part of the representation of the list. Most existing proposals for
read-only referencee(g., Islands [L9], JAC [20, 21], ModeJava
[28, 29], Javari B1], and IGJ B5]) cannot express this constraint in

a satisfactory way, as these proposals cannot distinguish betwee

an object’s outside and inside.

2.1.2 Context-Based Read-Only

As shown in Figure, different clients of the list can have different
views of the same list at the same time. The clssder does

ownership. (The interaction between unique references, borrowing,
and owner-polymorphic methods has been studied thoroughly by
Clarke and Wrigstadil4, 32].) A borrowing block has the follow-
ing syntax:

borrowlval as axin{s}
The borrowing operation destructively reads a unique reference
from an I-value fval) to a non-unique, stack-local variable) (for
the scope of the borrowing block)( The block also introduces
a fresh block-local owner that becomes the new owner of the
borrowed value. Every type of every variable or field that stores an
alias to the borrowed value must have this owner in its type. Clearly,
Rhis is not the case for any pre-existing field or variable. Owner-
polymorphic methods (see below) allow granting permissions to
reference the borrowed value for the duration of a method call.
This is the only way in which references to borrowed values can
be exported to outside a borrowing block. As all method calls
in the borrowing block must have returned when the block exits,

not have permission to mutate the list, but has no restrictions on clearly no residual aliasing can exist. Thus, when the borrowing

mutating the list elements. Dually, thieiter class can mutate the
list but not its elements.

As owner modes only reflect what a class is allowed to do to
objects with a certain owne¥riter can add data objects to the
list that are read-only to itself and the list, but writableBExample
andReader. This is a powerful and flexible idea. For example,
Example can pass the list tariter to filter out certain objects
in the list. Wwriter can then consume or change the list, or copy
its contents to another lisbut not modify themiwriter can then
return the list toExample, without Example losing its right to
modify the objects obtained from the returned list. This is similar
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block exits, the borrowed value can be reinstated and is once again
unique.

Due to the strong encapsulation of external uniqueness, borrow-
ing borrows an entire unique aggregate in one single hit and makes
it stack-local.

An owner-polymorphic method is simply a method which takes
owners as parameters. The methadsandm?2 in Client in Fig-
ure 3 are examples of such. Owner-polymorphic methods can be
seen as accepting stack-local permissions to reference (and pos-
sibly mutate) objects that it otherwise may not be allowed to refer-
ence. Owner parameters+(andp- in the methods in Figur8) of



class Client { class Client<p* outside owner, data+ strictly-outside p> {

<p* inside world> void mi(p:0bject obj) { void method() {
obj.mutate(); // Error this:Factory<p, data> f = new this:Factory<p, data>();
obj.toString(); // Ok p:List<data> immutable = f.createlist();
// assign to field is not possible }
} }
<p- inside world> void m2(p:0bject obj) { class Factory<p* inside world, data+ strictly-outside p> {
obj.mutate(); // Error p:List<data> createlList() {
obj.toString(); // Ok unique[p] :List<data> list = new p:List<data>();
} borrow list as temp+ 1 in { // 2nd stage of construct.
} 1.add(new data:0bject());
}
class Fractional<o+ outside owner> { return list-—-; // unique reference returned
unique[this] :0bject obj = new this:0bject(); }
}

void example(o:Client c) {
borrow obj as p*:tmp in { // **
c.mi(tmp) ; [/ Fxx*
c.m2(tmp) ; // kkkx

3 ¥ 2.1.6 Initialisation of Immutable Objects

} An issue with immutable objects is that even such objects need

to mutate in their construction phase. Unless caution is taken the

Figure 3. An implementation of fractional permissions using bor- ~constructor might leak a referencettbis (by passingthis to a

rowing and unique references. method) or mutate other immutable objects of the same class. The
standard solution to this problem in related proposals is to limit

. ) the construction phase to the constructéi, [35, 18]. Continuing

owner-polymorphic methods are not in the scope at the class level.jnjtialisation by calling auxiliary methodsfter the constructor

Thus, method arguments with such a parameter in its type cannotretyrns is simply not possibldoes, on the other hand, permits

be captured within the method body (—ittisrrowed][6]). staged constructiaras we demonstrate in Figueln this example

214 Immutability a client uses a factory to create an immu_table list. The fac_tory
creates a unique list and populates it. The list is then destructively

The example in Figur@ shows that a read-only reference to an read and returned to the caller as an immutable.

object does not preclude the existence of mutable references to

the same object elsewhere _in the system. This allows observationals_ A Formal Definition of Joes

exposure—for good and evil.

The immutability annotation*’ imposes all the restrictions a  In this section, we formally present the static semanticsoef;,
read-only type has, but it also guarantees that no aliases with writeand argue how it guarantees immutability and read-only.
permission exist in the system. Our simple way of creating an
immutable object is to move mutableunique reference into a

Figure 4. Staged construction of an immutable list

3.1 Joes’s Static Semantics

variable with immutable type, just as in SafeJadi [ We now describeloes’s type system, which can be seen as a
This allows us to encode fractional permissions and to do stagedsimplification ofJoline’s [14, 32] extended with effects annotations
construction of immutables, both discussed below. and modes on owners. To simplify the formal account, we omit

inheritance and constructors. Furthermore, followihgine, we

rely on destructive reads to preserve uniqueness and require that
The example in Figur@ shows an implementation of Fractional movement is performed using an explicit operation.

Permissions. We can udeline’s borrowing construct taempor- The abstract syntax dbes is shown in Figuré. For simplicity,

arily move a mutable unique reference into an immutable variable we assume that names of fields, method and classes are unique.
(line xx), freely alias the reference (while preserving read-only) ¢, m, f,x are metavariables ranging over names of classes, meth-
(lines*x* andx*xx*x), and then implicitly move the reference back ods, fields and local variables, respectivelyandp are names of

into the unique variable again and make it mutable. This is essen-owners.

tially Boyland’s Fractional Permissiong][ As stated above, both Types have the syntaxc(p). We sometimes write c(o) for

the owner-polymorphic methods and the borrowing block guar- some type where is a map from the names of the owner paramet-
antee not to capture the reference. A borrowed reference can beers in the declaration of a claggo the actual owners used in the
aliased any number of times in any context to which it has been ex- type. In code, a type’s owner is connected to the class name with a
ported, without the need to keep track of “split permission$as ‘’ to make the type one syntactic unit.

we know for sure that all permissions to alias the pointer are inval- Unique types have the syntaxnique, c(p). The keyword
idated when the borrowing block exits. The price of this conveni- unique specifies that the owner of an object is really the field
ence is that the conversion from mutable to immutable and back or variable that contains the only (external) reference to it in the

2.1.5 Fractional Permissions

again must be done in the same place. system. The owner annotation on the unique type is called the
Interestinglym1 andm2 are equally safe to call frorexample. movement boundiovement bounds govern the maximal outwards
Both methods have revoked their right to cause write effects to movement of a unique, so as to preserve the owners-as-dominators
objects owned by, indicated by thex and - annotations orp, property. In code, movement bounds are denatedyue [p]. For
respectively. The difference between the two methods is that the details, see Wrigstadp].
first method knows thadbj will not change under foot (making it In systems with ownership types, an owner is a permission to
safe to, for example, ussj as a key in a hash table), whereas the reference objects with that owner. Classes, such as the canonical
second method cannot make such an assumption. list example, can be parameterised with owners to enable them to

22



P =C (program)
C = class c(aRp) {fdmd} (class)
fd =tfi=e (field)
md = (aRp)t m(t z)revokeE { s;return e} (method)
e i=lval | Ival-- | em(e) | newpc{o) | null (expr.)
s s=lvali=e | tzi=e | sis| e (statement)
| borrowlval as azin{s}
val =z | e.f (I-value)
R u==<* | »* | <t | »F (nesting relation)
t =pc(p) | unique, c(p) (type)
E =e | E,p (write right revocation clause)
T =e | Iz:t | I,aRp (environment)
o =a—p (owner substitution)
«a =p- | p+ | px (owner param.)

Figure 5. Abstract syntax ofloes. In the code examples, owner
nesting relationsK) are written asinside (<*), or strict-
ly-inside (<), etc. for clarity.

be given permission to access external objects. For example, th
list class has an owner parameter for the (external) data objects

of the list. In Joes the owner parameters of a class or owner-

polymorphic method also carry information about what effects

the current context may cause dme objects having the owner
in question. For example, if- (p is read-only) appears in some
contexte, this means that may reference objects owned pybut
not modify them directly. We refer to the part of an owner that
controls its modification rights as tmeode

In contrast with related effect systemesd.,[17, 11]), we use
effect annotations on methods to show whanhat affected by
the method—essentialtgmporarily revokingights to change. For
example getFirst () in the list in Figurel does not modify the
list object and is thus declared using@voke clause thus:

data:0Object getFirst() revoke owner { ... }

This will force the method body to type-check in an environment
whereowner (andthis) are read-only.

Notation Given o, a map from (annotated) owner parameters
to actual owners, let” meano & {owner+ — p}. For the type
this:List<owner>, 0 = {owner+ — this,data- — owner}.
We writeo (p ¢(p)) to mearv (p) c{o(p)). For simplicity, we some-
times completely disregard modes and alleyp). On the other
hand,c° denotes a mode preserving variansdaf.t.if g+ — p € o,
theng+ — p+in o°.

Let md(«) and nm(«) return the mode and owner name of
«, respectively. For example, & = p+, thenmd(a) = + and
nm(a) = p.

CT is a class table computed from a progr&mit maps class

names to type information for fields and methods in the class

body. CT(c)(f) = t means that fieldf in classc has typet.
CT(c)(m) = YaRq.t — t; E means that methoeh in class
c have formal owner-parameters declareR ¢, formal parameter
typest, return typet and revoked right#?.

Predicateisunique(t) is true iff ¢ is a unique typeowner(t)
returns the owner of a type, andners(t) returns the owner names
used in a type or a method type. Thusner(pc(p)) = p and
owners(p¢(p)) = {p} UP.

E. denotes the set of owners to which classswrite permis-
sion. For example, the list class in Figur@asFEL;s; = {owner},
whereas the writer class in FiguhasEyriter = {owner,o}. E.
is defined thus:

E _{ {p|p+ € @} U{owner} ifclassc(aR_){_-}€P
cT ] L

otherwise
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Ir'+cC Good class

T+ fd Good field

T'Fmd Good method

ks I’ Statement is wf underT” and produce$’
The:t Expressiore has typet underl

THt Good type

TFE Good write right revocation clause
T'FaRp Owner parametat is R-related top in T’
T'F a perm Good owner parameter

Tkp Good owner

Tko The environment® is well-formed

Table 1. Judgments in thdoes formalisation.

E \ E’ denotes set difference. The judgments in the type system
are summarised in Tablie

eGood Class

(cLAsS)
I" = owner+ <" world, this+ <t owner,oziRp7 this: ¢t
t = owner c(nm(a)) T owner+ <* nm(a) I'fd T' md
F class c{aRp) {fdmd}

A class is well-formed if all its owner parameters are outside
owner. This makes sure that a class can only be given permission
to reference external objects and is key to preserving the owners-
as-dominators property of deep ownership systelfis The envir-
onmentI" is constructed from the owners in the class header, their
nesting relations and modes, phigner+ andthis+ giving an ob-

ject the right to modify itself. Thus, class-wide read/write permis-
sions are encoded in, and must be respected by field declarations
and methods.

Good Field, Good Method The functionT revoke E is a key
player in our system—it revokes the write rights mentione&in
by converting them to read rightsIn It also makes sure thahis
is not writable wheneveswner is not. For example, gively =
{p}, we havep+ ¢ dom(T revoke E), so if 'revoke E - s;T”, s
does not write to objects owned by

erevoke & =

T,z :t)revoke E =
(T, & Rp) revoke E
(aRp) revoke E
p-revoke E/

€
(T'revoke E), x : t

(T revoke E), (a R prevoke F)
(arevoke E)Rp

-
p-, if p € E elsep+
this-, if owner € F elsethis+

p+revoke E/
this+revoke F/

p*xrevoke E = p*
(FIELD) (METHOD)
I'=T,aRp T"FE
F'ke:t (I"revoke E),z : ¢+ ;T T"Fe:t

I'Htf:=e TF (aRp)tm(tr)revoke E{s;returne}

A field declaration is well-formed if its initialising expression has
the appropriate type. The rules for good method is a little more
complex: any additional owner parameters in the method header
are added td", with modes and nesting. Furthermore, the effect
clause must be valid:e.,you can only revoke rights that you own.



Expressions The expression rules pretty much follow those of to a stack-local variable temporarily and introduces a fresh owner

Joline extended to cater for effects. ordered strictly inside the unique object's movement bound. The
(EXPR-LVAL) (EXPR-LVAL -DREAD) new owner is annotated with a read/wr[te permission which must
T, lval: ¢ Tk Ival: ¢t isunique(t) be respected by the body of the borrowing block. As the owner of
—isunique(t) Ial=e.f =T+ e:pc(o) AT F p+ perm the borrowed unique goes out of scope when the borrowing block
TFival:¢? TF val—:¢ exits, all fields or variables with types that can refer to the borrowed

. . . . object become inaccessible. Thus, the borrowed value can be rein-
Destructively reading a field in an object owned by some owner  stated and is once again unique. As borrowing temporarily nullifies

requires thap+ is in the environment. the borrowed I-value, the same requirement¢easr-DREAD) ap-
(EXPR-VAR) (EXPR-FIELD) plies with respect to modifying the owner of the I-value.
Pke:pc(o) CT(e)(f)=t
z:tel this € owners(t) = e = this (STAT-SEQUENCE (STAT-DECL)
ISR Ihyef:oP(t) '-sI I'F s, 'te:t x¢dom()
Judgements of the forii k-, Ival : ¢ deal with I-values. Ik ssT7 F'Ftx:=elx:t

In Joline, owner arguments to owner-polymorphic methods Statements can be chained together in the obvious fashion. Local

must be passed in explicitly. Here, we assume the existence ofyariable declaration and initialisation is straightforward.
an inference algorithm to bind the names of the owner parameters

to the actual arguments at the call site. Thisjsin the rule. Good Effects Clause
(EXPR-INVOKE) (GOOD-EFFECT)
I'kFe:pclo) CT(e)(m)=VaRp.t—tE o =ocPWo, Vp e E.T'+ p+ perm
I'o'(aRp) TFo'°(@)perm T'ke:o'(t) T'ko'(t) IEE
L't o'(E\E) this € owners(CT(c)(m)) = e = this An effects clause is well-formed if it only revokes write permis-
I'k-emf(e):t sions in the current environment.

By the first clause ofexrr-iNnvokE), method invocations are notal-  Good Environment

lowed on unique types. The third clause creates a substitution from

the type of the receive(o”) and the implicit mapping from owner

1o I'kgq L+t

parameter to actual ownée,). I' = o'°(a) perm makes sure dom(T _ dom(T"

that owner parameters that are writable and immutable are instan- p ¢ dom(l) € {+,-,*} @ ¢ dom(I')

tiated with writable or immutable owners respectively. Clauses six eho I,ptRqkFo Lz:tko

and seven ensure that the argument expressions have the corredhe rules for good environment require that owner variables are

types and that the return type is valid. Clause eight checks that therelated to some owner already present in the environmentiird,

method’s effects are valid in in the current context, and clause nine and that added variable bindings have types that are well-formed

makes sure that any method withis in its type (return types, ar- under the preceding environment.

gument types or owners in the owner parameters declaration) can . .

only be invoked withthis as receiver—this is the standard static ©00d Permissions and Good OwneBy (worLp), world is &

visibility constraint of ownership type< ]. good owner and is always writable. Bgoobp-a), a permission is
good if it is in the environment. Bycoop-p-), a read mode of
objects owned by some owngis good ifp with any permission is

(GOOD-EMPTY) (coop-R) (GOOD-VARTYPE)

(EX;R"_’“ZLL) IEE)LPZZE(% a good permission—write or immutable implies read.
I'Fnull:t I' - new pc(p) : unique, c(p) (woRLD) (cooD-a)
T'ko o ac€dom(l)
By (ExPRr-NULL), null can have any well-formed type. RgxpPr- TF world+ perm TF a perm
NEW), object creation results in unique objects. (Without construct-
ors, it is obviously the case that the returned reference is unique—
see Wrigstad's dissertatio&]] for an explanation why adding con- e (Goob-p-) (IST_ODOWNER)
structors is not a problem.) p}pﬁrgb p;fril{J" *} %

Good Statements . . .
Good Nesting We can easily define judgemenits- p <* ¢ and

(STAT-LOCAL-ASGN) (STAT-FIELD-ASGN) ¥ . L ..
2 # this The:pelo) CT(e)(f) =t I'-p<Tqgas j[he reflexive transitive closure and the transitive
. rT D closure, respectively, of the relation generated from eaBlp €
z:tel ke :0P(t) TF p+perm gt 1 . 4 . .
. . RNy I, whereR € {<*,<"} orR™" € {<*,<"}, combined with
Pke:t this € owners(t) = e = this ~* wor1d for all
'Fxz:=¢l I'Fef:=¢€;T P b
In contrast to local variable update, assigning to a field requires ©00d Type
write permission to the object containing the field. (TYPE)
g* € a = 0°(g*) = p*, for somep
(STAT-BORROW) classc(aRp){...} € P
val=e.f =Tk e:qc{_) AT F g+ perm 't o?(aRp) Tk oP°(@) perm
I+ Ival : unique, c{0) T, <¥ p,z:nm(a)c(o) 5T T'F pclo)

' borrow val as azin{s kI’ This rule checks that the owner parameters of the type satisfy the

In our system, unique references must be borrowed before they carordering declared in the class header, as well as checking that
be used as receivers of method calls or field accesses. The borall the permissions are valid in the present context. In addition—
rowing operation moves the unique object from the source |-value and this is a subtle point—if an owner parameter in the class
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header was declared with the mode immutable, then the ownere dom(I"), the field update is allowed. The next line follows the
that instantiates the parameter in the type must also be immutable.same pattern: reading afield is always allowed, and we have already
Without this requirement, one could pass non-immutable objects established that we are allowed to assign to fieldsnin
where immutable objects are expected. The last line of the method updates a fieldtifis. By (STAT-

On the other hand, we allow parameters with read to be instanti- FIELD-ASGN), owner+ must be indom(I"), as the type othis is
ated with write andiice versaln the latter case, only methods that  owner List(data), which itis.
do not have write effects on the owners in question may be invoked = The methodtilter () type checks in a manner similar to that

on a receiver with the type in point. of addFirst (). However,getFirst () is different as it revokes
the right to modifyowner (and thus self). BymeTHoD), the only
(UNIQUE-TYPE) line in getFirst() must type check under revoke E where
'k pclo) E = {owner}. This is equivalent towner- <* world, this-
I' - unique, c(0) <% owner,data- ~T owner,this : ownerList(data)—the
By (UNIQUE-TYPE), a unique type is well-formed if a non-unique ~ context has no write permissions. The field access is still allowed
type with the movement bound as owner is well-formed. as reading fields does not require any write permissions.

To simplify the formal account, we chose to make loss of . o
uniqueness explicit using a movement operation rather than mak-3-2-2  Trapping Writes in a Read-Only Context
ing it implicit via subtyping and subsumption, as such a rule would We now show how the system would trap an unpermitted write
require a destructive read to be inserted. Instead, we require con-added to a method in theist class of Figurel. Assumedbject
version to be explicit, as in the following rule: was defined thus:

(EXPR-LOSE-UNIQUENESS class Obi
Al . ject {
MFe: unique, clo) THp=<"q this:0bject state = null;
T'F (p)e:pclo) void mutate() { this.state = null; }

This “owner-cast” expression moves the contents of a unique into a ¥
subheap of some object or block (whatevergtosvner corresponds
to). This is well-formed if the expression has a unique type and if
the movement bound of the type is outside the owner of the type
cast to.

and any of the methods st included the linethis.first.-
data.mutate() ;. I is the same as in the previous section.

The key to trapping this violation of read-only is the 8th clause
in (EXPR-INVOKE). By (ExPR-FIELD) (applied two times), the type
of this.first.data, the receiver of the mutating message, is
) ) ) dataObject().

In this section, we take a hands-on approach to showing how  E, ... — {owner} (remembetE. returns the set of names of
the system works by applying it to the example in Figure 1. For owners to which a class has write right) alid= ¢ as no rights are
simplicity, we ignore everything that is not related to preserving revoked. Consequentlgsjoct \E = Egbject-

3.2 Brief Explanation of the System

read-only. As mutate is not owner-polymorphicg, is empty and thus

The key rules of the system afi@ETHOD), (EXPR-LVAL -DREAD), 02 = {ouner — data} ando(Eopjec: \F) = {data}.
(STAT-FIELD-ASGN), (EXPR-INVOKE), aNd(STAT-BORROW). . Thus, by the 8th clause ¢fxpr-INvOKE), I' - data+ must hold.

In (MeTHOD), any write permissions revoked in the revocation By (coop-a), this amounts t@ata+ € dom(I") which it clearly
clausel’ are removed fronfr. Thus, the method body must be well- s not as we hadata- € T anddata- anddata+ cannot occur
typed under a restricteld. _ . o simultaneously il" whenT is well-formed.

Destructively reading, borrowing or assigning to a field in an Note that assignment to public fields is not allowed unless the
object,(ExPR-LVAL -DREAD), (STAT-BORROW) and(STAT-FIELD-ASGN) receiver isthis, which is why the modification had to be done

requires a write permission to the object containing the field in the through a method invocation.
current context.

Method invocation is a little trickier. If a formal owner para- 3.3 Potentially Identical Owners with Different Modes
meter requires write access, or that an object is immutable, the call-
ing context must satisfy those requirements{by o° (@) perm).
Furthermore, the current context must also have write permission
to every owner in the set of owners to which the method is allowed

The list class in Figuré requires that the owner of its data objects is
strictly outside the owner of the list itself. This allows for a clearer
separation of the objects on the heap—for example, the list cannot

; contain itself.
to write (. \ E). The downside of defining the list class in this fashion is that
3.2.1 Type Checking Figurel it becomes impossible to store representation objects in a list that

is also part of the representation. To allow that, the list class head

By (cLAss), addFirst(), filter() andgetFirst() must be must not usetrictly outside:

well-formed under an environmeRt= owner+ <* world, this+
<7 owner,data- > owner, this : owner List(data) for List class List< data- outside owner > { ... }

to be a good class. By(mMETHOD), every statement in a method

must be well-formed unddr’ equal tol" extended by the formal ~ The less constraining nesting however leads to another problem:
parameters of the method and possible revocation of write rights. data and owner may be instantiated with the same owners. As data

ForaddFirst(), I’ = T',obj : dataObject(). We now look at is read-only and owner is mutable, at face value, this might seem
the statements iaddFirst (). like a problem.

As we do not have constructorgxpr-NEw) does not care We choose to allow this situation as the context where the
about permissions and is trivially well-formed with respect to write type appears might not care, or might have additional information
effects. to determine that the actual owners of data and the list do not

By (STAT-FIELD-ASGN), the second line adddFirst () requires overlap. If no such information is available, we could simply issue
that the owner otmp is writeable undet”, i.e., it is in dom(T"). a warning. Of course, it is always possible to define different lists
By (EXPR-FIELD), the type oftmp iS this Link(owner). ASthis+ with different list heads for the two situations.
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Forimmutables, this is actually a non-problem. The only way an not have the necessary permissions to reference the objects. As the
immutable owner can be introduced into the system is through bor- list owner and data owner are the same, modifications to the list are
rowing (or regions, see Sectidn2) where the immutable owneris  indistinguishable from modification to its contents.
ordered strictly inside any other known owner. &SPE) requires To tackle this problem and make our system more expressive,
that write and immutable owner parameters are instantiated with we extendJoes with a regions system. A class declaration can
owners that are write and immutable (respectively) in the context contain any number of regions that each introduce a new owner
where the type appears, a situation whereand ¢* could refer nested strictly inside an owner in the scope. Thus, a class’ rep is
to the same owner is impossible. Asrre) allows a read owner divided into multiple, disjoint parts (except for nested regions), and
parameter to be instantiated with any mode, it is possible to have an object owned by one region cannot be referenced by another.
overlappingp- andg* in a context if a read owner was instanti- The syntax for regions isegion « { e }. Example:
ated by an immutable at some point. Since objects owned by read

owners will not be mutated, immutability holds. class Example {
this:0bject datum;
3.4 Soundness odoes region inner+ strictly-inside this {
L inner:List<this> list;
We have not formally proven soundnessloés. Modulo omitting }
inheritance, the formal description dbes is a very simple and
straightforward extension of that dbline [32]. As modes have void method() { list.add(datum); }
no run-time semantics, the crucial formal resultslofine should }

apply toJoes as well — type soundness, owners as dominators and
external uniqueness as dominating edges. Future work will extend
the Joline formalism with modes and object-based regions and do
the extra legwork to prove that the extended system is sound.

By virtue of the owner nesting, objects inside the region can be
given permission to reference representation objects, but not vice
versa as such types would not type cheelg(this is not inside
inner). Thus, representation objects outside a region cannot ref-

. . erence objects in the region and consequently, effects on objects
4. Extensions and Encodings outside a region cannot propagate to objects in inside the region. In
In this section we briefly discuss extensions to our system not our example above, as there are no references &atom to the
included in the formalism, and the encoding of the modes from 1ist, changes tdatum cannot change theist.

flexible alias protection. . . . .
Method-scoped regions The scoped regiongonstruct inJoline

4.1 Immutable Classes [32] can be added tdoes to enable the construction of method-
scoped regions, which introduces a new owner for a temporary
scope within some method body. Scoped regions allow the creation
of stack-local objects which can be mutated regardless of what
other rights exist in the context, even whehis is read-only or

In our system, an object always has permission to writewtter
andthis unless this permission is explicitly revoked in an effects
clause for a specific method. Consequently, creating an immutable

class requires every method to explicitly revoke its right to modify . . . .
self. To relieve the programmer of this burden and to make a class’ !mmutable. Such objects act as local scratch space without requir-

semantics clearer in the program text, we can introduce immutable "9 that the effects propagate outwards. The effects can be ignored.
classes through a class modifier: The following line illustrates a pattern that occurs several times
in the implementation of the Joline compiler:

immutable class String ...
) ) <d- inside world> void method(d:Something arg)
The immutable class would be checked just as a regular class, revoke this {

but with the weaker permissionsmer* andthis* in . Thus, region temp+ strictly-inside this {
methods that have write effects @his or owner would not type temp:Gamma<d> t = new temp:Gamma<d>();
check. As fields may not be updated, except throubs, this t.calculationsWithSideEffectsOnTemp (arg) ;

makes the object effectively immutable. To allow initialisation of )
immutable classes, the constructor would be allowed to initialise

fields, similar to how final field initialisation is treated in Java. Several times in the Joline compiler, we create a temporary object
4.2 Regions reminiscent of the type environmerit)(to check whether certain

' ] o ) _addtions of owner nestings would be permitted. This object is
In order to increase the precision of effects, we introduce expli- completely temporary and its sole purpose is throwing an exception
citly declared regions, both at object-level and within method bod- on an attempt at adding invalid owner nestings.
ies. For simplicity, we have excluded regions from the formal ac-
count of the system. Object-based regions are similar to the re-4.3 Encoding Modes from Flexible Alias Protection
gions of Greenhouse and Boylarid] and the domains of Aldrich In work [27] that led to the invention of Ownership Types, Noble,

and Chambersl], but we enable an ordering between them. Gur Vitek and Potter suggested a set of modes on references to manage

rn;eitgr?gi_nstoﬁid [rgg]'ovchcigﬁsig:%t cl)sb'izscfonr%frlllt}(/aéh\?afizrrﬁeﬁgs- the effects of aliasing in object-oriented systems. The modes were
9 oline ! 4 rep, free var, arg andval. In this section, we indicate how these

sical regions 23, 30], adapted for use with ownership types. modes are (partially) encoded in our system.

Object-based regions As discussed in Sectiod.3, defining the The rep mode denotes a reference to a representation object
list class without the use dftrictly outside places the burden of that should not be leaked outside of the object. All ownership type
determining whether data objects are modified by changes to thesystems encodep; in ours, it is encoded ashis (o).

list on the client of the list. This is because the list cannot distin- Thefreeexpression holds a reference that is uncaptured by any
guish itself from its data objects, as they (potentially) have the same variable in the system. This is encodeduasque,, c(o), a unique
owner. type. Any Il-value of that type in our system is (externally) free.

By virtue of owners-as-dominators, an object that needs to keep  The var mode denotes a mutable non-rep reference and is en-
rep objects in a list must include the list in the rep, or the list will coded a® ¢(c), wherethis # p.
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The arg mode is the most interesting of the modes. It denotes o
an argumeritreference with a guarantee that the underlying object < <
will not be (observably) changed under foot: “thatasg expres- < oo
sions only provide access to the immutable interface of the objects ¥ Pl I Erf &
to which they refer. There are no restrictions upon the transfer or z 9 P~ in > S T
use ofarg expressions around a progran?7]. We supportarg & g 8 E§ § ?) 70%’ o
modes in that we can parameterise a type by an immutable owner pfeayre S § 5 5 850 5 I
in any parameter. It is also possible for a c_Ias_s to declare all its Expressiveness
owner parameters as immutable to prevent its instances from ever Staged constr. of immutables r/ v/ x  x X x x X
relying on a mutable argument object that co_uld ch_ange under foot.  ractional permissions vV X X x x x x x
On the other hand, we do not support passar@objects_, around Non rep fields VotV X2 x? ox x
freely—the program must still respect owners-as-dominators.

The final modevyal, is like arg, but it is attached to references ——————— Flexible Alias Protection Modes
with value semantics. These are similar to our immutable classes. arg V3 oxt o xt xt x4t x?t x

rep vV vV Vv X X X X
5. Related Work free VoV VP X x x

val® X X X X X X X X
Boyland etal’s Capabilities for sharin@][generalise the con- var vV v v v YV VY
cepts of uniqueness and immutability. The system uses capabilit- Immutabilit
ies, which are pointers combined with a set of rights. What really - » Y 6 o
distinguishes this proposal from other work is the exclusive rights gbsst'mm“t?bt')'.'ﬁ’ VXXV xP X
which allow the revocation of rights of other references. Boyland Reﬁjgc;m;quéf?ar:n)ées y ;/ \X/ ‘X/ \X/ \\f \X/ \X/
etal’s system can model uniqueness with the ownership capabil- - iovi-pased immutabilty  x « x x7 x7 x7 x
ity. However, exclusive rights make the system difficult to check
statically. Confinement and AliasContral

Table 2 summarises several proposals and their supported fea- Ownership types V.oV v/ VX x XX

tures. The systems included in the table represent the state of the Owner-polymorphic methods /v v/ v/ X X X X
art of read-only and immutable. In addition toes, our own pro- Owners-as-modifiers x x3 o x o x o x o x X
posal, the table includes (in order) SafeJaijaniverses P4, 16, Unique references VoV VX X X XX
15, 28], Jimuva 18], Javari B1], 1GJ [39], JAC [21, 20] and Mod- Table 2. Brief overview of related workl) not as powerful as there

eJava P8, 29. SafeJava is probably the closest in spirit to our pro- . o e
posal, but the lack of crucial features, such as borrowing to immut- 5’ PO cl)wner trézestlngt, L\llvofrlclng S'b“ng lists gatnnott sh afble
ables, makes it less powerful. We now discuss the different features ata elemen ) mutable fields can be use O, szlore a reterence
. to this and break read-only?) see Sectiord.3, *) no modes
covered in the table. ’ .
on owners, and hence no immutable parts of objettsnone

Expressiveness As discussed in Sectigh1.6 our system allows ~ of the systems deal with value semantics for complex objects;

us to_perform s_taged construction of immutable objects. This is also 6) if all methods of a class are read-only the class is effectively

possible to do in SafeJava. immutable;”) limited notion of contexts viahis-mutability; ®)

_In our example in Figur&, we show how we can encode frac-  gjlows breaking of owners-as-dominators with inner classes and

tional permissions . Boyland suggests that copying rights may i js unclear how this interplays with immutable¥; support is

lead to observational exposure and proposes that the rights '”Steaqorthcoming p5.

be split. Only the one with a complete set of rights may modify

an object. SafeJava does not support borrowing to immutables and

hence cannot model fractional permissions. It is unclear how al- but onl ¢ h s of biect being | tabl

lowing borrowing to immutables in SafeJava would affect the sys- Tl; ?n y ol_ur SyS emdcaf‘ t ave Ft)aé S obarl objec ltelng'lmmu avie.

tem, especially in the presence of inner classes which can break the' €r€€aliasing mode, Interpréted as being equal to uniqueness, IS

owners-as-dominators property of deep ownership types. supported by our system and SafeJava. None of the systems handle
In order to be able to retrieve writable objects from a read-only Y2lué semantics for complex objects and thus notwlemode

list, the elements in the list cannot be part of the list's represent- (even thOl.Jgh. Javari include Java's primitive types in _thelr system).

ation. Joes, Universes, Jimuva and SafeJava can express this in | N€var aliasing mode expresses napreferences which may be

a straightforward fashion, by virtue of ownership types. However, aliased and changed freely as long as they do not interfere with the

only our system, because of owner nesting information, can have other modes, for example, in assignments.

two non-sibling lists sharing mutable data elements. Javari and 1GJ Immutability Immutability takes on three forms ilass immut-

have_ ta"‘?“ a more ad hoc course introducing mgtable f!elds. It is ability, where no instance of a specific class can be mutabiect

possible in those systems to circumvent read-only if an object Storesimmutability where no reference to a specific object can be mut-

a reference to itself (or an object that does so) in a mutable field. able andread-onlyor reference immutabilitywhere there may be

Flexible Alias Protection Modes The five alias modes proposed both mutable and read-only aliases to a specific object.

by Noble etal P7] were discussed in Sectioh3, where we also Universes and our system provide what we call context-based
describe how these can be (partially) encoded in our system. Hereimmutability. In these two systems it is possible to create a writable
we only describe how the modes have been interpreted for thelist with writable elements and pass it to some other object to

purpose of the table (Tab®. Therep mode denotes a reference  Whom the elements are read-only. This other object may add new
belonging to the representation of an object and should not be elements to the list which will be writable by the original creator

present in the interface. A defensive interpretatioargfis that all of the list. The other systems in our table do not support this as
they cannot allowe.g.,a list of writeables to be subsumed into a

systems that have object or class immutability partially supgrgyt
list of read-only references. In these systems, this practice could
lead to standard covariance problems—adding a supertype to a list

3 An object external to another object.
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Abstract

Ownership Generic Java (OGJ) is a language with ownership types
as an extension to Java. In this position paper we outline the state
of OGJ. We hope that the other aliasing and ownership researchers
would benefit from the discussion around how to add ownership
into a modern generic and annotation-capable typed object-oriented
language like Java.

1. Introduction

With the lively state of ownership research [1, 3, 4, 8] a question
comes up: “What stops us from adding ownership to Java today?”
This position paper claims that there is nothing substantial which
stops us from starting to use ownership today. The only problem is
how it can be presented to the programming community to promote
its usefulness.

OGIJ [7] is a language with deep, reference-based ownership
support. Over the recent months we have been working on resolv-
ing the remaining issues which arise when ownership and Java meet
in an actual language implementation. Section 2 outlines these by
dealing with statics, exceptions [5], arrays, equals and clone meth-
ods, and wildcards. The problem of arrays is a consequence of Java
language design. The other problems are deeper issues which face
many ownership systems, and we discuss them in the context of
OG] in this paper. Section 3 wonders what else we need to do be-
fore we could propose an ownership extension to Java (ultimately
as a JSR).

The solutions described in this paper are in no way designed to
be definitive, rather we pose a question to the community as to what
could be the best alternatives to solving these issues.

2. Ownership Meets Java
2.1 Statics

Because static members cannot be owned by any instances or
instance-associated ownership types it means that the possible own-
ers are limited to World, Package, and Class. We propose that
public static members be implicitly owned by Wor1d, that package-
private static members be implicitly owned by Package and that
protected and private static members be implicitly owned by Class.

Each of these approaches is, superficially, fairly straightforward,
however, in the case of inheritance complexities can arise. This is
because a public or protected static member of some class C which
is owned by <Class> is not visible to any subclass of C, according
to the original definition of OGJ.

We propose to modify the visibility rules in OGJ to take into
account the inheritance hierarchy, in exactly the same way as
the object typing rules do. For example, if D extends C, then
C.foo<Class> would be visible and could be referred to by any
instance of type D.
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class Super<SuperOwner extends World> {
public static Integer pub = 1; // assumes World
static Integer pac = 2; // assumes Package
protected static Integer pro = 3;
private static Integer pri = 4; // assumes Class

// Cannot use the instance type parameters or This
// static String<SuperOwner> s = "illegall!";
}

class Sub<SubOwner extends World>
extends Super<SubOwner> {

public static String<Class>
weirdl = "legal, _but_strange!";

private static String<World>
welrd2 = "legal, _but_strange!";

void DoFoo () |
// Legal, because we made Class visible
// to subclasses
Sub.pro = 99;

}

Figure 1. Static members and ownership.

Additionally, the presence of owner generic methods in OGJ
allows for static methods to have additional owners supplied via
generic parameters.

Figure 1 shows an example of statics in OGJ. The static fields
gain an implicit owner based on their visibility. An explicit owner
can be used as long as it doesn’t contradict the name visibility of
the static field.

2.2 Exceptions

Incorporating exceptions into an ownership type system raises two
main problems: (1) the ownership of the exception itself, (2) and the
possibility of leaking references. Ownership and exceptions were
also addressed by Werner Dietl and Peter Miiller [5].

An object throwing an exception could specify either that its
owner was a global type like Wor1d, or that it was owned by one of
the ownership types which were in scope. Specifying Wor1ld would
mean that non-Wor1ld objects could not be assigned as fields to the
reference. Similarly, using one of the other visible ownership types
would mean that exceptions could not propagate very far. Thus
exceptions would be either greatly weakened or method calls would
be unduly restricted by static type checking. This would mean that
many design idioms could not be expressed.

For OGJ we have chosen to introduce a special owner Exception
(that is a subtype of World) to resolve this problem. All exceptions
are owned by Exception. Exceptionis just like World, in that any
object can refer to or create an object of type Exception. Using

// assumes Class



class FooException <EOwner extends Exception>
extends Throwable {

public Foo<EOwner> causeOfException;

public FooException (
Foo<EOwner> causeOfException) {

this.causeOfException =

}

causeOfException;

}

class A<Owner extends World> () {
private Foo<This> f;

public void SomeMethod () {
throw new FooException<Exception>(f);
}
}

class B<Owner extends World> {
public static Foo<World> globalF;
private Foo<This> myF;

public void <AnotherOwner extends World>
DoSomething (A<AnotherOwner> a) {

Foo<This> localF;

try {
a.SomeMethod () ;

} catch(FooException<Exception> e) {
e.causeOfException.fix ();

// These lines cause compile-time errors:
// B.globalF = e.causeOfException;

// this.myF = e.causeOfException;

// localF = e.causeOfException;

Figure 2. Exception handling and ownership.

a subtype of World marks off the relevant subset of global objects
and allows them to be treated slightly differently.

In particular, we adopt the following conditions for Exception.
Firstly, an object owned by Exception can only be created as part
of a throw statement. Secondly we allow the ownership typing
rules to be briefly broken during the exception throwing, so long
as all other typing rules are not. This means that any object can
be passed as a parameter to and used in the constructor of an
Exception. In this situation the language implementation will only
emit a warning saying that ownership will have been temporarily
and locally broken.

The key advantages of this approach are as follows. Firstly,
borrowing or uniqueness[6, 2] do not need to be introduced into
OG]J just so that exceptions can be used. This minimises the
learning curve for users of the language. Secondly, some excep-
tions in the API already expose references. An example of this is
omg.org.CORBA.portable.ApplicationException. Rewriting
exceptions like this to work in an ownership environment could also
mean that the underlying architecture would need to be redesigned.
Our approach maximises legacy interoperability and minimises
code conversion costs.

Figure 2 shows an example of exception handling in OGJ. Inside
method SomeMethod we can pass a field £ owned by This to a
publicly owned exception only because we are doing as part of the
throw statement. Inside the catch block, the exception’s fields can
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class Foo<Owner> {}

class MyArrays<Owner extends World> {
// What the specification claims is allowed:
public Foo<Owner>[] myOtherArray =

// What javac actually allows,

public Foo<Owner>[] myArray = new Foo[20];

Figure 3. Java arrays and ownership.

be referenced and modified via method calls, however copying the
exception fields to variable not local to the catch block will generate
a compile-time error.

2.3 Arrays

In general, arrays are not a problem for ownership, however, some
design decisions do need to be made. Although much of the discus-
sion in this subsection is concerned with the details of implement-
ing owned arrays with type erasure in Java, it generalises nicely to
typed languages with generics.

We propose that arrays not have an owner [9]. Their one owner
parameter refers to both the objects in the array and to the array
itself. Although it is possible to give arrays their own owner, and
while arrays have some minimal functionality added to them in
Java there is very little that can be done with an array that does not
directly involve its elements. This is not the case with collections.
In our experience the added complexity of giving each array its own
owner distinct from its elements’ was not justified by the changes
that would be required in Java. In the very rare cases of separate
owner being useful, the use of a collection (e.g., ArrayList with
appropriate owners) was more appropriate.

We consider compatibility with old Java virtual machines to be
crucial. This means that, just like generics, ownership-checked pro-
grams must run on pre-ownership and pre-generic virtual machines.
At the point of array creation, due to the restrictions imposed by
Java’s type erasure, there are really only two options: (1) allow
ownership (but not generics) to be specified in the allocation state-
ment and the type of the reference, or (2) only allow ownership in
the type of the reference. Currently, if an approach like the second
were used the language implementation would raise an “unchecked
warning”. We would recommend not raising a warning in the case
of ownership types. This is because OGJ guarantees that the refer-
ences will be properly type-checked.

These approaches work because of the way in which the Java
type checks its programs. Aside from checking the type of the
allocation statement at the time of construction against the type of
the reference, Java otherwise type checks references against each
other, not against the type of the underlying object. Because all
references to array objects will include owner information as part
of their type, ownership remains sound with arrays.

This means that if we can just get past the hurdle of object cre-
ation, owned arrays will be handled automatically by Java’s type
checking rules, just as existing generic arrays are handled. Even
though these parameters will be erased by the language implemen-
tation, they are always type checked first.

Figure 3 shows an example of arrays in OGJ. These approaches
work because although the object itself is unowned the only refer-
ence to the object is through its reference, which is properly type
checked and which is forbidden by OGJ from having its owner cast
away. In addition, the implementation still does the type substitu-
tion into the class.

new Foo<?>[20];

they are equivalent:



class A<EOl extends lorld,
Owner extends World> {

EO2 extends liorld,

Foo<EOl, This> f1;
boolean <0> equals (00Object<0> o) {
if (o == this) return true;
if (! (o instanceof List))
return false; // compare to raw type

A<OtherEOl, OtherE02, 0> oA =

(A<OtherEO1l, OtherE02, 0>) o;
if(!'this.fl.equals(oA.fl)) return false;
else return true;

}

Figure 4. Object comparison and ownership.

24 Equals

Equals and clone methods in OGJ suffer from the problem of not
being able to have the same signature (and thus be overridden in the
subclasses) due to a varying set of owners required by the method to
perform equals or clone operation on various objects having access
to many owners [8].

Since each object only has one “main” owner and the rest are
simply those additional “outside” owners that it has access to,
existential owners [8] shows why it is safe to sometimes lose track
of the non-main owners and then gain them back by downcasting
and introducing existential ownership types distinct from any other
ownership types which are visible.

For example, this allows us to implement an equals method
in OGJ as shown in Figure 4. Notice that downcasting introduces
new owner type variables (e.g. OtherEO1 and OtherE02) following
the existential ownership proposal [8]. The downcast uses owner O
(coming via the method parameter o) which is not necessarily the
same as the owner of the class A (Owner).

In Figure 4 class A has additional owners EO1 and EO2 in ad-
dition to the main owner Owner. Its equals method is a generic
method that accepts the owner parameter O of the object being
compared to (which maybe This for the other object). The equals
method thus has access to two (potentially unrelated and private)
objects in the object graph only for the duration of the method it-
self. Note that the equals method has the same signature for every
class even though there may be multiple owners involved.

2.5 Clone

Figure 5 illustrates cloning in OGJ. For cloning, a method call to
the assignee (which may have a new owner if one would like to
change ownership of the clone) is required as shown in Figure 5.
We call this assisted cloning. A C++-like copy constructor could be
used in place of the special assistant method assignClone. For the
sake of exposition we have omitted null and self-reference checks.
The code as written would fail because of this but it illustrates the
assistant method approach.

2.6 Wildcard bounds in OGJ

In this section we will discuss how wildcards and bounded wild-
cards are taken into account in OGJ. The Java type system makes
this relatively easy.

An unbounded ? can only be used as a wildcard in limited
situations. This is because it is entirely anonymous. Although at
compilation the static types of actual instances will be substituted
in place of this wildcard and can be checked it cannot be referred
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class A<Owner extends World> {
A<This> f; int 1i;

<NewOwner> OObject <NewOwner> clone () {
A<NewOwner> temp = new A<NewOwner>();
temp.i = this.i;
temp.f.<This>assignClone (this.f);
return temp;

}

<NewOwner> wvoid assignClone (A<NewOwner> a) {
this = (A<Owner>) a.<Owner>clone();

}

Figure 5. Object cloning and ownership, other version

to or used by the code. For example, a class specified with ? as
its owner could not use that owner in any of its method or field
definitions.

Named bounded wildcards (e.g. Owner super Package) sim-
ply act as statically checkable restrictions on owner types which are
valid for that method parameter, class or generic method. Note that
an anonymous bounded wildcard (e.g. ? extends Package) also
faces the same restrictions as an unbounded anonymous wildcard
and cannot be referred to in the code.

Because only World, Package, Class and This are ownership
types known to exist, only a few bounds can be specified for a
class which is not an inner class. For example, usefully. a class
could have its owner specified as Owner extends Package or
Owner super Package. In the first case it would mean that no
instance of the class could be accessible outside the Package. In the
latter it would mean that all instances of this class must be either
Package-visible or World-visible. In both cases the valid owners
are restricted to one of the globally defined types. This provides
region-like capabilities.

In addition, because This; is a subtype of the owner of the
object /, inner classes can be bound to have owners which are sub
or super types of their enclosing classes owners. In relationships
between unnested classes which are siblings in the class hierarchy
it is impossible to express bounds like “the owner of Foo must be
a subtype of the owner of Bar”. This is because the owner variable
of Bar is only visible to Foo if Bar is a supertype of Foo or if Foo
is an inner class of Bar.

3. What Next?

In this position paper we presented our design choices for five cor-
ner cases in ownership language design: static ownership matching
static visibility, global Exception owners for exceptions, owner-
ship of array being the same as that of array’s elements, existential
owners for equals, and assisted clone implementation. We also dis-
cussed bounds on ownership types.

For ownership to be successful a large number of issues still
remain to be resolved in a consistend and agreed upon manner in
collaboration with other aliasing language researchers. These in-
clude formalising interaction between owned and unowned code,
the choice between effective and reference-based ownership, us-
ing implicit or explicit owner parameters, adding additional fea-
tures such as immutability or external uniqueness, developing a col-
lection of language implementations, and writing fully ownership-
aware collections and libraries.

An agreed upon compromise and implementation support
would attract more users to the ownership-enabled languages and
help resolve any issues stopping the ownership research proposal
becoming a JSR reality.
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Abstract Another line of work to support program verification is to build
n effects system on top of Universe Types. This effects system will
e similar to Clarke and Drossopoulou’s wdrk [2], but has to handle
any references, which makes read effects more complex. We plan
. to use the effects system to check side effects of methods and to
1. Universe Type System support reasoning about pure methods.
The Universe type system is an ownership type system that enforces .
the owner-as-modifier discipline. In this section, we summarize re- 1-2 Formal Foundation
cent developments and suggest future work to improve the express-Recent Developments.We proved in the theorem prover Isabelle
iveness and formal foundation. that the Universe type system is sound and that the owner-as-
modifier discipline is enforced [9]. We also wrote a detailed type
safety proof on paper for Generic Universe Tyg€s [3]. A similar,
The Gang-of-Four design patterns are common design idioms for but less comprehensive proof is available for Universe Types with
object-oriented programs. Iii_[16], we compare how Ownership Transfer[14].
Types, Ownership Domains, and Universe Types handle these pat- . . o
terns. Based on this experience, we extended the Universe type sys'—L:‘lut.UIre W(%rk. V:/e glm at eﬁe_ndlng (%ur Isabelle formalization of
tem to support generics and ownership transfer. niverse 1ypes to eneric Lniverse Types.

This position paper summarizes recent developments related to th
Universe type system and suggests directions for future work.

1.1 Expressiveness

Recent Developments.Generic Universe Types|[4] extend Uni- 2 Type Inference
verse Types to generic types. Like Universe Types, Generic Uni-
verse Types enforce the owner-as-modifier discipline which does
not restrict aliasing, but requires modifications of an object to be
initiated by its owner.

Universe Types with Transfer [15] is an extension of Universe
Types that supports ownership transfer. UTT combines ownership
type checking with a modular static analysis to control references
to transferable objects. UTT is very flexible because it permits ]
temporary aliases, even across certain method calls. NeverthelesgRecent Developments.We generate constraints from the Java
it guarantees statically that a cluster of objects is externally-unique AST of a program and use a pseudo-boolean solver to find possible
when it is transferred and, thus, that ownership transfer is type Ownership modifiers |8, 17) 7]. The weighting function of the solver
safe. UTT provides the same encapsulation as Universe Types ands uUsed to find a deep ownership structure.

requires only negligible annotation overhead. We allow partially annotated programs as input. The program-
mer can simply annotate some fields and method signatures and can

Future Work.  Generic Universe Types reduce the number of ne- then use the static inference to propagate the ownership modifiers

Path-dependent Universe Typesl[18] to express additional relation-
ships between objects and thereby further reduce the number ofFuture Work. Currently, the inference tools work with Universe
ownership casts. Types. We will investigate how to incorporate the inference of

Universe Types provide a very limited support for static fields Generic Universe Types and Universe Types with Transfer.
and methods. The main problem is that global data enables a form  Another form of static inference is to infer the types of local
of re-entrant method calls that is otherwise prevented by the type variables from field and parameter types. We are pursuing this line
system. This form of re-entrancy causes problems for the verifica- Of work in the context of Universe Type with Transfer. Here, in-
tion of object invariants. We will formally integrate the Universe ference for local variables is particularly interesting because locals
Type System with the Boogie methodology for the verification can change their type from program point to program point as ob-
of object invariants[[11], which can handle arbitrary forms of re- jects get transferred. We are currently implementing our ideas in
entrancy. the JML Compiler.

For the verification of object invariants, one has to control ali-
asing between fields of one object that are declared in different
classes [13, 11]. We are currently extending Universe Types to en- Recent Developments.We analyze the execution of standard Java
force an ownership structure where each object has a context forprograms and infer Universe modifiers from the execution traces
each superclass of its dynamic type. This will allow us to enforce [5}[12,[1,[7]. The advantage of runtime Universe type inference
that the contexts for different superclasses are disjoint. is that the deepest possible ownership structure is deduced. Good

One strength of the Universe type system is the low annotation
overhead; it is further reduced by appropriate defaults. However,
the resulting ownership structure is flat and annotating existing
software remains a considerable effort. We work on inferring deep
ownership structures using static and dynamic techniques.

2.1 Static Universe Type Inference

2.2 Runtime Universe Type Inference
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code coverage is needed for runtime inference. We allow the user toReferences

combine multiple program traces as input to the inference in order (1} v, par. Practical Runtime Universe Type Inferehddaster's thesis,
to achieve good coverage. Department of Computer Science, ETH Zurich, 2006.

Static and runtime Universe type inference can be combined to [2] D. Clarke and S. Drossopoulou. Ownership, encapsulation and the
get a deep ownership structure and ensure sound results. The result di.sjointness of t}',pe and F(Jeffect. ' bject—Orighted Pr;ogramming
of the runtime inference is used as weight for the static inference. Systems, Languages, and Applications (OOPSpajes 292_310.
The static inference achieves perfect code coverage and can still ACM Press, 2002.

change ownership modifiers if that improves the overall structure. [3] W. Dietl, S. Drossopoulou, and P.Mer. Formalization of Generic

Future Work. A major topic for future work is to apply our Universe Types. Technical Report 532, ETH Zurich, 2006.
inference to real applications. This will provide valuable insightsin  [4] W. Dietl, S. Drossopoulou, and P. iMer. Generic Universe

the expressiveness of Universe Types, the power of our inference ~ Types. In E. Ernst, editoEuropean Conference on Object-Oriented
tools, and especially to ownership structures that can be found in Programming (ECOOR)Lecture Notes in Computer Science.
large systems. We expect especially the last result to be important Springer-Verlag, 2007. To appear.

for the ownership community as a whole. [5] W. Dietl and P. Miller. Runtime universe type inference. In
International Workshop on Aliasing, Confinement and Ownership

in object-oriented programming (IWACX007. To appear.
3. Tool Support [6] The Eclipse Foundation. Eclipse — an open development platform.

3.1 Compiler and Runtime Support http://www.eclipse.org/,

[7] A. Furer. Combining Runtime and Static Universe Type Inferance

Recent Developments. The type checker for Universe Types is Master’s thesis, Department of Computer Science, ETH Zurich, 2007.

implemented in the JML tool suite [10] since 2004. The JML S _
compiler also produces the code needed for the runtime check [8] N. Kellenberger.|Static Universe Type InferericéMaster’s thesis,

of ownership downcasts. It also stores the ownership modifiers in Department of Computer Science, ETH Zurich, 2005.

the bytecode, which allows to typecheck programs without having [9] M. KlebermaR. /An Isabelle Formalization of the Universe Type

the Java source code. We will commit the extensions for Generic Systern Master's thesis, Department of Computer Science, ETH

Universe Types soon. The type checker for Universe Types is also Zurich, 2007.

implemented in recent version of ESC/Java2. [10] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok,
To make the interaction with the command-line tools easier for P. Muller, and J. Kiniry. JML reference manual. Department

programmers we developed a set of Eclipse [6] plug-ins. The JIML of Computer Science, lowa State University. Available fiomw.

checker and runtime assertion checking (RAC) compiler can be in- Jjmlspecs.org, 2006.

voked from within Eclipse and we created comfortable configura- [11] K. R. M. Leino and P. Miller. Object invariants in dynamic contexts.

tion dialogs. Error messages are parsed and displayed in a separ-  In M. Odersky, editorEuropean Conference on Object-Oriented

ate window and code with RAC can be executed from Eclipse. We Programming (ECOOR)volume 3086 ot ecture Notes in Computer

also provide code templates that make entering ownership modifi- Sciencepages 491-516. Springer-Verlag, 2004.

ers easy. See Fig] 1 for a screen shot. [12] F. Lyner. Runtime Universe Type InferenceMaster's thesis,

o ) ] ) Department of Computer Science, ETH Zurich, 2005.
FutureTWork. t\pll?l' are Pm?hmg t::e melen;entatt_lon of the LtJn_;_'h. [13] P. Muller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants
Verse 1ypes wi ransier type checker and runume support. 11his for layered object structuresScience of Computer Programming
extension of the JML compiler also supports inference for local 62:253-286, 2006.
variables. We work on integrating Universe Types with Transfer

and Generic Universe Types [14] P. Miller and A. Rudich. Formalization of ownership transfer in

Universe Types. Technical Report 556, ETH Zurich, 2007.

3.2 Inference Tools [15] P. l\_/IUIIer a_nd A. Rudich. Ov_vnership Transfer in Universe Types._ In
. ) ) Object-Oriented Programming, Systems, Languages, and Applica-

Recent Developments.Executing the command-line inference tions (OOPSLA)2007. To appear.

tools req.U|res spme know!edge to configure the pmgra,ms correctly. [16] S. Nageli.Ownership in Design Patternaster’s thesis, Department

We provide Eclipse plug-ins that allow the configuration through of Computer Science, ETH Zurich, 2008.

dialogs and that make management of temporary results easy. [17] M. Niklaus. [Static Universe Type Inference using a SAT-Solver
The results of static inference are displayed in a comfortable Master's thesis, Department of Computer Science, ETH Zurich,

tree view, see left pane in Fig] 2. The user can change ownership 2006
modifiers directly in this pane and see what effects a modification ' ) .
has—without parsing the source code again. [18] D. Schregenbergetiniverse Type System for ScaMaster’s thesis,
For the runtime inference, we provide a visualization of the Department of Computer Science, ETH Zurich, 2007.
ownership structure, see right panels in F]g. 2. The programmer can
step through the program execution and observe how the ownership
structure is built up.
Both inference tools create their results in a special annotation
XML format that describes what ownership modifiers need to be
added to a program source. We provide a customized editor for this
XML format and the annotations can be automatically inserted into
the Java source code.

Future Work. We are working on optimizing the inference tools
to handle large programs and will then evaluate the tracing over-
head and inference time. The visualizer for the inference tools is an
interesting playground for visualizing ownership structures.
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Figure 2. Inference mode. Static inference results on the left. Visualization of runtime inference in the center.
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Abstract

External iterators pose problems for alias control mechanisms: they
have access to collection interals and yet are not accessible from
the collection; they may be used in contexts that are unaware of the
collection. And yet iterators can benefit from alias control because
iterators may fail “unexpectedly” when their collections are mod-
ified. We explain a novel aliasing annotation “from” that indicates
when a collection intends to delegate its access to internals to a new
object and how it can be given semantics using a fractional permis-
sion system. We sketch how a static analysis using permissions can
statically detect possible concurrent modification exceptions.

1. Introduction

Iterators in Java™and related languages are objects that give se-
quential access to collections, while being external to the collec-
tion. In particular, multiple iterators can operate on a collection at
the same time, and the collection is not directly involved in the
operation of iterators. Iterators are an improvement over previous
related concepts, such as cursors, precisely because of this inde-
pendence. Typically a collection only had one cursor, and moving
the cursor had an effect on the collection. Multiple cursors are pos-
sible but hard to manage. Noble [18] has surveyed a wide variety
of iterator architectures; we focus here on “external iterators.”

An iterator is originally created by the collection, but after
creation, it may be used in contexts in which the collection is
neither visible nor in scope. The very independence that makes
iterators so powerful also makes programs that use them more
complex because of the interactions, notably aliasing, between the
collection and the iterators. In particular, an iterator typically has
pointers into the internals of the collection representation, and may
even perform changes on this representation.

Figure 1 gives two interface declarations for the kinds of itera-
tors that will be discussed in this paper. In Java, these interfaces are
conflated by making remove an optional operation. In this work, to
make it easier to reason about iterators and to make the distinction
visible in the type system, we use separate interfaces. C++ simi-
larly makes a type-level distinction between iterators that can be
used to modify a collection and those that cannot. Other kinds of
iterators (such as ListIterators that can change an element in a
collection) could be defined. We will use the term mutating iterator
to refer to generally to any iterator that can modify the underlying
collection.

Additionally, we have annotated the iterator methods with
“method effects” indicating what state the methods are intended
or permitted to access. We will assume that all methods are so an-
notated. In this case, the methods are declared as accessing only
the state of the iterator and not reading or writing any other state.
The fact that we can mask away the effects on the collection is
non-trivial and is one of the main discussion topics of this paper.
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interface RIterator
extends Iterator {

interface Iterator {
reads (this.All)
boolean hasNext();

writes (this.All)

writes(this.All) void remove();

Object next(); }

Figure 1. Two classes of iterators.

class App {

this List list = new List();

writes(All) void run() {
Iterator it = list.iterator();

What if we mutate 14st?
if (Util.member (null,it)) { ... }
}
}

Figure 2. Using an iterator.

Normally, we will follow standard OO convention and abbreviate
this.All as All, since A1l is a (model) instance field.

Figure 2 shows an example of using iterators. It uses classes
List and Util defined in the following section. The example in-
cludes some omitted code that may or may not mutate the collec-
tion. A collection may be changed directly using a method such
as clear or add, as well as indirectly through a mutating iterator.
When this happens, all iterators currently active on the collection
(excepting only the iterator through which the mutation took place,
if any) are potentially invalid: they may be referring to internals that
have been discarded or are otherwise reorganized. For instance, if a
linked list is cleared, then existing iterators may refer to nodes that
are (otherwise) garbage, and indeed in a language such as C++,
the node may have already been returned to the memory allocation
system. If a new entry is added to a hash table, an existing itera-
tor may find its node pointer has been rehashed to a new location
and continuing the iteration may result in repeating some elements
previously encountered, and omitting others. In C++, the program-
mer is warned by the documentation that existing iterators may be
“invalid” after a mutation.

It is possible to implement iterators so that they are robust in
the face of change, albeit with some additional complexity. In Java,
rather than following this route or letting a potentially confusing sit-



uation emerge, a fail fast semantics is used: an iterator will (almost)
always detect when a mutation outside of its control has happened,
and throw a ConcurrentModificationException (CME)ifitis
used afterwards. Typically this is implemented by version stamp-
ing the iterator and collection, but the implementation details are
not the focus here. Instead we are interested in how static alias con-
trol mechanisms can (1) describe external iterators, (2) explain the
effects of using a (mutating) iterator, (3) explain why and when
concurrent modification exceptions are thrown, and (4) statically
prevent these exceptions from occurring.

In the following section, we look at a linked list class with
iterators annotated to express the design intent of the aliasing. Then
in Sects. 3 and 4, we look at previously described alias control
systems and evaluate them by these four criteria. In Section 5, we
describe how the design intent of the example can be expressed
using our “fractional permission” system.

2. Example

Figure 3 defines a simple linked list class with two kinds of itera-
tors. The code is annotated (¢talic words) with “design intent”
showing how aliases are intended to be controlled. Except for from
(explained below), these annotations have appeared in one form or
another in previous work. The example also uses class parameters
(inside < >) to pass objects that may be used in annotations on
fields of the class. For simplicity, we don’t make use of generic
classes (as in Java 5), although it has been shown that one can
fruitfully use both class parameters for ownership and for generic
classes [19].

Every field, parameter or return value is annotated by an aliasing
annotation: shared (owned by the global context), name (owned
by name), readonly-name (read-only state owned by name),
from(...) (explained below). Another possibility is unique,
not used here. The default is borrowed, which can be applied
only to parameters (including method receivers), which means the
method can only access state from the parameter (receiver) if the
state is present in the method effect. A method effect is of the form
reads(...) orwrites(...) and permits the method access the
mutable state named; write access includes read access. Here 411
means all state of this object, or any object owned by it (transi-
tively). Constructors are implicitly permitted to write any part of
the constructed object’s state.

For example, the add method of class List is annotated
writes (Al1l) which permits it to read or write any field of the
list object (or its nodes, which it owns). Here it simply updates the
head field. The parameter is shared which means there is no alias
control intended here.

Next consider the iterator () method. Its effect reads (411)
permits it to read any field or node of the list. The return value is
annotated from(Al11l) which means that the iterator is “unique”
(unaliased with anything else) but that it gets (some of) its state
from the method effect on Al1. The idea is that the collection
temporarily yields its own state to the iterator, an independent (even
unique) object. Indeed, the iterator becomes the owner of the (read-
only) state of this list, as can be seen by the annotation on the
parameter 1ist of class ListIter.

We will continue with Figure 3, but first glance at Figure 4
which shows how code can use the iterator without reference to
the collection. Methods member and removeAll both take iterators
and are annotated that they modify the iterator (writes(tt.A11))
and nothing else.

Back at Figure 3, looking at class ListIter, one sees that
field cur points to a node owned by list. The method next () is
allowed to access the cur.next field because through its read-
only ownership of the list, the iterator has read-only access to the
internals.
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class ListNode<owner> {
owner ListNode<owner> next;
shared Object datum;

ListNode(shared Object d, owner Node n)
{ datum = d; next = n; }

}

class List {
thts ListNode<this> head;

List() { head = null; }

writes(All) void add(shared Object datum)
{ head = new ListNode<this>(datum,head); }

writes(411) void clear() { head = null; }

reads (All) from(All) Iterator iterator()
{ return new ListIter<this>(head); }

writes(All) from(All) RIterator riterator()
{ return new ListRemovelter<this>(this); }

}

class ListIter<readonly-this list>
implements Iterator {
ltst ListNode cur;
Iterator(list ListNode head) { cur = head; }

reads (All) boolean hasNext ()
{ return cur'=null; }

writes(All) shared Object next()
{ if (cur == null) return null;
Object temp = cur.datum;
cur = cur.next;
return temp; }

class ListRemovelter<this list>
extends ListIter<list> implements RIterator {
this List list; // MUST == class parameter list
list ListNode prev, last;
RIterator(this List list) // MUST == class param. list
{ super(list.head); this.list = list; }

writes(All) shared Object next()
{ prev = last; last = cur;
return super.next(); }

writes(All) void remove()

{ if (prev == null) list.head = cur;
else prev.next =
last = prev; }

cur;

Figure 3. Listed list with iterators annotated with design intent.



class Util {
writes(it.AlLl)
static boolean member(Object x, Iterator it)
{ while (it.hasNext())
{ if (it.next() == x) return true; }
return false; }

writes(4t.A11)
static void removeAll(Object x, RIterator it)
{ while (it.hasNext())

{ if (it.next() == x) it.remove(); } }

Figure 4. Independence of iterators.

class Iterator2 implements Iterator {
this Iterator itl, it2;
Iterator2(this Iterator itl,
this Iterator it2) { ... }

reads(All) boolean hasNext ()
{ return itl.hasNext()||it2.hasNext();}

writes(All) shared Object next()
{ return itl.hasNext() ?
itl.next() it2.next(); }

Figure 5. Constructing iterators using iterators.

The remove iterator ListRemoveIter extends the ListIter
class with three more fields. The first field shares the same name
as the class parameter and must indeed be the same (identical)
pointer. The new fields are implicitly included in A1l and thus
the overriding of next() is permitted to access the prev and
next fields. More importantly ListRemoveIter requires that it be
made (temporary) owner of the collection (for both read and write
access). The remove () method uses this ownership to perform
modifications to the list under the effect writes (A11).

What about the problems with concurrent modification? In Fig-
ure 2, the run () method gets an iterator and after some time uses
it to check for nulls in the list. If there is an intervening modifi-
cation, the call to member would “fail fast” with Java iterators. In
this case, the design intent indicates that the iterator it has (tem-
porarily) taken over read-only ownership of the list; if we permit
a write of the list to happen, we are indeed permitting a write to
occur concurrently with a read, a classic error.

According to the annotation, therefore, the list may not be
mutated until the iterator is no longer in use. Dually, write access is
permitted only at the cost of disallowing any later use of the iterator.
With a mutating iterator, even read access is prohibited until when
the mutating iterator is done, or dually, the mutating iterator may
not be used once any (even read) access is performed.

One reason to permit the iterator to be used separately from the
collection is to support existing code patterns. Examining the open-
source Eclipse project for uses of iterators, we have found some
cases of interest. One example (greatly simplified here) concerns
building an iterator that is constructed from other iterators (see Fig-
ure 5). The compound iterator indirectly takes over the (temporary,
read-only) ownership of the collections’ internals (there may be
more than one collection involved). Again this means that effects
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class OtherCollection {
this LinkNode<this> head;

reads (All) from(All) Iterator iterator()
{ return new List(head).iterator(); }

}

Figure 6. Delegating iterator creation.

on the element iterators are mapped into effects on the compound
iterator.

Figure 6 shows another pattern, whereby a class does not imple-
ment its own iterators and instead creates an instance of a collection
and gets an iterator for it. (Here we assume a new constructor for
List that takes a read-only list of nodes.) In the code we saw with
this pattern, the delegation involved creating a List around an ex-
isting array.

In this section, we have showed several ways in which iterators
are defined and used. Undoubtedly, the annotations and explana-
tions here reflect our own biases (and we indeed show how they
are realized in our “fractional permission” system), but the code
itself is conventional. In the following sections, we survey previ-
ously described alias control systems and the extent to which they
can describe what is going on in the code.

3. Ownership-based Alias Control

Ownership is a recognized alias control technique. With ownership,
each object has another object as its owner. The root of the owner-
ship hierarchy is often called “world.” Clarke and others propose a
owners-as-dominator model: any reference to an object must pass
that object’s owner [10, 11]. This encapsulation property prevents
any access to an object from objects outside its owner, but rules
out external iterators: If the iterator is totally outside of the rep-
resentation of the collection object (Figure 7(a)), then the iterator
is not able to access the internals. On the other hand, putting the
iterator as part of the representation enables the references to the
internals, but disables the references from outside of the collection
(Figure 7(b)).

Since the iterator is a common idiom in OO programs, alterna-
tive models have been proposed. Clarke and Drossopoulou [9] per-
mit iterator-like objects that violate owners-as-dominators to exist
in stack variables but not to be stored in fields. Because they only
have dynamic extent (rather than indefinite extent), these dynamic
aliases are deemed less dangerous than “static aliases.” However,
the typing of these dynamic aliases requires that the collections be
in scope. Therefore, the dynamic aliases solution cannot handle the
iterator usages in Figs. 4, 5 and 6

A related relaxation of owners-as-dominators was formalized
by Boyapati and others [4]. Here objects of inner classes are per-
mitted to access the internals of the outer object, even though the
inner class object is not necessarily owned by its outer object. An
iterator implementation is declared as an inner class implementing
a global interface. Again, the aliasing between the object and its
inner class objects is deemed less hazardous since it is restricted to
a single compilation unit. Originally, Boyapati permitted iterators
to be passed outside of the scope of collections (as in Fig. 4), but in
this case, the effects were imprecise: they operated on the “world.”
This extension proved unamenable to ownership-based checking of
synchronization, and was dropped in subsequent work [3, page 36].

Ownership domains permit an owner to make some owned
objects public while protecting others from external access [1]. The
objects owned by an owner are partitioned into several “domains.”
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Figure 7. Owners-as-dominators (relaxed in (c)).

For instance, a collection object may own two domains: one for its
internal representations and one for iterators. The latter domain can
be public (see (c) in Figure 7). The iterator object can be referred to
by outsiders (since it resides in a public domain), and it is able
to access internal representations of the collection object (since
its domain has the same owner as the representation domain). To
precisely describe the states the iterator needs to access, Smith [20]
proposes that the effects of an iterator be expressed as accessing
state in its “sibling” domains, all other domains belonging to the
same owner. This only works if the iterator is owned by the same
object as the collection. Again there are problems with trying to use
the iterator outside of the context of its collection’s owner because
then the sibling would be unknown.

Another alternate model is the “owners-as-modifier” model
which distinguish between read-write and read-only references
[13]. Read-write reference must pass through objects’ owners,
while read-only references may be created arbitrarly. The Universe
type system distinguish three kinds of reference: peer references
between objects in the same context; rep references from an ob-
ject to any directly owned objects; readonly (or any) references
between objects in arbitrary contexts. The last kind of references
can not be used to modify objects. External iterators can be im-
plemented in this model (see Figure 8), since any iterator object
may use the readonly reference (represented as dashed line) to the
internal representation of collections. Modifying iterators need to
delegate mutations to the collection, which in turn must rely on
runtime support to downcast the any reference to a rep reference.

Iterator

Figure 8. Owners-as-modifiers.

There are two difficulties, however. One is that object invari-
ants cannot be guaranteed for objects referred to with “any” refer-
ences. Thus a non-mutating iterator cannot rely on invariants of the
collection (or its internals) to hold. Indeed, because of concurrent
modifications, it is the case that a non-mutating iterator may fail
unexpectedly. Furthermore, a mutating iterator must be a “peer” of
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the collection and thus cannot be used outside the context of the
owner of the collection.

4. Handling Iterator Validity

Recently, a number of researchers tackled the problem of iterator
validity, that is avoiding CME in Java-like languages. In particular,
participants considered avoiding interference between calls that
directly modify the collection and interleaved uses of one or more
iterators to read that collection.

One solution, proposed by Weide [21] is to modify the seman-
tics of the language such that the iterator copies out the contents
of the collection upon its creation, and copies them back when it
is finished. Changes made to the collection while the iterator is in
use may be overwritten when the iterator is ended, using an ex-
plicit function in the collection. This behavior may be specified and
checked using the standard tools of full program verification. These
changes would affect neither asymptotic efficiency of iterator usage
nor expressiveness when interference does occur; however, they are
a significant departure from current usage.

The C# patterns for iterator usage and implementation are syn-
tactically different from those of Java; in particular, enumerator
functions can define iterators using yield return statements.
Even so, the underlying problems of interference are generally the
same: changes to the collection conflict with use of an iterator. Ja-
cobs, Piessens, and Schulte [15] suggest defining reads clauses for
enumerator methods that would declare some owned state as im-
mutable while the enumerator-controlled loop is in effect, roughly
correlating with the lifetime of the iterator in Java. This tracks well
with C# enumerators’ reading but not altering their collections; mu-
tating iterators are not supported. Iterator objects can only be used
directly to control loops, and may not be used independently of the
collection. Every object is given special fields representing both
overall writability and number of current readers. The reads clause
is translated as modifications of and conditions on these fields,
which may then be checked using the Boogie static verifier or using
dynamic checks if necessary.

One may instead use fields to directly model the standard
“timestamp” approach. Every collection is given an integer field
which is incremented whenever the collection is modified; every
iterator has an integer field with the value of the collection’s times-
tamp at the time of the iterator’s creation. David Cok [12] has
instrumented this approach to iterators using model fields in JML.
As these timestamps are only implemented in model fields, there is
no concrete state underlying them. Rather than throw an exception
when the collection’s integer exceeds that its iterator, requirements
on the relative values of the integers are included in the formal
specification of the iterator. This specification can then be checked
using ESC/Java2. In practice, the ESC/Java2 checker appears to



detect both legal and illegal uses by static inference; however, the
correctness of this specification apparently cannot be proven.

Instead of specifying the values of a special fields as a signal
of whether the collection has been or can be modified, one may
directly encode modifications of the collection in an abstract predi-
cate representing the collection as a whole. Krishnaswami [16] has
done this using separation logic, whose predicates are comparable
to permissions. Both the collection and the iterator get a high-level
predicate that includes an abstract representation of the state of the
collection. Most methods of the collection both require and return
the predicate of the collection; methods that write the collection
return it with a different abstract state. Creating a new iterator con-
sumes the predicate for (permission to) the collection and produces
that of the iterator. At any time, however, the predicate for the col-
lection may be carved out of the predicate for its iterator, providing
both the collection predicate and a “magic wand” implication that
can consume the collection’s predicate to recover the iterator. This
implication essentially represents the non-collection portions of the
iterator’s state. The former may be used to call any of the collec-
tion’s methods, including creating another iterator. Thus one may
simultaneously have the predicate for the collection and any num-
ber of implications allowing one to exchange the collection predi-
cate for some iterator. This must be done to use the iterator, after
which the collection can be carved out once more. However, call-
ing a method that modifies the collection returns a predicate with
a different abstract state, which cannot be used to recover any of
the current iterators—they are useless. Because this formalization
lacks fractions [5, 8], even non-mutating iterators interfere with
each other.

Bierhoff [2] describes another linear-based system using frac-
tions and (linear) typestates. Typestates can represent sole, write,
or read access to a program variable. Both the collection and the it-
erator have permissions defined for them; these also detail state
changes in the objects themselves. For example, the hasNext
method is needed to establish that the iterator’s next is available
as a prerequisite to calling next. The absence of this typestate
precludes calling the method.

The iterator method returns a linear implication which con-
sumes the permission for the collection, and produces only per-
mission for the iterator. While the collection’s permission is un-
available, methods that change it cannot be called. The finalize
method of the iterator returns the reverse linear implication, con-
suming the iterator permission and producing that of the collec-
tion. The iterator class is parametrized by the collection to permit
finalize to return permission to the collection. The iterator per-
mission may be fractional, for a read-only iterator, or unique for a
modifying iterator. The linear & is cleverly used to delay deciding
whether an iterator is read-only or fractional. If the iterator permis-
sion is fractional, collection methods that only require fractional
state may be called.

5. Explaining Iterators Using Permissions

The key issue with the design intent of the iterators is that access
to the collection must be reduced to read-only (for non-mutating
iterators) or completely prevented (for mutating iterators) while
the iterator is active. In other words, the alias control system must
be flow-sensitive. While some ownership type systems are mov-
ing to include flow-based analysis (see ownership transfer in Uni-
verses [17]), this is a significant increase in complexity.

On the other hand, systems based on linear logic (such as Bier-
hoff’s permission system or separation logic), lead to complex
management of state. Linearity is powerful but is difficult to man-
age. Fanhdrich and Deline [14] recognized this problem and de-
signed a relation called “adoption” which permitted non-linearity
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to co-exist with linearity. We have since shown that adoption can
model object ownership [6].

Our permission system combines the simplicity of ownership—
allowing the iterator interface to hide the fact that it has access to
the collection internals—with the power of linearity—expressing
the constraint that the collection is encumbered by the iterator. In
this section, we describe our permissions system and how it can
account for the annotated design intent in the examples. Permis-
sions are used to give a semantics to annotations, and then a flow-
sensitive type system can be used to check that the code does indeed
follow the design intent prescribed by the annotations.

5.1 Permissions overview

A permission is a token that permits access to mutable state. Each
field in a Java program is associated with exactly one field per-
mission. This permission can be split into fractions: in order to
write a field one needs the whole field permission, but read ac-
cess is permitted with only a non-zero fraction. Permissions can-
not be copied—only transferred. As a result, although two read ac-
cesses can be carried out “at the same time” in different parts of the
program, if one or both of the accesses is a write, the permission
system will flag an error. This is the basic intuition of fractional
permissions.

In order to support information hiding and “non-linear” access
to state, we add the concept of permission nesting (a generalization
of adoption); in which an arbitrary permission (often composite) is
“nested” in a field permission. As a result, one who has access to
the field (and knowledge of the nesting relationship) can get at the
nested permissions, by “carving” them out of the field permission.

Nesting is used for two main
purposes. On the left, we are
using nesting to model “data
\ groups.” The square represents

. permission to access a field

- T . with a pointer value. The oval
[/ shows the (model) field “All.”
N The digram demonstrates that

the permission to access the
field is nested in “All.”

On the right, we are using nest-
ing to express ownership as well
as data groups. We now see that
the field (small square near the
top) points to a node whose en-
tire state is nested in the first ob-
ject’s “All” mode field. This ob-
ject has two fields (think of them
as a data field and a next field), the
second of which points to another
owned node. The second node has
a “null” next pointer.

Carving temporarily removes the permissions from the field
permission; the field permission now has a “hole” in it. This sit-
uation is represented by a kind of “linear implication” ¥ — ¥’,
where W is the nested permission and U’ is the nester field permis-
sion.

(o.f = 1) — 0.All



The permission ¥ —+ U’ can be read as referring to all the state
implied by ¥’ except that part of which is implied by ¥. In our
permission system, “—"" (read “scepter”) functions very similarly
to “ —” in separation logic (or “ —o ” in linear logic). The peculiar
distinction of “—+” is that it requires that the consequent (right-
hand side) include the antecedent (left-hand side).

Carving is used to get any nested state. Thus to read the next
field of the first node, we first carve out the node and then carve the
field out:

The inversion of “carving” is “replacing.” Replacing is simply
linear modus ponens: it takes ¥ —+ ¥’ and ¥ and puts them
together to retrieve the consequent ¥'. In standard linear fashion,
the process consumes both of the inputs (the antecedent and the
implication).

Our permission logic also includes composition (represented
by a comma), conditionals (to handle possibly null pointers) and
existentials.

5.2 Annotation semantics

In current work [7], we describe the semantics of annotations pre-
cisely in terms of permissions. Here, we content ourselves with in-
formal explanation:

data groups State encapsulation (such as A11 referring to all the
state of an object) is handled by unit-typed fields that nest the
state that belongs to it.

ownership Ownership is represented by nesting x.411 of the
owned object x in a field (ownership domain) of the owner.
Multiple ownership domains [1] can be modelled. Every own-
ership domain is nested in this.AlL.

readonly ownership Read-only ownership is represented by nest-
ing an unspecified fraction of the state of the owned object in
the owner’s domain.

borrowed Borrowed references are references that are transmitted
without permissions; in order to access state through a “bor-
rowed” parameter (or receiver), a method uses effects:

effects Method effects are represented by permissions that are
passed to the method and which are returned afterwards.

unique A unique reference is always associated with permission
to access the object it refers to (if any). For instance, a unique
return value will be returned along with the necessary permis-
sions.

from As with unique, a from return value has permissions to
access it returned by the method, but unlike unique, these
permissions encumber the effect named, the permissions for the
effect are returned in linear implication:

(r.All) —+ (effect,v)

where v is an unspecified permission. In other words, the per-
missions represented by the effect are unusable until the state
pointed to by the return value is no longer needed. At this time,
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Vzt - (zt.All —

1terator: g, . AlL (rAll — zt.Allv))

Figure 9. The permission type of the iterator () method.

the linear implication can be applied, releasing the effect and
some unknown “residual” permission (v) that can be discarded.
In our examples, the v is the iterator permission itself bereft of
permission to access the collection.

Annotations are translated into permissions using a simple sub-
stitution (not described here). An example is given in Fig. 9 and is
explained below.

5.3 Controlling access

If one has permission to access an object’s state, the carve oper-
ation gives access to the state nested in that object (other objects
owned by it). Allowing this situation in general would break en-
capsulation; indeed it would permit clients to mutate list internals,
resulting in complete chaos. The difficulty this situation presents
cannot be solved simply by permissions because one still wishes to
permit the client to call methods that use the permission to access
internals. Instead, protection of internals is solved in the traditional
way with visibility: carving is only permitted to access visible state.

The iterator examples show the list iterators accessing internals
of the list, including its list nodes. In order to allow iterators to
do these operations, we use Java’s nested classes. The ListIter
and ListRemoveIter classes are made (private) nested classes of
List and thus given access to the list internals. The ListNode class
serves as a structure and can make its fields public.

5.4 Explaining Iterators

In the iterator () method of class List, the read-only permission
to access the list is passed to the new ListIter object so that it can
nest this permission in its ownership domain. The permission for
the effect is not returned to the caller as normal; a linear implication
Iter — (reads (Al1l) ,v) is returned instead. The read permission
in the consequent cannot be used, as a read permission or to reform
a write permission for the list, until the iterator is no longer in use,
However, as fractions permit splitting a permission into an arbitrary
number of read permissions, other read-only operations may be
performed on the list. Figure 9 gives the full permission type of
the method (after annotations are translated). The variables ¢ and
r refer to the receiver (this) and return value respectively. The
variable z refers to the non-zero fraction of access required and v
refers to the unspecified permission to be discarded when the linear
implication is applied. The riterator () method is similar except
that it requires, and so makes inaccessible, full (write) permission
to the list.

The type in Fig. 9 does not disclose that the iterator uses owner-
ship, or indeed anything in how the iterator is implemented. Indeed
the permission implication 7. All — (z¢.All, v) is implemented in-
ternally by an empty permission since the return value’s state r. All
includes the entire list read permission on the right-hand side of the
implication. But the client does not need to know this; should not
know this fact. The information hiding is essential to ensure that the
list permission is inaccessible until the implication is applied to the
iterator permission, consuming it and releasing the list permission.

In the iterator implementation, as the iterator is temporarily
the owner of the list, it may be used without explicit mention
of the list. In the implementation of the next method, we can
access cur.next by first carving the (read-only) permission list
from the iterator’s “All” permission (provided by the caller per
the method effect), and then getting access to the node by carving



its permission from the list, and finally to get access to the field
by carving its permission from the node’s “All” permission. This
permission is existential (the next pointer is not determined by the
node) and must be unpacked. At this point, we have a series of
permission implications plus one field permission:

zlL. Al — t.All, ze.All — zL.All,

(3p- z(cnext — p,...)) —+ zc.All zcnext — n

Here ¢ is the value of this, [ for 1ist, ¢ for cur and n for its next
field. When we are done, the entire set of permissions can be packed
back up into ¢.All and returned to the caller. The caller need not be
aware of the existence of the list at all.

For example, the Util methods work by borrowing iterators: its
caller provides the permissions that are then returned. It is impos-
sible to also provide permission to access the collection in a con-
flicting way—writing the collection is precluded by the presence of
a read permission in the consequent of the linear implication—and
thus call-back problems are prevented.

Remove iterators avoid throwing a CME because they nest the
full write permission for the list preventing alteration of the list
state until the remove iterator is no longer used. And, because
creating iterators requires at least some part of the list’s state, no
other iterator can be created while the remove iterator is in use.
Neither can a remove iterator be created if another iterator is in use.
This is more strict than Java requires, but does ensure the absence
of CMEs.

Regular iterators are also prevented from throwing a CME. In
Fig 2, after the application requests for the iterator it to be created,
the collection is encumbered. A linear implication for recovering
the access to the list is made available. This linear implication can
be applied at any time (in the static flow-analysis of the method).
However, once it is applied, permission to access the iterator is
irrevocably consumed. Thus, once the permission type checker is
“forced” to apply the implication to permit a collection mutation,
the iterator is no longer usable and later uses of the iterator will not
type check.

The class to concatenate two iterators (see Fig. 5) requires own-
ership of the iterators, so that effects on them can be attributed to
the compound iterator. This can be granted (the iterator was es-
sentially “unique” before) at the price that the respective collec-
tions are still encumbered. In order to unencumber the collections,
it necessary to retrieve the permissions for the iterators now nested
in compound iterator; this can be done when the compound iterator
is being discarded.

Delegation of iterator creation (see Fig. 6) uses an iterator on a
newly constructed collection. The “from” annotation is not actu-
ally needed since the linked nodes are copied; it merely expresses
the design intent that the collection should not be changed while
the iterator is active.

5.5 Analysis

Our current work [7] gives a type system based on permissions. It
is flow-sensitive, keeping track of the current permissions at each
point in the program. When an field access is processed or a method
is called, it checks whether the operation can be permitted. Nest-
ing, carving and replacing operations are carried out implicitly as
needed, perhaps several levels deep as the example for cur.next
showed. The type system described is non-algorithmic, but we have
a (more complex) algorithmic type system that is implemented for
Java. Currently the implementation does not support “from” anno-
tations; however, adding support for them appears straightforward.
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5.6 Comparisons

Compared to approached based solely on ownership, our system is
able to detect when an iterator is invalidated.

Compared to approaches based on program verification, our
permissions system is not as powerful. It is based on logic that
is similar to power to decidable logics. It remains to be shown
that our permission type system (not given here) is decidable.
By abstracting out just the access to mutable state, permissions
represent a more high-level view of the program than any system
that uses model fields (say) to represent version stamps.

Compared to approaches based on linear logic, our system is
simpler because it uses information hiding (ownership). Both Bier-
hoff’s and Krishnaswami’s approaches have explicit mention of
the collection state in the iterator state. Thus it appears that these
systems could not support iterator patterns that use the iterator in
places where the collection is unknown. Indeed while we require
both aliasing annotations and effects annotations, the effect anno-
tations on iterators are very simple. On the other hand, Bierhoff’s
system tracks type state too: a positive return from hasNext () en-
sures that next () can be called safely.

5.7 Other Applications

The “from” annotation is a general solution to the problem of how
to grant temporary access to internals. Consider a buffered stream.
Internally it has an unbuffered stream. Sometimes a client may
wish to perform actions on the unbuffered stream and then resume
using the buffered stream. One technique is for the client to be
given access to the underlying stream and “hope” that the client
will remember to flush the buffered stream before any unbuffered
access. A less error-prone approach is to use an enforced “from”
annotation:

class BufferedOutputStream
implements OutputStream {

writes (Al1)
from(All) OutputStream getUnderlying() {
flush();
return underlying;
}
}

Here the underlying stream encumbers the buffered output
stream. If the client wishes to use the buffered stream again, it
must give up access (permission) to the underlying stream. Thus
we see that “from” is a general solution for a class of problems.

6. Conclusion

We have informally described the concept of permissions which
combines an ownership-like system (nesting) with linear types, and
is flow sensitive. Permissions can be used to express the design
intent on our examples; it can be enforced that a collection cannot
be modified while non-mutating iterators are active. The system is
flexible enough to permit several interesting iterator usage patterns
with minor annotation overhead. The “from” annotation can also
be used more generally whenever a class wishes to grant temporary
access to internal data structures.
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Abstract by reference [12]. By contrast, SST has a simple decision proced-

re, making it easy to use in an intermediate language. It expresses
y-reference arguments, even when multiple references point to the
same aliased location. It is provably type-safe, via standard pre-
aervation and progress lemmas. Finally, SST is simple and elegant
§nough to be a trustworthy component of a typed assembly lan-

Typed intermediate languages and typed assembly languages fOlg
optimizing compilers require types to describe stack-allocated data.
Previous type systems for stack data were either undecidable or
did not treat arguments passed by reference. This paper presents
simple, sound, decidable type system expressive enough to suppor
the Micro-CLI source language, including by-reference arguments. 94a9€- . . .

This type system safely expresses operations on aliased stack loca-, 1° represent stacks in the presence of aliasing, SST builds on

. : . ! : . Ideas from stack-based TAL [12], alias types [18], and linear lo-
tions by using singleton pointers and a small subset of linear logic. gic [6, 19]. Section 2 discusses these systems and related systems in

. more detail. Sections 3 and 4 introduce SST's types and instructions

1. Introduction formally. Section 5 describes a translation from the Micro-CLI [9]
Java and C# are safe, high-level languages. The safety of JavaSOurce language to SST, demonstrating SST’s expressiveness. Sec-
and C# protects one program from another: safe applets cannotion 6 concludes.
crash a browser, safe servlets cannot crash a server, and so on.
The high level of abstraction makes programming easier, but makesy Background and Related Work
compilation more challenging. Java and C# require sophisticated )
optimizing compilation to achieve performance competitive with Stack-based TAL (STAL) was the first TAL to support stacks. Its
programs written direcﬂy inCor assemb|y |anguage. Centl’al |dea, Shared by SST, WastaCk typeWh|Ch SpECIerS the

Unfortunately, a large, complex compiler is likely to have bugs, known types of values on the stack at any pointin a TAL program.
and these bugs may cause the compiler to produce unsafe assemblyor example, the STAL stack type “intint :: p” specifies that two
language code. Proof-carrying code (PCC) [14] and typed assemblyintegers live at the top of the stack, but all types deeper in the stack
language (TAL) [13] solve this problem by verifying the safety of ~are unknown, specified only by the stack type varighle€Code
the assembly language code generated by the compiler, thus removblocks in STAL may be polymorphic over stack type variables.
ing the compiler from the trusted computing base. Because the be- I addition to the concatenation operator:* ", STAL con-
havior of an assembly language program is undecidable in general tains a compound stack type that can express some pointers into
PCC and TAL require machine-checkable evidence to verify a pro- the middle of the stack. Unfortunately, STAL cannot express the
gram’s safety. A type-preserving compiler generates this evidence Possibly aliased pointers that C# compilers use to implement by-
by transforming a We”_typed source program into a We”_typed as- reference al’guments. C_OnSIder the thl’ee C# methOdS be_lOW. The
sembly language program, preserving the well-typedness of the swap method @akes two integer references gnd swaps the integers.
program during each compilation phase in between the source and!hef method instantiates argumentandy with pointers to local
assembly language levels [13]. To do this, the compiler must define variablesa andb, while g instantiatesc andy with pointers toc:
type systems for each intermediate language in the compilation. void £O) {
Java bytecode [11] and CIL [4] are well-known typed intermediate int a = 10. b = 20:
languages, but these still contain many high-level abstractions, such swap(ref a’ ref b)f }
as single instructions for invoking virtual methods and platform- void g0 { ’ ’
independent storage slots for local data. Below the Java bytecode int ¢ = 30:
and CIL levels, these abstractions break down into smaller pieces. swap(ref c’ ref ¢): }
A virtual method invocation turns into a method table lookup, in- void swap(ref int % réf int y) {
structions for pushing arguments onto a stack, a call instruction, int t = x: ’
plus prologue and epilogue code in the called method. Local data % = v: ’
storage slots turn into machine-specific registers and stack slots. _ Zf }

These lower-level concepts need lower-level types. y ’
This paper describes SSSihple Stack Types), a type system  STAL cannot give a useful type to thewap method: even with
that is appropriate for type-checking stack operations in the lowest compound types, STAL stack types must list the types of stack
levels of a type-preserving compiler, including the final typed as- slots in precisely the order that they appear in memory. The STAL

sembly language generated by the compiler. Previous type systemsype for swap must reserve one particular stack slot forand

for stacks were either undecidable without explicit proof annota- another fory, making it impossible for a caller to instantiate
tions [2, 9] or could not represent arguments passed and returnedand y with aliased pointers (ag does), with heap pointers (as
is allowed by C#), or with two stack pointers in the opposite
*The work by Frances Perry was done during an internship at Microsoft order. Regarding these limitations, Morrisett al. say that, “it
Research appears that this limitation could be removed by introducing a
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c=q

s-imp-concat

l:o=>/0:0

y s-imp-alias
Li(oAN{ly:T})=>L: (0" ANl :T})

s-imp-drop-alias

L:(oN{ly:T})=>1L:0

s-imp-expand-alias

§:>§s_imp_eq liTug=0:T:¢
S1=>¢ =6 . s-imp-add-alias
1= 63 SIMp-rans (2 ) =l (ro A{L:T)) P
C:i(miaihg: (0N{la:12})) = C: (11 ::4g:0) A{la: T2})

s=L:(cN{lr1:711})

c=>L: (o AN{la:T72})

c=>Ll: (o A{li:m}A{l

i 72})

s-imp-merge-alias

Figure 1. Logical Stack Implication Rules

limited form of intersection type, but we have not yet explored

linear logic (which includes the standard linear operatorst,

the ramifications of this enhancement.” (In fact, one subsequent &, —, and!) is undecidable [10], making SST more practical than

TAL [2] did add intersection types, but did not explore its use JSWG’s system for a compiler intermediate language. Furthermore,
for stacks. Furthermore, this type system was undecidable [2].) JISWG expresses pointers using a heavyweight notion of “frozen”
SST uses a form of intersection type, rather than using STAL's capabilities (with version numbers and “tag trees” for pointers into

compound types.
A key advantage of stack allocation is the ease of stack deal-
location: a program simply pops data from the top of the stack to

deallocate the data. In general, popping may leave dangling point-

ers to popped data. STAL deals with this safely but awkwardly, ap-
plying a special validation rule before each use of any potentially
dangling pointer. SST follows a more direct and flexible approach

the stack) while SST relies solely on singleton pointer types and
a minimal linear logic. Despite its smaller set of features, SST is
still powerful enough to express Micro-CLI; Section 5 describes a
translation of Micro-CLI programs to SST programs.

3. Simple Stack Types

introduced by alias types [18] (although alias types handled heapsConsider the STAL stack type int int :: p from the Section 2.

objects, not stack data). Alias types split a pointer type into two
parts: the locatiorf of the data, and the type of the data at loca-
tion £. The pointer to the data has a singleton typetrwhich
indicates that the pointer points exactly to the locatipbut delib-
erately does not specify the type of the data at locatidnstead,

a separateapability specifies the current type &t For example,
the capability{¢ — int} specifies that currently holds an integer.

In alias type notation, each integer on the stack would have a
capability {¢ — int}. In linear logic notation, thex operator
would glue capabilities together to form a complete stack capabil-
ity: {{2 — int}®{¢ — int} ® p, wherel, and?; are the locations

of each of the two integers on the stack. SST takes this notation as
a starting point, but makes two modifications. First, to simplify the
type checking algorithm, SST replaces the commutative, associat-

Because of the separation between singleton pointer types and capive ® operator with the non-commutative, non-associative@per-

abilities, the capabilities can evolve, independently of the pointer
types, to track updates and deallocation.

To ensure that no two capabilities specify contradictory inform-
ation about a single location, alias types impose a linearity discip-
line on the program’s treatment of capabilities, prohibiting arbitrary
duplication of the information contained in a capability. In partic-
ular, the capability{¢ — int} is not equivalent to the capability
{¢ — int,¢ — int}. However, alias types (and the similar cap-
ability calculus [3]) use non-standard operators and rules for con-
trolling linearity. Following recent advice [20, 7, 5], SST uses op-
erators and rules directly inspired by standard linear logic [6, 19]
and separation logic [17, 8]. Linear logic and separation logic share
a core of basic operators. Two are of particular interest for stacks:
multiplicative conjunction &” (written as “«” in separation logic)
and additive conjunction&” (written as “A” in separation logic).

For example, to havecbffee ® tea” is to have both coffee and tea.
To have ‘toffee&tea” is to have a choice between coffee and tea,
but not both. Ahmed and Walker observe that additive conjunction
“allows us to specify different ‘views’ of the stack” [1] (though [1]
did not explore applications of this observation); we take this obser-
vation as a starting point for representing by-reference arguments.

Jia, Spalding, Walker and Glew [9] used linear logic as the basis
for a typed low-level language of stacks and heaps (we refer to
this low-level language as “JSWG”). In contrast to STAL, JSWG

ator, resulting in a stack capabilifys — int} :: {£1 — int} :: p.
Second, rather than showing one location per stack slot, SST’s
notation puts stack slots in between locations, writlag int ::
¢y :int :: £o : p to indicate that one integer falls between locations
£y and /1, and the other falls between locatiofisand ¢,. Note
that this adds the extra locatidp to the example — for instance,
the stack pointer might have type fr), pointing to the top of the
stack, while the frame pointer might have type(Bij, pointing to
the bottom of the frame.

The following grammar generates labeled stack typemd
unlabeled stack types(wherer indicates a single-word type, such
as int):

l:0
p | Empty| 76| oA{l:T}

labeled stack type ¢
unlabeled stack type o

The unlabeled stack type variablgsempty stack Empty, and stack
concatenation operatar give SST the same expressiveness as the
core of STAL, but little else. The real power of SST comes from the
A operator, indicating aliasing. The stack type\ {¢ : 7} implies
three things. Firsty holds. Second, the locatidiresides either in

the heap or in the part of the stack described byhird, ¢ currently
contains a word of type. Figure 1 shows the rules governing stack
types; < = ¢’” means that ifc holds, thens’ also holds. Some
rules (s-imp-concat, s-imp-alias, s-imp-eq, s-imp-trans) are basic

expressed by-reference arguments. To demonstrate this, the austructural rules. The s-imp-add-alias and s-imp-merge-alias rules
thors also introduced the high-level “Micro-CLI” source language allow a program to add one or more aliases to a stack type. The
(modeled on the CLI intermediate format targeted by C# com- s-imp-drop-alias rule lets a program drop unneeded aliases. The s-
pilers [4]) and provided a translation from Micro-CLI programs imp-expand-alias rule expands the scope of an alias, as described
to JSWG programs. In contrast to SST's decidable logic, JISWG's in more detail below.
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As an example, consider thevap function from Section 2. the top of the stack “nekf)”, or a heap locationy” (assuming an
Suppose that the compiler pushes argumenés e onto the stack infinite supply of locationg for heap allocation):
from right-to-left, and stores the return address in a register. Upon
entry toswap, the stack will hold the argumenisandy, each of
which is a pointer to some location inside For exagnple, the STAL type int int :: p may be writ%en in SST

) L o, y E as “nex :int :: next(n) :int:: n: p”, where nex is an

Lo 2 Ptr(€y) €1 Ptr(€y) = b : (p A {Ls - int} A {£, :int}) abbreviat(iz)n for ne>(next(t(77))). For convgnience, we fregZJ)ently use

Note that locationg, and¢, may appear anywhere j in any or- the following abbreviation:

location ¢ := 17 | base| next(¥?) | p

der. In fact,, and/, may be the same location. For example, sup- L o ) -

pose that just before callingwap, the stack has typ& : int :: <. (Tn...7)Q:0)=next*(£) : 7 ... onext(§):m Lo

Figure 1's s-imp-add-alias and s-imp-merge-alias rules prove: With this, the STAL type int:: int:: p may be written in as
lo:int ¢ (int;int)Q(n : p).

= Lo ((int::¢) A{lo :int} A {lo :int})

Using this, the program can chooge= (int :: <), choosel, =
£, = Lo, push two pointers té, onto the stack, and cadlap.

Figure 1's rules also allow reordering of aliases. For example,
the s-imp-drop-alias, s-imp-alias, and s-imp-merge-alias rules

4. Formalization

Types.SST supports integer type “int”, nonsense type “Nonsense”
for uninitialized stack slots, heap pointer type “HeapP)t for
pointers to heap values of type singleton type “P{¢)”, and code
type “V[A](T, s)” for code blocks.

prove:
lo: (pA{Ly :intk A{L, :int}) type 7 == int| Nonsensg HeapPt(r)
= Llo:(pA{ls:int} A{L, :int}) | Ptr(£) | V[AI(T, <)

Section 2 mentioned the danger of pointers left dangling after TypeVv[A](T, <) describes preconditions for code blocks. The loc-
the program pops a word from the stack. The syntax {¢ : 7} ation environment\ is a sequence of location variables and stack
expresses a clear scope in whittemains safe to usé:definitely type variables. The register fileis a partial function from registers
contains typer as long asr remains unmodified. If the program  to types.I" ands describe the initial register and stack state for the
pops a word frona, for example, then the aligd : 7} must be dis- blocks. They may refer to the variablesAn

carded (see section 4.1 for details). The rules governing this scope Values and Operands.A stack locationd is either “base” or
are simple: s-imp-expand-alias expands the scope of an alias, buthe next stack location “ned)"”.
there is no rule to contract the scope. Expansion is safe, and allows A word-sized valuew may be an integeri", the “nonsense”

a caller to pass a reference on to another method.LTimethod value for uninitialized stack slots, a heap locatigit,“a stack
shown below expands the scopecdefore callingswap. Contrac- location “d”, or instantiated valuesw[¢]” and “w[o]” where w
tion, on the other hand, could leave unsafe dangling pointers, aspoints to code blocks polymorphic over location variables and stack
shown by the illegal and unsafe C# methidd egalMethod: type variables. Contents of registers and stack slots are word-sized.
. . . As in STAL [12], word-sized values are separated from operands
void h(ref int c) { swap(ref c, ref c); }

ref int illegalMethod() { int c; return ref c; } to prevent registers from containing registers.

Relation to linear logic. Just as :: is a limited version of the woSr?\C/glt)g d - pé\‘snec‘)nns%);\(scg | d | wlg] | wo]
linear logic® operator, the\ operator is a limited version of the wosm p w wie
operand o = r|w]olf]| olo]

linear logic& operator. More specifically, the notatien\ {¢ : 7}
corresponds to the linear logic formud: ({¢ — 7} ® T), where An operando may be a registers”, a word-sized value &”,
T is the linear logic notation to indicate any resource. Intuitively, or instantiated operands[f]” and “o[c]”. A special register sp is
knowingo & ({¢ — 7} ® T) means that you can choose to look at used for the stack pointer.
the stack in one of two ways: either consider the stack to have type  Instructions. Most instructions are standard. Values on the heap
o, or consider the stack to have typé— 7} ® T. The latter case  or stack are accessed through explicit load and store instructions.
tells you that the stack holds typeat location?, plus some other
data represented by.

The s-imp-expand-alias rule and lack of a contraction rule also ; ; _
correspond to linear logic, wherd ® (B&(C ® T)) implies { ](;mglfirdrc:gargii?alloo = (o)
(A® B)&(C ® T), but (A ® B)&(C ® T) does not imply ’
A ® (B&(C ® T)); linear logic can expand, but not contract, SST uses “ladd” instructions for stack location arithmetic. The
the scope of &(C' ® T)”. Unlike JSWG [9]'s scoping via version first operand points to a stack location. The second operand is a

numbers and tag trees, SST’s scoping follows naturally from linear constant integer (positive or negative). A “ladd” instruction moves
logic rules. the stack pointer along the stack according to the integer value.

Decidability. Deciding whether one linear logic formula im-  The standard add and subtract instructions deal with only integer
plies another is undecidable in general [10], but is decidable for arithmetic.
formulas consisting only of atoms, tigeoperator, and thé& oper- The heap allocation instruction “heapalloc= (o)” allocates
ator [10]. Since SST’s :: and operators are limited versions of @ word on the heap with initial value and assigns the new heap
linear logic’s® and& operators, it is not surprising that SST’s lo-  location tor.
gic is also decidable. The companion technical report [15] presents ~ The unpack instruction(), 7) = unpacKo)” coerces a heap
a simple and efficient (near linear-time) algorithm to decide ¢’, pointero to a heap location. It introduces a fresh location variable
based on a syntax-directed reformulation of Figure 1's rules. The 7 for o and assigng to r.
existence of such a decision algorithm is the key to the decidability
of type checking in SST (stated formally in Section 4).

Locations. A location ¢ may be a location variabler”, the The type checker maintains a few environments. The location en-
location of the bottom of the stack “base”, the next location towards vironmentA and the register fil& were explained previously. The

instr ins = movr,o | addr,o | subr,o | laddr,
| loadry, [ro + ] | store[ry + ], 72

4.1 Type Checking Instructions
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heap environment is a partial function from heap locations to

Type LookupThe judgment + ¢ : 7 means that the locatioh

heap pointer types. Stack-related rules are shown here. Appendix Bin stacks has typer. The location? can be either an alias in or

contains all rules.
Operand Typing Rules.The judgmentA; U; T - o : 7 means

that operan@ has typer under the environments. Note that a heap
location can be typed in two ways: the type in the heap environment
(o-p-H) or a singleton type (o-p). A stack location has a singleton

type (o-d).

If an operando has a polymorphic typ&[A](T, <), o[¢] and
o|o] instantiate the first variable i with £ ando respectively. The
judgmentsA + ¢ andA + o mean that ando are well-formed
underA respectively.

Oo-re i
AT ErT(r) 9 A;‘P;I‘Fi:intomt

0-ns -
A; ¥; T nonsense Nonsense A; 0T F d: Ptre(d) o-d

o-p-H o-
P A; T Fop e Ptr(p) P

AT Ep:U(p)
AT Ro:Vn A'lT,s) ARZ

A; W5 T E ofd] - V[A')(T[e/n], <[€/n])

o-inst-I

AUTRo:V[p, A'l(T,¢) Ako
A; W T Fofo] : VA'|(I [0/ pl, <[o/ p])

o-inst-Q

The judgment- (T',<){r <« 7}(I'',<’) means that assigning
a value of typer to registerr results in new environmenis’ and
¢’. Only T is changed if- is not sp. Otherwise the stack grows or
shrinks according to the new value of sp.

r#sp I'=T[r— 1]

- a-not-esp
@ o{r < 7HIY, <)

F Resizdl, ) =<' T’ =T[sp— Ptr({)]
F (T, o) {sp Ptr(¢)}(I", <)

Stack Rules.Resize. When the stack grows or shrinks, SST
uses the judgmert Resizél,s) = ¢’ to get the new stack type.
The judgment means that resizing stacto location/ results in
stacks’. The location? will be the top ofs’. The stack shrinks
if £ is insideg (s-shrink) and grows if is beyond the top of (s-
grow). The stack drops all aliases beyd@nhen shrinking to avoid
dangling pointers.

a-esp

c=>7 QL:0)
F Resizgl,c) ={: o

s-shrink

¢’ = (Nonsensg; . . .; Nonsense)Q({ : o)
- Resizénext*(¢),£: o) = ¢’

s-grow

Location LookupThe judgment - £ + i = ¢ means that in
stacks going: slots from locatior? leads to locatiort’. A positive

i means going toward the stack top and negative means toward
the stack bottom. The notion represents natural numbers. (The

requirement =7 @(¢ : o) ensures that is a stack location, not
a heap location.)

s=7 Q:0)
¢ L+ n=next*(¢)

s-offset-next

s=7 Q:0)
¢knext'(£) + (—n) = ¢

s-offset-prev

48

be on the spine aof (the stack type obtained by dropping all aliases
fromg).
s>l (on{l:T})
sHL: T
Stack UpdateThe judgments - ¢ «— 7 ~» ¢’ means that
updating the locatior in stacks with type 7 results in stack’.
Weak updates do not change the stack type (s-update-weak). Strong
updates change the type ©é&nd drop all aliases beyoriecause
they may refer to the old type d@f(s-update-strong).
sHL: T
SHl—T~g

s-lookup

s-update-weak

§:>?@(£ZTZI§I)
cHl—T T QU:7 ¢

Instruction Typing Rules. Figure 2 lists instruction typing
rules.A; ¥  (T;¢){ins}(I";<’) means that checking instruction
“ins” changes the environments ands to new environment$”
and¢’.

The location arithmetic instruction “ladd " requires thatr
point to a location/ and: be a multiple of 4. The stack grows
toward lower addresses.ilfs negative, the result location is further
outward from/.

Loads and stores can operate on heap locations (i-load-p and
i-store-p), stack locations on the spine (i-load-concat and i-store-
concat), and aliases (i-load-aliased and i-store-aliased). SST sup-
ports weak updates on heap locations and aliases, and both strong
and weak updates on stack locations on the spine.

The rule for heap allocation assigns a heap pointer type to
the register that holds the pointer, instead of a singleton type,
because the new heap location is statically unknown. The heap
environment does not change after heap allocation because the rest
of the program does not refer to the new heap location by name.

When control transfers, the type checker matches the current
environments with those of the target. The location environment of
the target should have been fully instantiated= I’ requires that
I be a subset df.

s-update-strong

4.2 Blocks and Programs

A heap value is either a code block “block” or a heap wor¢ts)”.

A code block ¥[A](T, <) b” describes the preconditiorfA] (T, <)

and its bodyb. The block body is a sequence of instructions that
ends with a jump instruction. Only variables & can appear free
inT, ¢, and the block body.

A program consists of a hedf, a register banl®, a stacks,
and a block body as the entry poirf. is a partial function from
heap locations to heap valuggis a partial function from registers
to word-sized values. The stagkecords values on the spine. It is
either the empty stack “empty” or a concatenation of a word-sized
value with a stackib :: s”.

heap value v = block | (w)
block block := V[A](,¢)b
block body b = ins;b | jumpo
heap H = PpP1UL,...,Dn > Un
regbank R = 1 Wi,...,Tn = Wy
stack value s = empty|w:s
program P = (H,R,s,b)

A programP = (H, R, s,b) is well-formed (illustrated by the
judgment— P) if H matches a heap environmeht R matches a
register filel’, s matches a stack type andb is well-formed under
v, T', ands. The notion ‘” means empty environments.



L(r)y=Ptr(¢) sHL+i=1¢

AT Rorr (D ofr < 73TV, <) (T, ){r < PU()}(I',<") ladd
A; U (T;6){movr, o} (T; <) mov AU (Ts6){laddr, —4 i} (T7;¢") a
A;UTRo:int r#sp I(r) =int A;U;THo:int r#sp T'(r) =int b
AU (T;9){addr, o} (T;s) & AU F (T;o){subr,o}(T;5) oV
I'(re) = HeapPtfr) T(re) =71
F(T,0){r1 — XTI, i ['(r1) = HeapPtfr) .
— i-load-p i-store-p
A; U (T ¢){loadry, [r2 + 0] }(IV;¢") A; U+ (T 6){store[r1 + 0], 72} (I'; <)
[(ro) =Ptrl) skHL+i=1¢ L(ri) =Ptr(¢) T'(r2) =7
s 7 F (D) {r — 7HI",¢") ' load sHL4+i=0 ¢l —T1~¢ .
I-load-concat I-store-concat
AU F (T56){loadr, [r2 + (—4 % 1) }(T; <) AU (T 6){store[r; + (—4 *14)], 72 }(T;¢")
[(ro) =Ptr(¢) ckH£L:7 I'(r1) = Ptr(¢)
F (T, ¢){r1 « 7HI',<")  load-aliased ckHe:7 D(re) =7 . lised
AW (T o){loadry, [ra + 0]} (I'5) 000 088 AL (T o) {storefrs + 0], rah(Tsq) o 0o 2se
AU T o7 I(r)=int A;¥;TFo: V[ |(TV,¢)
F (T, ¢){r < HeapPt(r)}(T’,<) ) I ¢=¢ .
~—~ i-heapalloc . - i-jump0
A; U F (T ¢){heapalloe: = (0) }(T;<") A; U F (T 6){jumpif0 r, 0 }(T; <)

Figure 2. Instruction Typing Rules

variablen to A, assigng- a singleton type P¢r), and updates the

FH: UV oUlks:¢ oUVFR:T o;\I/;P;g»—bm_tp stack type to contain.
F (H,R,s,b) A; U (D5 0){insH(I;<")
. . AT Fb
A heapH matches a heap environmehtf they have the same : b-ins
domain and each heap value ih has the corresponding type in A; ;T =ins b
¥ (h-tp). Matching a register bank with a register file is defined
similarly (g-tp). AU T+ o V[](Flljgl)
'=1I1" ¢=¢
v={..,p—7...} H={...p—uv,...} i b-ium
o e UbkviT L h AU T 6 - jumpo Jume
: -p
FH W A; U T F o : HeapPt(r) r#sp nd&A
r={..,r—=mn...} R={..,r—w,...} (A;m); & Tr — Ptr(n); £: (o A{n:7})Fb b-unpack
A TrewiT Ll g-tp AU T L o k= (n,7) = unpacKo) p
A;UER:T

) ) A block is well-formed if under the heap environment and the
A stack values matches a stack typeif all the locations on the specified precondition, the block body type-checks.

spine have the corresponding typesirfs-base and s-concat) and AT Tic b b
¢ contains only aliased locations to heap pointers (s-alias) and to e Rt ek block-tp
stack locations on the spine (s-imp). ¥ EV[ANT,<) b
s-base The judgmentP — P’ means that progran® evaluates to

A; 0 - empty: (base: Empty) programpP”’. Evaluation rules are listed in Appendix B.3.

AT Fs:(Cic) ATiebw:r We proved soundness and decidability of SST. The proofs can

T T EETYE s-concat be found online [16].
’ wis: (NeX(l) 17z L 0) THEOREM 1 (Preservation)lf - P and P — P’, then P’.
A; W {p— HeapPt(r)} Fs: (£:0) i THEOREM2 (Progress)lf - P, then3P’ such thatP — P’.
s-alias
A, {p+— HeapPt(r)} Fs: (£: (o A{p:T})) THEOREM3 (Decidability). Given ¥ and block, there is an al-

gorithm to decide whether® + block” holds.
A;Uks:ic ¢=¢

AU Es:¢ 5. Source Language and Translation
To type check a block body, the checker checks the instructions As mentioned in Section 2, we translate JSWG's Micro-CLI [9]
in order (b-ins) until it reaches the jump instruction (b-jump). to SST. Micro-CLI supports both heap and stack allocation. A

The unpack instruction(), ) = unpacKo)” requireso have a managed pointer can point to either a heap-allocated or a stack-
heap pointer type (b-unpack). The rule introduces a fresh location allocated value. Managed pointers have the same constraints as

s-imp
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those in CLI, such as they cannot be stored in objects nor returned  The function is translated to the following SST function:

from functions.

The syntax of Micro-CLlI is restated here.

V[, 1y, 10, p)(T, <)

mov r,, SP
qualifiers ¢ = S| H movri, 0 ;r1 =05
types T = int| 7 %q ladd sp —4
store[sp+ 0], 71 ; pushry (for ¢)
values v = nl|x movry, 0 ;r1 =05
ladd sp —4
program p = fds b store[sp+ 0], 1 ; pushry (for t)
loadry, [rsp + 0] jT1=2
functiondecls fds == | fd fds loadry, [r1 + 0] s = [r1]
function decl fd = 7T f(nz,...,TnxTn) T store[rsp + (—=8)], 71 ;t=r1 (t =lx)
loadry, [rsp + 4] iT1L=Y
returnblock rb = {lds;ss;returnuv} loadry, [r1 + 0] s71 = [r1]
store[rs, + (—4)],m1 ;t' =71 (' =ly)
localdecls lds == - |ld;lds loadry, [rsp + O] T =
local decl id = Tx=v|TT=newv loadrs, [rip + (—4)] ;re =t
store[r; + 0], r2 ] =re (x:=1t)
statement list  ss = | s;ss loadry, [ryp + 4] iT1 =y
statement s = if vthensselsess | z = v loadrs, [ryp + (—8)] ;r2a=t
|z=v1i+v2 | z=0v1—02 store[r: + 0], 72 ifri]=r2 (y:=1t)
| 2= f(vi,...,vn) ladd sp16 spopt,t,x,y
|z= v |v =02 movry, 0 ;11 =0
. . . ladd sp —4
Micro-CLI supports only the |Hnteger type and p‘0|[’1ter types. store[sp+ 0], 71 - pushry
Each pointer type is qualified bys” (stack pointer) or H” (heap jUMp7rq - JUMP 7

pointer). Heap pointer types are subtypes of stack pointer types
with the same referent types, thatiss is a subtype of xg.

A Micro-CLI program consists of a sequence of function de-
clarations and a return block. A function declaration specifies the
return type, the function name, the parameters, and the body (a re-

wherel" = sp— Ptr(next (1)),

Tra — V[](Sp— Ptr(next(no)), next(no) : int :: 1o : p)

ands = next (o) : Ptr(12) :: next(no) : Ptr(n,) ::

mo : (p A{ne :inth A{ny :int})

turn block). A return block contains a sequence of local variable

The translation is straightforward. Many optimizations can be

declarations and a sequence of statements. A local variable declarapplied to improve the SST code, which is beyond the scope of this
ation declares the type and the initial value of a local variable that paper. The translation reserves register sp for the stack pointer,
can be used in subsequent declarations and statements.

The detailed translation from Micro-CLI to SST is described

for the frame pointer, and.,, for the return address. Two temporary
registersr; and o are used to hold intermediate values during

in the companion technical report. Because SST deals with ali- the translation of a Micro-CLI instruction. Parameters and return
asing differently from JSWG, the two translations differ in rules values are passed through the stack. Local variables are allocated
around managed pointers which introduce aliasing. For example, on the stack.

if a source function has a parameter with type “pointer-to-pointer-

The SST function is polymorphic over four variableg:, n,,

to-int”, the translation to SST creates two aliases for the pointers 7o, andp. The first two represent the valuesofindy. The third
while the translation to JSWG uses existential types to abstract therepresents the location of the rest of the stack (abstracted by the
locations and version numbers to relate the scopes. The precon-stack type variablg). The parameters andy are on the stack upon
dition of the function in SST would have a stack type “riext:

Ptr(n1) =
is polymorphic over;; andrs.

We use the following example to show the result of translation.

n:(pA{m : Ptr(n2)} A{m2 :

int})” where the function

The “swap” function in Section 2 is rewritten into Micro-CLI

syntax as follows:

int swafint xs z,int xs y){

intt = 0;
intt =0;
t=lx;
t'=ly;
x =t
yi=1
return0;

}

Micro-CLI does not allow such syntax ag “.=

y” and is then assigned ta Local

variable ‘¢’” holds the value of!

ly". A new

variables can be initialized only by values. The local variables

andt’' are initialized to O first and then assignel:

and “ly”

respectively. Micro-CLI does not allow functions with no return
values. The “swap” function simply returns an integer value.
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entry to the function. Section 3 explained the initial stack state. The
parameters and the local variables are accessed through the frame
pointer:t, t', x, andy have addresses, — 8, r, — 4, rf,, and

r¢p + 4 respectively.

At the beginning of the function, the frame pointer, is as-
signed sp and the initial values forand¢' are pushed onto the
stack. At the end, the local variables and the parameters are popped
from the stack, the return value is pushed onto the stack, and the
control transfers to the return address, which is kept in register

We proved the type-preservation theorem of the translation:

THEOREM4 (Type-preserving TranslationyVell-typed Micro-CLI
programs translate to well-typed SST programs.

6. Conclusions

With a simple stack type, SST safely supports many low-level
idioms: stack pointers, frame pointers, by-value arguments, and by-
reference arguments, where by-reference arguments may point to
both stack data and heap data.

This paper presented one particular type system built around
the stack type, but many variations are possible. For example, we
treated the stack pointer register as a special register to safely ac-



comodate kernel-mode code in the presence of interrupts, but some structures. Ir8rd ACM SIGPLAN Workshop on Types in Compilation
other settings could treat the stack pointer as an ordinary register. (TIC2000) 2002.

For GC safety, we allowed pointer arithmetic on stack pointers but 18] Frederick Smith, David Walker, and Greg Morrisett. Alias types. In
disallowed pointer arithmetic on heap pointers. For simplicity, we In European Symposium on Programmi@g00.

assumed infinite stack space to grow in, but a type CheCker. basecj[19] P. L. Wadler. A taste of linear logic. IRroceedings of the 18th

on SST could also verify stack overflow checks (perhaps in co- International Symposium on Mathematical Foundations of Computer
operation with virtual-memory-based overflow checks). Also for Science, Génsk New York, NY, 1993. Springer-Verlag.

simplicity, our heap consisted of one-word objects, but this extends [20] David Walker. Mechanical reasoning about low-level programs.

na_tu_rally to ObjeCts.W'th multiple fields. Flnally, to ensure S|r_nple, lecture notes, http://www.cs.cmu.eddpw/papers.html, 2001.
efficient type checking, we used a small, restricted linear logic, but

we could trade efficiency for expressiveness by varying the linear
logic, without abandoning the basic SST approach. A. SST Syntax

location ¢ = 1 | base| next¥) | p
References labeled stack type ¢ = Lo
) ) unlabeled stack type o n= p|Empty| T g
[1] Am_al Ar:mtzego%nch'\;alvsl(IiGVgil’l‘i(’e\lr.WThf rI]oglcal .’fll_pproa_ch I_to stack lon{l:T
ing. In orkshop on Types in Language :
tI%lepsigg]]n and Implementatio2003. P P g type 7 u=int | Nonsensq Ptr(¢)
. | HeapPt(r) | VIA|(T,<)

[2] Karl Crary. Toward a foundational typed assembly language. In stack loc  d = base| nextd)

Symposium on Principles of Programming Languag@€e®3. word value  w = g | nonsensq pld
[3] Karl Crary, David Walker, and Greg Morrisett. Typed memory | w[f] | wlo]

management in a calculus of capabilities.Pimceedings of the 26th operand o m= r|w]| ol | olo]

ACM SIGPLAN-SIGACT symposium on Principles of programming instr ins 5= movr,o | addr, o

languagespages 262-275. ACM Press, 1999.

[4] ECMA. Standard ECMA-335 Common Language Infrastructure
(CLI). 2006.

[5] Matthew Fluet, Greg Morrisett, and Amal Ahmed. Linear regions
are all you need. Ii5th European Symposium on Programming
(ESOP’'06) 2006.

[6] Jean-Yves Girard. Linear logic. IMheoretical Computer Science
1987.

[7] Chris Hawblitzel. Linear types for aliased resources (extended
version). Technical Report MSR-TR-2005-141, Microsoft Research,
2005.

[8] Samin S. Ishtiag and Peter W. O’'Hearn. Bl as an assertion
language for mutable data structures Symposium on Principles of
Programming Languagepages 14-26, 2001.

[9] Limin Jia, Frances Spalding [Perry], David Walker, and Neal Glew.
Certifying compilation for a language with stack allocation.LICS
'05: Proceedings of the 20th Annual IEEE Symposium on Logic
in Computer Science (LICS’ 05)ages 407-416, Washington, DC,
USA, 2005. IEEE Computer Society.

[10] Patrick Lincoln, John C. Mitchell, Andre Scedrov, and Natarajan

(Tn...1)Ql: o) =next’(£) : 7, =

| subr, o | laddr,

| loadri, [r2 + 7]

| store[ry + 4], 72

| jumpif0r, o

| heapalloer = (o)

| (n,7) = unpacKo)

heap value v = block | (w)
block block := V[A](T,s)b
block body b = ins;b | jumpo
locenv A = eo|mA|pA
heap H = P1Vl,...,Pn > Up
heapenv ¥ = P1IFTi,e..,Pn > Tn
regbank R = TIFWi,...,Th > Wn
regfile T NS OT1I T, ..., Th Ty
stack value s n= empty| w:s
program P x= (H,R,s,b)

We use the following abbreviation:
counext(@):malio

B. SST Semantics
B.1 Well-formedness

Shankar. Decision problems for propositional linear logion. Pure
Appl. Logig 56(1-3):239-311, 1992.

[11] Tim Lindholm and Frank Yellin. The Java Virtual Machine

Specification Prentice Hall, 1999.
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system F to typed assembly language. AGM Transactions on
Programming Languages and Systems (TOPL#&3yme 21, pages AkFg
527-568. ACM Press, 1999. ALy A
[14] George Necula. Proof-Carrying Code. ACM Symposium on __Arf wf-S-empty art rea wf-S-P
Principles of Programming Languagesages 106—-119. ACM Press, A £: Empty Abl:p
1997.
[15] Frances Perry, Chris Hawblitzel, and Juan Chen. Simple and Ve A,.}_ Z_ ,Af;T Aé,}_ by B 04
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Corp(;ration. ftp:/fftp.research.microsoft.com/pub/tr/TR-2007- AbLy:(oN{l:T})
51.pdf.
[16] Frances Perry, Chris Hawblitzel, and Juan Chen. Proofs for SST, AFY AFT Akg
2007. http://research.microsoft.com/users/juanchen/stack. v 6&7 0,70 AL if¢c= (; : (g’ A {Z’ . 7-’})
[17] J. Reynolds. Separation logic: a logic for shared mutable data AL (T:%) wi-S-concat
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AFT
Arint WL e NonsenseV NS
AFT AR/ :
——— wf-t-h ———— wif-t-single
A+ HeapPt(r) P A+ Ptr(¢) g

AANFT AANFS AnA ={}
A VAT, <)

wf-t-code

AFT

L AFRT L
AF{ . ..,r—T1...}

wf-G

B.2 Static Semantics
A;U:TkRo: T

_ O-re e O
AT T Y AT oint

0-ns
A; U; T' - nonsense Nonsense

o-p-H o-p

AU T Fp:U(p) A; 0T Fp e Ptr(p)

AUTEd:Pud) ©¢

AU T oV, A'(TY,s) ARY
AW T+ ofd] - V[A(TV[e/n], <[£/n])

o-inst-|

AU T Ho:V[p, A'l(T,s) Abo
AT - ofo] = V[A|(I [0/ pl, 5[0/ p])

0-inst-Q

@ ofr =7}, <)

r#sp I'=T[rw— 7]
F (@ 0{r — 7HI",<)

a-not-esp

F Resizél,c) =<’ T’ =T[sp— Ptr(¢)]

a-esp
= (T, 6){sp— Pt(£)}(I", <)
 Resizél,c) =<’
¢=7 Q:0) hrink
- Resizél,c) = L:0 S0
(A . . .
¢" = (Nonsensg; . ..; Nonsense)Q(¢ : o) S-grow

 Resizénext*(¢),£: o) = ¢’

sHl+i=1

s=7 Q:0)
¢ F £+ n=next' ()

s-offset-next

s=7 Q:0)
sFnext'(¢) + (—n) =4£

s-offset-prev

c=0 (o N{l:T})
skHC:T

s-lookup

SHL—T~¢

cHC:T

————— s-update-weak
SFL—T~g P

C??@(f:r::g')

§"£<—T’W?@(£IT,ZI§I)

s-update-strong

rcr .
= G-imp
=T

[ AW F ([T {insh(I; )

AU T Ro:r F(T,0){r— 7HI,<")
A; W (T 6){movr, o}(T; <)

i-mov

(r) = Pt(l) ¢ - £ +i =0
F (T, ¢){r « Ptri(¢ )} (T, <")

A; U (T56){laddr, —4 % i }(T'; ")

i-ladd

AT Fozint r#sp T'(r)=int dd
AU (T;o){addr, o} (Tie)

AT Fozint r#sp I'(r)=int b
A; 0 F (T 6){subr, 0} (T;5) -su

[(r2) = HeapPt(r) + (T,¢){r1 « 7}{T’,¢)
A; W+ (T 6){loadry, [r2 + 0] }(T; <)

i-load-p

L(r2) =7 TI'(r1) = HeapPtfr)
A; 0+ (T ¢){store[ri + 0], 72 }(T'; <)

i-store-p

D(ra) = P(¢) <k f4i="0
cHO:7 F(T,0){r « }I', <)

A; W F (T 6){loadry, [r2 + (—4 % 4)]}(T; <)

i-load-concat

L(r1) =Ptrt) T'(r2) =7
cHL+i=0 cHl —T~¢

AU F (T 6){store[r1 + (—4 x1)], 72 }(T; <)

i-store-concat

D(ro) =Ptr({) s £4: 7
H (T, o){r « 7}(I",<)
A; U (T56){loadry, [r2 + 0] H(I; <)

i-load-aliased

[(ri)=Ptr(¢) ckHL:7 T(r2)=7
A; W F (T 6){store[r1 + 0], m2}(T; <)

i-store-aliased

AU T o1
= (T, <){r — HeapPt(r)}(I",<')
—— i-heapalloc
A; U F (T ¢){heapalloa = (o) }(I'; <)
L(r) =int A; ;T Fo: V[(TV, <)
'=sI"¢=< -
-jum
AU F (T o) {jumpifor, o} (T q) 0P
FH:V oUlks:¢ o UFR:T" oU;I'ckb
m-tp

}_ (H’ R7 87 b)
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c=d

b:Tug=0:T:g

=g

S1 = G2

’

s-imp-e

G2 = 63

S1 =63

q

s-imp-trans

s-imp-concat

L:o=>/L:0

C:(taq)=>Ll: (T A{l:T})

L:(cN{y:T})=>0l:0

£ (1l

c=>Ll:(cA{li:71})

(o AN{lz:m2})) =L (11 g :0) AN{la: T2})

c=>L: (o AN{lza:72})

s=>L: (o AN{lr:T}A{la:T2})

C:(oA{ly:T})=>L: (0" AN{le:T})

s-imp-add-alias

s-imp-drop-alias

s-imp-expand-alias

s-imp-merge-alias

s-imp-alias

UV={..,p—T7..tH={...p—u,..

.Uy iT L.

Figure 3. Stack Implication Rules

3

FH:U

A;UER:T

r={..,r—=7n..}R={..,r—uw,..

A Usew T L.

h-tp

3

A;UER:T

A; ¥+ empty: (base: Empty)

AU Es:(L:0) A;T;e

Fw:T

AU Ew:s:(next(ld):7::0:0)

A; 0 {p+— HeapPt(r)} Fs: (£:0)

g-tp

s-base

s-concat

s-alias

A; U, {p— HeapPtfr)} Fs: (£: (cA{p:7}))

A;UEs:¢ ¢=

/
S

AU s

A;U:Tc b

AU (T50){ins}(T;¢") A; ;T ;6" F b

s-imp

b-ins

A;U;T;6Fins b

AT Ro: V[T, ) T=T ¢=¢

!

A; U6 F jumpo

A; ;T F o : HeapPt(r) r#
(A;n); U3 Llr = Pt(n)]; £: (o A {n:7})

spn

¢
|_

A
b

b-jump

A; ;T34 o - (n,r) = unpacKo)

A; U6 b
v = V[A|T, )b

block-tp

b-unpack
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A;UbFo:T

U EVY[AT, ¢ b ARV[ANT,)

AU EY[ATTY, ") b VAT, ")

A;U;ebw:T

A; ¥+ (w) : HeapPtfr)

B.3 Dynamic Semantics

d+0 = d
d+(n+1) = n
baset (—(n + 1)) = b
next(d) + (-(n+1)) = d
size(s) =d
sizgempty)y = base
sizdw ::s) = nextsi

resizéd, s) = s

resizésize(s), s)
resizdsize(s) +
resizdsize(s) +

(n

(=(n+

+

1),w:s) =

sizqw :: s)

S-
w

w' s

w: 8)[d — w

I

']

s[d — w]

(w2 8)[d «— w]

v-hp

ext(d) +n
ase
+(=n)

2€(s))

lookup-top

s-lookup

s-assign-top

s-assign

v-code

S
1), s) = nonsense: resizésize(s) + n, s)
resizesize(s) +

(=n), )



RFo—w RFo—w

———— €o-I P —— - _— -inst-
R&r— R(r) Rro—w oW R & o[f] — w[f] eo-inst- R+ olo] — wio]
(R, s){r — w}(R',s")
!/ /
r#sp R = R[r— w| U-not-esp R' = R[sp— dl u-esp
(R, s){r — w}(R', s) (R, s){sp— d}(R', resizdd, s))
P—pP
R+ — ' s
omw (Ro)fr—w)(R.s)
(H,R,s,(movr,o0; b)) — (H,R',s',b)
Rbrw—d (R,s){r—d+i}(R,s) ladd
(H,R, s, (laddr, —4+; b)) — (H,R,s,b) © o
RFr—i. RForis (R,s){r—i1+i2}(R,s) dd
(H,R, s, (addr, 0; b)) — (H,R', s, b) e-a
RFr—ii RForis (R,8){r—i1—i2}(R,s) b
(H, R, s, (subr,0; b)) — (H, R, s,b) e-su
RE H(p) = R — R, s
ey HE) =) (Rl o n)s) oo
(H,R, s, (loadry, [r2 + 0];0)) — (H,R',s',b)
Rbro—d s(d+i)=w (R,s){r1 «—whHR,s)
- VR e-load-d
(H,R, s, (loadry, [r2 + (—4 % 1)];b)) — (H, R, s',b)
— /
Rtri—p H(p)=(w) RbFr—w e-store-p
(H, R, s, (store[ry + 0],72;b)) — (H[p < (w')], R, s,b)
RFri—d Rbra—w s =s[d+i+— w)
- ; e-store-d
(H, R, s, (store[r; + (—4 x14)],72;b)) — (H, R,s',b)
R domaifH) H'=H R R, s
0w _p¢ domairtH) D) R0

(H, R, s, (heapalloa = {(0);b)) — (H',R',s',b)

RFr—i i#0
(H, R, s, (jumpif0r, 0;b)) — (H, R, s,b)

e-jumpO0-false

R+-r—0 RFow p[subst H(p)=V[A|L,g) bz
(H, R, s, (jJumpifOr, 0;b1)) — (H, R, s, ba[subsfA])

e-jumpO0-true

RFor—p (R,s){r— p}R,s)

— e-unpack
(H7 R,s, ((77»7") = unpacl(o); b)) - (H7 R,s 7b[p/77])

RF o~ p[subst H(p) =V[A|(T,¢)b

e-jum
(H, R, s,jumpo) — (H, R, s, bjsubsfA]) - 1°"P

eo-inst-Q

Figure 4. Instruction Evaluation Rules
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Abstract is invoked; these tokens are removed from the reference on invoc-
Aliasing is quite powerful, but difficult to control. Often clients ation, and further tokens (specified by the method) can be added

need exclusive access to objects for some concerns, and sometime& '6{Urn. We express constraints by tokens because they are easily
we see no other way than to ensure this by controlling aliasing. In- unqlfahr_stood by bcr)]th prog_ram:jnersdand tools l'kfe compilers.

stead, we propose to restrict what clients can do when accessing ob- 1 NiS approach was Introduced as part of a type system ex-
jects. To invoke methods in an object clients need tokens issued byPressing synchronization to ensure linearity at the presence of ali-

this object. Static type checking enforces the tokens to be available@SiNd [29]- Applications of this technique are usually related to syn-
chronization and coordination. In the above example of a single in-

and ensures exclusive access for specific concerns without avoidin% r Il clients of biect b dinated h that at
aliasing. We show by examples how this concept works and discuss0¢aton, all clients of an object must beé coordinated such that &
most one of them invokes the specific method. Such kinds of co-

several possibilities to improve its flexibility. o N ; ] -
P P y ordination are inevitably connected with constraints on single ref-

Categories and Subject DescriptorsD.3.3 [Programming Lan- erences (as opposed to the whole referenced object) at the presence

guage§ Language Constructs and Features of aliasing.

General Terms Object-Oriented Programming, Aliasing The goal of this paper is to survey how this approach works
and show by examples what can be done with it and where its

Keywords Types, Tokens limits are. Thereby, the focus is on limiting effects of aliasing,
not synchronization and coordination. In Section 2 we give the

1. Motivation and Overview basics of our token-based approach, and in Section 3 we show

how to distribute tokens within a system. In Section 4 we briefly
gescribe static type checking. In the remaining sections we use
various concepts to add flexibility — dependences between tokens
in Section 5, relationships between values and tokens in Section 6,
type parameters in Section 7, and a dynamic concept in Section 8
— before we discuss related work in Section 9 and give concluding
remarks in Section 10.

Aliasing is like a beast causing troubles. It shows up where we do
not expect it and perverts our statements. It is slippery and escape
when we think we have caught it.

Aliasing is also like a pet. Object-oriented programmers love
it. It opens doors to objects that seem far far away. Science fiction
authors would be surprised if they knew how easy we walk from
one object to another at a completely different part of the world.

The beast and the pet are actually the same animal. Aliasing
gives programming languages much expressive power, so much2  Tokens to Ensure Limited Access
that we easily lose control. Programming systems become weaker ] i ) )
whenever we cage or tame the beast. We must be careful not toWe show how to specify constraints by examples in a Java-like
destroy flexibility: Although it is possible to develop nearly every Pseudo-language. The first example gives a simplified interface of
kind of system without the undesirable properties of aliasing (for & window, where method invocations depend on tokens (in square
example, in a referentially transparent functional language) we brackets—token§ removed on invocation to the left and those added
have to do so with considerably less flexibility in structuring the ©OnN return to the right of arrows):
code. Such flexibility is essential in object-oriented programming
to achieve good factorization.

In this paper we discuss an approach to annotate object refer-
ences with constraints on how to access referenced objects. This
approach fully supports aliasing; there is no cage for it as in many
other approaches [2, 3, 12, 15, 39]. However, we limit what the
beast can do by ensuring that constraints on references are pre-
served when introducing new aliases. For example, if we want a
specific method in an object to be invokable at most once, then
we annotate the only reference existing on object creation with a In our pseudo-language, brackets denote token sets associated
corresponding constraint. After introducing further references to with types and methods, they do not denote arrays. Let us as-
the object we still have this property: There is only one reference sume that new windows are of typeindow[init], this is, we
through which the message can be sent although we usually do nothave a reference to an instanceWwahdow associated with a token
know where to find this reference. We need not restrict aliasing by init. Through this reference we can invoke otiyitialize and
itself; we just limit effects of aliasing. getCreationTime. All other methods require tokens (as specified

We express what can be done through an object reference by ato the left of ->) not available in the reference; they are not in-
set of tokens (or just names) associated with the reference. Methodvokable. When we invokenitialize the type of the reference
specifications give semantics to tokens: A method can require spe-changes first tavindow[] (or equivalently justvindow) and on
cific tokens to be associated with the reference through which it return towindow [shown,ready]. Further methods become invok-

interface Window {
[init -> shown,ready] void initialize (...);
[ready -> ready] void update (...);
[shown -> icon] void iconify ();
[icon -> shown] void uniconify ();
[shown,ready ->] void close ();
int getCreationTime ();
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able, butinitialize cannot be invoked again. We can distribute
references to the window all over the system (see Section 3 how
to do that in a type-save way). The type checker prevents tokens
from being duplicated thereby. Maybe, we get a reference of type
Window[ready] in a client feeding the window with new data,

a reference of typ&indow[shown] in a window control panel,
and any number of references of typendow through which only
getCreationTime can be invoked. However, we cannot get two
references to the same window, both of tyiedow [ready], be-
cause there exists always at most one takesdy. In the control
panel we can invokeéconify anduniconify only in alternation:
Invoking iconify changes the type associated with the window
reference toWindow[icon], and invokinguniconify again to
Window [shown]. The methodclose becomes invokable only if
we rearrange the system such that all available tokessdfy and
shown) occur again in the type of a single reference. After invoking
close all tokens are gone, and onfetCreationTime remains
invokable.

The example shows how we can easily specify nontrivial con-
straints on method invocations and how clients are forced to sat-
isfy them. This technique is expressive: We can specify all prefix-
closed trace sets [30]. Clients that hold tokens have got partial con-
trol over the corresponding object: The client holdiregdy is the
only one being able to invokepdate, and the client holdingcon
or shown completely controls whether the window is iconified. Cli-

ents cannot influence each other in this respect. Moreover, a client

who holds any token of a window can preverliose ever to be
invoked. This kind of “separation of concerns” works without any
knowledge about aliases in the system. We need not know which
client has control over a concern. This client can even change dy-
namically.

To ensure limited access we usually want to have at most one
token of each name per object. Separation would be weaker if
we had several tokenseady and possibly several clients invok-
ing update in the same window object. As proposed in [29] this

approach supports several tokens of the same name in order to ex-

press limited resources (that are not necessarily limited to one; for
example, buffer sizes) for the purpose of synchronization. For the
purpose of aliasing control we need no limited resources of this
kind. In this paper we implicitly assume tokens to occur at most
once per object (this is, in the types of all references to the same
object).

Explicit result types of constructors play an important role in
specifying initial object states:

class MyWindow implements Window {
MyWindow[init] () {};

}

An invocation ofnew MyWindow() returns a new instance with a
single tokeninit. Based on this information we can compute the
maximum of tokens for this object available in the whole system
(see Section 4). SincByWindow does not add tokens to those
inherited fromWindow, there can always be at most amit, or a
ready and either ahown or anicon in the types of all references
to an instance afiyWindow.

3. How to Distribute Tokens

In the next example we show how to handle tokens in types of
parameters and variables:

class Test {
void play (Window[ready -> ready] w) {
w.update(...);
w.update(...);
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}

void blink (Window[icon -> shown]
w.uniconify();
w.iconify();
w.uniconify();

}

Window[ready] win;

[unique -> unique]

Window[ready] swap (Window[ready ->] w) {
Window[ready] old = win;
win w;
return old;

}

[unique -> unique] void condUpdate() {
if (win '= null) { win.update(...); }

}

Test [unique] () { win

null; }
}

Let y be a variable of typ&iindow[ready,icon] andx one of
type Test [unique]. We can invokex.play(y) sincey has the
tokenready as required in the formal parameter type to the left
of ->. On invocation the type of changes toWindow[icon]
(this is, ready is removed) and on return fromplay again to
Window [ready,icon] (this is, the token to the right of> in the
formal parameter type is added). In the bodypdéy the parameter

w has a tokerready on invocation as well as on return; we can
invokeupdate as often as we want to do so.

Invocations ofblink change argument types: On return from
x.blink(y) variabley will be of type Window[ready,shown].

In the body ofblink we must invokeiniconify at least once to
ensurew to have the appropriate token on return. We can invoke
x.play(y) andx.blink(y) in any ordering and even concur-
rently because the token sets required fripo(as well as the empty
token sets required from) do not overlap.

Parameter passing does not produce or consume tokens. Tokens
just move from the argument type to the parameter type on invoca-
tion and vice versa on return.

Whenever we introduce an alias (in this case by binding a formal
parameter to an argument) we perfotype splitting: The tokens
specified in the argument type are split into two groups. Tokens
specified in the formal parameter type (to the left of the arrow)
move to the formal parameter while all other tokens remain in the
argument’s type. After return the formal parameter is no longer in
use. We combine the previously split types again; thereby tokens
(specified to the right of the arrow) move from the formal parameter
to the argument.

Assignment resembles parameter passing on method invoca-
tion: When assigning a reference to a variable where the variable
type specifies tokens, these tokens are removed from the reference;
this is, the tokens move from the assigned value to the variable. In
the body ofswap the tokenready moves from the parameterto
the instance variabkein. Since the token finally belongs tdn, it
cannot move back to the argumegnn return fromx . swap (y).

Types specifying tokens in square brackets frequently change.
For exampley in the body ofblink is of typeWindow[icon] be-
fore invokinguniconify and of typeWindow [shown] afterwards.
There is no difficulty for a type checker and usually also for a hu-
man reader to determine what is the current type of a local variable
at some position in the program. However, such type changes cause
troubles on instance variables: There can be independent accesses
of the same variable through concurrent threads as well as through
aliases. If one of the clients accessing the variable causes tokens to
be removed from the variable, others do not know about this change
and can assume the tokens still to be available; there can be an un-
expected and undesired duplication of tokens. To avoid such prob-



lems we require tokens of instance variables to be visible only if we
can exclude simultaneous accesses through concurrent threads and
aliases. In our example we get uniqueness by requiring the token
unique onx when executing . swap (y) andx.condUpdate ().}

Static type checking ensures such variable accesses to be actually
unique (see Section 4). Furthermore, such variables must not be ac-
cessed from outside (except though getter and setter methods). Of
course, on return from methods all such variables must hold their
declared tokens.

As in all Java-like languagesill is an appropriate instance of
each reference type. Since no method is invokable thraugh,
we can assume this special value to be associated with any token.
Tokens do not compromise the usenafi 1.

If we have two references of the typ@$ndow [ready] and 2
Window [shown], then it is in general not possible to invokeose
through any of them. However, the following method allows us to
combine the token sets:

Window[ready,shown] comb (Window[ready ->] x,
Window[shown ->] y) {
if (x == y) { return x; }
else { return null; }

}

The method is correct because in this casady are known to be
aliases with the common typEindow [ready, shown]. Whenever

we know two variables (or parameters) to refer to the same object
(after comparing identity) we assume all tokens belonging to any of
the two variables to belong to both of them. The essential part is just
the conditional statement with an identity comparison as condition;
the rest of this example just gives us a setting where this statement 3.
may be useful.

Our approach supports subtyping considering tokens. We give
just a raw idea of it (see [29, 30, 33] for more complete de-
scriptions): Subtypes specify all (relevant) tokens specified by
supertypes. HenceédyWindow[ready,shown] is a subtype of
Window [ready], but is not related td&lindow[icon] by subtyp-
ing. Methods declared in subtypes have to the left®fat most
and to the right at least those tokens that occur to the left or right
of the arrow in the corresponding method declaration in the super-
type. Irrelevant tokens (these are tokens no method depends upon)
need not be considered. As a consequence we can invoke at least
each sequence of methods through a reference to an instance of a
subtype that we can invoke through a reference to an instance of a
corresponding supertype. Supertypes are more restrictive than (or
equal to) subtypes.

4,

4. Static Type Checking

Static type checking in our approach is rather simple and can be
performed at a class by class basis (separate compilation). Pro-
grammers give all information the checker needs by specifying
tokens in types and together with methods. The type checker must
ensure all specified types and tokens to be consistent (which is
much simpler than inferring information about aliasing or syn-
chronization from a program). It can do so by a single walk through
the code of a class. In detall, the checker has to ensure the following
properties:

1. At any time there cannot be several tokens of the same name
for the same objecflo ensure this property we apply a simple
fixed-point algorithm to compute for each class an upper bound
of token sets that can become available: Initially we have the

1Declaringswap and condUpdate as synchronized is not sufficient be-
cause there is still the possibility of a simultaneous access through aliasing.
Requiring a unique token is a stronger condition. It ensures the absence of
any other client also invoking one of these methods.
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sets of tokens specified in constructors (one set per constructor).
We construct further token sets by updating each token set
according to each method where the token set contains all
tokens occurring to the left of> in the method; tokens to
the left of the arrow are removed and tokens to the right are
added. The algorithm terminates if no new token sets can be
constructed this way. Type checking fails if a token set contains
the same token twice. Usually the fixed point is reached quickly
because there are only few different tokens in a class. Since
new tokens can be introduced only by method invocations (as
ensured by the properties mentioned below) this fixed-point
construction is sufficient to ensure that two tokens of the same
name can never exist for any object.

. Methods are invoked only through references associated with

all needed tokensnitially we assume types of variables to carry
tokens as in the variable declarations, and types of parameters
as to the left of arrows in parameter declarations. While walk-
ing through the code according to the control flow we ensure
for each method invocation that the type of the reference the
method is invoked through which contains all tokens occurring
to the left of-> in the declaration of this method. Furthermore,
we update the type of the reference by removing all tokens oc-
curring to the left and adding all tokens occurring to the right
of the arrow in the method declaration. Whenever the control
flow is split (for example, in a conditional statement) we per-
form these checks for each path separately. At joins of several
paths we remove all tokens that do not occur in all correspond-
ing types constructed independently in the paths to be joined.

Tokens are not duplicated when introducing aliaséghile
walking through the code according to the control flow we
ensure for each method invocation that types of arguments have
all tokens occurring to the left of the arrow in the corresponding
formal parameter type. These types are updated by removing all
tokens occurring to the left and adding all tokens occurring to
the right of the arrow in the formal parameter type. For each
assignment of a value to a variable we ensure that the value has
all tokens specified in the type of the variable and remove these
tokens from the value's type. At the end of the control flow of
each method and constructor we ensure that

e each parameter has all tokens that occur to the right of the
arrow in the parameter declaration,

¢ and each instance variable has at least all tokens that occur
in the variable declaration.

Always at most one method can make use of tokens associated
with an instance variableSuch variables are not directly ac-
cessible from outside the object they belong to which. To en-
sure the absence of simultaneous accesses to each such vari-
able within an object we use the set of methods accessing the
variable and the upper bound of token sets constructed while
checking property 1: If there is no token set in the upper bound
that contains all tokens occurring to the left of the arrows of any
pair of methods in the method set, then these methods cannot
be invoked simultaneously and the variable access is unique.

For example, in clasBest (in the previous section) onlywap

and condUpdate accesses the instance variallen. Both
methods havamnique to the left of the arrow. Each of the
four possible method pairs has two tokeind que to the left of

the arrows. The upper bound constructed froest contains

only a single token set with a single tokeaique. Since no
token set in the upper bound contains two tokemsque, sev-

eral concurrent or overlapping invocations are impossible. In
this case (and in many similar cases) we do not need the upper
bound to show this property because we know that no token set



in the upper bound contains the same token twice. Sometimesmust initializewindow with a reference having ahown because
the use of upper bounds increases accuracy. For example, inthe new instance dfconButtons is associated with atp.

MyWindow the methodd conify anduniconify cannot be in- Checking for-clauses in instance variable specifications is
voked simultaneously because no token set in the upper boundstraightforward because type safety follows from the construction
contains botlshown andicon. of this language concept. There is only a small difference to type

. . checking as proposed in Section 4: To ensure property 3 we have to
The type system is strong and sound in the sense that methodsompute the tokens carried by variables from token specifications

can be invoked only when objects are in appropriate states as spein methods instead of having them declared directly.

cified by tokens. Essential parts of a corresponding proof_ca_n be Using classIconButtons we control both buttons in a single
found in [29, 30]. To get this result we need not restrict aliasing, cjass. Distributing a concern (like controlling the state of iconifica-
and we need no knowledge of aliases (except of local information tjon) over several classes is a much more difficult topic that occurs
about statements possibly introducing new aliases to ensure propn practice. In the next example we show an alternative solution to

erty 3). This i_s an important difference to many seemingly similar 1.onButtons based on separate classes for each button:
approaches like the Fugue protocol checker [10].

There is a (still incomplete) implementation of the type checker class ButtonA { _ _
for a simple language similar to the language we use in this paper. WlndOW[ShOWH. for actlveA] window;
From early experiences with this checker we see that the type ButtonBl[passiveB for activeA] button;

system is quite good in detecting errors where programmers get
tokens wrong. Wrong tokens in method declarations usually show
up as diverging upper bounds (as constructed to ensure property 1)
or cause methods not to be invocable. Wrong tokens in types cause
methods not to be invocable or references not to be usable as
method arguments. The type checker complains about such errors.
Concerning type safety it does not matter if tokens are lost or
hidden in the type of unused references. In such cases, clients just
do not make use of services offered by objects. To enforce clients

[passiveA -> activeA] void activate() {...}
[activeA -> passiveA] void press() {
window.iconify();
button.activate();
}
[initA -> activeA]
void init (Window[shown for activeA ->] w,
ButtonB[passiveB for activeA->] b) {
LB
b;

window =
button

to make use of services we can extend the type checker as proposed

in [34] at the cost of flexibility.

5. Dependent Tokens

In this and the following sections we discuss a number of ap-
proaches to improve the expressiveness and flexibility of our tech-

nigue. An important step in this direction is to make use of known
relationships between tokens that belong to different objects.
In the following example we show a possibility to specify tokens

belonging to an instance variable in dependence of tokens of the

object that contains the variable [33]:

class IconButtons {
Window([icon for down] [shown for up] window;
[down -> up] void pressUp() {
window.uniconify() ;
}
[up -> down] void pressDown() {
window.iconify();
}
IconButtons [up] (Window[shown] w) {
window = w;
}
}

We think of IconButtons as a wrapper for the part ofindow
dealing with icons. The variableindow has one tokercon for
each tokendown known to occur in the corresponding instance
of IconButtons and one tokershown for eachup in the in-
stance. In general, we regard a set of tokens to the lefosfas
available it there exists the set of tokens to the rightef. In
the body ofpressUp we know down to be available at method
invocation andup on return because ofdown -> upl. Hence,
we assumerindow to have a tokericon on invocation, and we
must ensure thatindow has a tokershown on return. An invoc-
ation ofuniconify changes the token appropriately. Because of
[up -> down] specified forpressDown we assumerindow to
have ashown on invocation of this method, and we have to en-
sure the variable to have @ron on return. On object creation we
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ButtonA[initA]l () {}
}

class ButtonB {
Window[icon for activeB] window;
ButtonA[passiveA for activeB] button;
[passiveB -> activeB] void activate() {...}
[activeB -> passiveB] void press() {
window.uniconify () ;
button.activate();
}
[initB -> passiveB]
void init (Window[icon for activeB ->] w,
ButtonA[passiveA for activeB->] b) {

window = w;
button = b;

}

ButtonB[initB] () {}

}

The variablesindow carries a tokeghown in ButtonA (andicon

in ButtonB) when the button in active. Otherwise we do not know
any token ofwindow. After pressing the active button we activate
the other button, and the pressed button becomes passive. These
classes work essentially in the same wayIasnButtons once

the objects have been initialized. On invocatioreetivate the
variableswindow in the two objects implicitly exchange the only
available token. The initialization is the tricky part: We have to tell
the two objects that they can safely assume to have the only token
shown or icon of window when they are active. |ButtonA the
parameter typ&indow [shown for activeA ->] specifies that

w refers to a window carryinghown only while the button is active
(and has no tokens on return framit); this parameter is assigned

to window of essentially the same type. To initialize the objects we
may use the following piece of code:

w = new MyWindow();
a = new ButtonA();
b = newButtonB();



a.initialize(w,b); ables likestate must not be written from outside, and there
b.initialize(w,a); must not exist aliases of them. Otherwise it would be impossible
to keep results of evaluating the conditions synchronized with
the available tokens. In the programming language Ada we have
similar requirements on conditions Wwhen clauses belonging

to protected types (Ada’s notion for monitors) [16].

The variables occurs in both invocations ahitialize and gives
away its only token to both objects depending on the states of
the objects as specified by thier clause in the formal parameter
type. To ensure this initialization to be correct we have to show the
following properties:

The compiler must be able to determine whether conditions
specified in square brackets correspond to other occurrences
of the same conditions in conditional statements. Usually the
compiler can determine only structural equivalence. The use of
named conditions (based on name equivalence) can be helpful
in this respect. For example, we define a parameterless boolean
function that implements the condition and invoke this function
instead of using the condition directly. This way it is easy to
determine equivalence of conditions.

e The two objects never have the tokers iveA andactiveB at
the same time. Because of two different objects this property is
not obvious. Using least bounds of token sets constructed for
both classes as in Section 4 we can show this property: No
token set constructed froButtonA contains bothactiveA
and passiveA, and no token set constructed fraBattonB
containsactiveB andpassiveB. Sincebutton in ButtonA
carriespassiveB if there is a tokeractivel, there cannot exist
atokenactiveB at the same time, and analogouslybartton On return from a method that changes tokens of variables or
in ButtonB. HenceactiveA andactiveB cannot exist at the assigns new values to variables likeate we have to ensure
same time. tokens and variable values to correspond to each other. We can
do so by checking the conditions. In general, we can perform
these checks only at run time and thereby lose static type safety.
To avoid this problem we restrict values assigned to variables
like state (where conditions depend upon) to be constant. In
this case we can perform the checks at compilation time and
keep static type safety. This restriction reduces the expressive-
Because these checks are ad hoc and compromise separate compila- ness, but tokens depending on values are still quite expressive.
tion, itis an open question whethesr clauses in formal parameter

When the other object becomes active, there exists the token on
window needed by the other object. This meamniyydow must
carry a tokenicon (or shown) at the end of each method where
activeA (or activeB) occurs to the left of the arrow and does
not also occur to the right.

types shall be supported or not. Each of these problems can be solved (although the first and
the last one are serious) and dependence of tokens on values does
6. Values as Tokens and Tokens as Values not compromise static type checking. However, since we need

rather heavy machinery, we may prefer to use another approach
Dependent tokens are safe and (withtet clauses in parameter  that allows us to express more directly what we want to have:
types) easy to handle where they are appropriate. However, in many
situations we need more freedom. Especially, we want to relate the = class SwapButton2 {
availability of tokens to values in variables. In the next example we Window[?] window;
show how to establish such relationships: [unique -> unique] void press() {
if ([icon]window) {

class SwapButton { window.uniconify(); }

int state; else if ([shown]window) {
Window[icon if state < 0] window.iconify(); 2}
[shown if state > 0] window; }

[unique -> unique] void press() {

SwapButton2[unique] (Window[shown] w) {
if (state < 0) {

window = w;

window.uniconify(); }
) state = 1; }
else if (state > 0) { The question mark in the declarationwindow states that we do
window.iconify(); not know statically which tokens will be associated with the vari-
state = -1; able. The tokens associated withindow are stored in an impli-
} cit variable. An expression of the form . . Jwindow returns true
} if this implicit variable contains all tokens specified in the square
SwapButton[unique] (Window[shown] w) { brackets. In the body gfress we dynamically check irindow is
window = w; associated withicon or shown and make use of the found token.
state = w == null ? 0 : 1; On return from the method (as well as from the constructor) the
} tokens ofwindow are automatically stored in the implicit variable.
} Up to now we regarded tokens to be a purely static language

concept. The approach takendnapButton2 handles tokens dy-
namically. Nonetheless we can ensure static type safety without any
difficulty because types are split and updated in the same way as in
the purely static concept. By storing tokens in implicit variables
S(not directly modifiable by the programmer) we avoid the diffi-

The variablewindow is associated with a tokeficon if state
holds an integer value below zero, and witlown if the value is

(considering the value caftate) to be satisfied. After changing  ,jes we have to address in the approach takewpBut ton.
tokens associated withindow we must updatetate.

This approach to relate tokens with values raises a large number, The implicit variable inSwapButton2 corresponds essentially
of probler%z' 9 to state in SwapButton. These two classes differ mainly in the

syntax. In the approach SfiapButton we can use state informa-
e Tokens are allowed to depend only on side-effect-free condi- tion also for purposes not related to tokens, while the approach of
tions that read only instance variables of the object. Such vari- SwapButton2 requires less program code and is simpler to check.
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Using tokens as values as well as letting tokens depend on values  [$unique -> $unique] void press () {...}
adds much flexibility to the whole language concept. SwapButton[$unique] (Window[shown] w) {...}

Each client can invokeress without needing a token. Several
7. Type Parameters simultaneous invocations will be synchronized and executed in any

Tokens encoded into types and changes of types cause a difficultysequential ordering. In this respect the use of dynamic tokens re-
together with homogeneous genericity as in Java: Each use of asembles that of “synchronized” in Java. However, we consider re-

type parameter refers to the same type while we often want to refer cursive invocatiorsof press as erroneous while recursive syn-

to types with different token sets, and we have to consider tokens chronized methods are supported. Unfortunately, there is no easy
to avoid unexpected token duplication. We need some notation to way to statically determine indirect recursive invocations especially

express tokens for type parameters. In the next example we showtogether with separate compilation. We can detect erroneous re-
our first approach where we use essentially the same notation as focursive invocations practically only at run time as deadlocks.

types: Dynamic tokens are not as useful in controlling aliasing as they
) ) seem to be at a first glance. A client does not get unique access
class Iconlist<W extends Window> { for some concern for a sequence of invocations — just for a single
[? -> i] void add (S’_crmg s, Wlicon] w) {...} invocation. In simple cases (like ensuring unique access to a vari-
[i -> s] void uniconifyAll ) {...} able carrying tokens) dynamic tokens give us more flexibility at the
[s -> s] Wlshown] delete (String s) {...} cost of lost static safety and lost control over effects of aliasing. As
[s -> s] W get (String s) {...} we can see from dynamic tokens there is a fundamental difference
IconList[i] () {} between conventional synchronization and limiting the effects of
b aliasing although these concepts are related. Synchronization is a

An instance ofIconList<MyWindow> can be used as expected: ~much weaker concept.

We can add objects of typsyWindow [icon], cause all added win-

dows to become L_miconified, and delete uniconifiec_i windo_ws and 9 Related Work

thereby get back instances B§Window [shown]. An invocation o )

of get cannot return any token because the returned instance of The work presented in this paper is closely related to process types

MyWindow remains in the list where the token still is needed. The [27, 29, 30], a type concept where we express synchronization in

compiler would complain if we tried to return the token and at the types of active objects and in types of references to active objects.

same time keep it in the list. Process types were developed as abstractions over expressions in
However, for types likeIconList<MyWindow [readyl> this obje_ct-orlented process calculll like Actors [;L] and build the formal

approach is inappropriate. The type paramétenust not carry basis of the present work. Static type checking ensures thato_nly ac-

tokens becausget cannot return any reference associated with Ceptable messages can be sent and thereby enforces required syn-

tokens as explained above. Otherwise we would implicitly duplic- chronization. Process types allow us to specify nearly arbitrary con-

ate tokens and destroy type safety. straints on the acceptability of messages: We can specify all prefix-
If we need type parameters carrying tokens, we must declare theclosed trace sets, type equivalence is based on trace-set equival-
parameters with a question mark to make our intention clear: ence, and subtyping on trace-set inclusion [28]. A notation based
) ) on tokens helps us to keep static type checking as well as decid-
class IconList<W([?] extends Window> {...} ing type equivalence and subtyping simple [29, 30]. The process
In this variant the compiler complains about possible token duplic- tYPe concept considers types to be partial behavior specifications
ation inget. [19, 20] especially useful in specifying the behavior of software

In Java we have no access to types substituting type parameter£0mponents [4, 18, 25]. o
at run time. Therefore, it is most natural to keep also tokens in these, Récentwork regards process types as a synchronization concept
types invisible. In languages with run-time support of genericity N Java-like object-oriented programming languages [31, 32, 33].
(ike C#) we regard tokens associated with type parameters as 'his work adds a further dynamic level of synchronization while
being stored in an implicit variable. Then, we can use the boolean k€€ping the completely static level of (required) synchronization.
expression[readylw to dynamically determine if each instance 10 control aliasing we need mainly the static level.

of W is associated with a tokeready in a similar way as we did There are several approaches similar to process types. Some
in SwapButton2. As a special case we can UEBW to ensure in approaches ensure subtypes to show the same deadlock behavior
methods likeget no token to be associated with as supertypes, but do not enforce message acceptability [24, 25].

Other approaches consider dynamic changes of message accept-
. ability, but do not guarantee message acceptability in all cases
8. Dynamic Tokens [8, 9, 35]. Few approaches ensure all sent messages to be accept-
A simple and seemingly still powerful approach to further increase able [17, 23]. There is essentially the same idea behind the well-
flexibility introduces a dynamic pool of tokens into each object. We known work on linear types [17] based on theealculus [21] and
differentiate between static tokens (used so far) and dynamic tokensprocess types based on an Actor-like model. However, since there
stored in dynamic pools. Dynamic tokens required on invocation is no natural notion of message acceptability in thealculus as

(this is, dynamic tokens to the left of> in brackets associated in the Actor model, static checking of linear types has to prevent
with methods) are taken from the dynamic pools of the objects deadlocks and (therefore) is much more restrictive than checking
the methods belongs to (not from references to them). On return of process types that can ensure message acceptability without pre-
dynamic tokens are added to the pools, not to references. If aventing deadlocks.

required dynamic token is not available on invocation, then the The Fugue protocol checker [10, 11] uses a different approach
invocation is delayed until the token becomes available. The main to specify client-server protocols: Rules for using interfaces are re-

purpose of dynamic tokens is synchronization [31, 33]. corded as declarative specifications. These rules can limit the or-
In this paper we prefix dynamic tokens wighto distinguish

them syntactically from static tokens. By replaciagique in our 2|n general, this restriction applies to invocations of all methods that require

SwapButton example with a dynamic token we get: the same dynamic tokens, not just recursive invocations of the same method.
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Using ownership types to support library aliasing boundaries
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Abstract In sum, this paper is an experience report and a position pa-
per that (1) describes a set of library abstractions and program-

This paper describes a library for concurrency used in a 10- V'~ . ; e
developer videogame project. The developers were inexperienced,m'ng conventions that restrict aliasing in order to guarantee the ab-

yet there were no problems with data races in the multi-threaded sence of_data-ra;es; (2) iden_tifies the_ correspondence of th_e aliasing
application. We credit this to the explicit representation of own- Poundaries required by the library with those expressed with own-
ership in the design of the library. Correct library usage implies €'SNiP types; (3) describes the type system extensions necessary to
aliasing boundaries which bear a strong resemblance to the owners0V€ from a documented usage rule to statically ensuring that ali-
as-dominators property enforced by ownership types. We explore asing boundaries are respected; (4) outlines an economical imple-

other situations where analogous aliasing boundaries exist and dis-g‘e.ntation 'apprr(])ach to em’begsfr_:_osgf?xtensionsdinéo standr?rdkc ,
cuss a family of related libraries that could benefit from a design °Y INSPecting the program'’s with an extended type checker;

explicitly representing ownership. The ownership relations in the 2nd (5) identifies the aliasing boundaries discussed as a general pat-
library currently have no support from the type system. We exam- tern for a related class of libraries, justifying the effort to develop

. : ; i :~dhe checking mechanisms.
:Eiﬁfféz?gg%itg&mn?:ggslfgggfgecmng of the aliasing boundaried This paper is organized as follows. Section 2 describes the

concurrency library and Section 3 how ownership types can be used

Categories and Subject DescriptorsD.1.3 [Softwarg: Program- to check its correct use. Section 5 discusses the @nbedding,

ming Techniques—Concurrent Programming; D.3S®ffwarg: and the other libraries that could benefit from the same technique.
Language Constructs and Features—Control structures Section 6 mentions related work. Section 7 concludes and discusses
General Terms Design future plans.

Keywords Ownership types, €, Data Races, Concurrency

2. The Library

1. Introduction This section describes a simple concurrency library that was de-
In research on type systems for object-oriented languages, an im-veloped for a videogame project written ir-< The game is called
portant property of interest is local reasoning. The challenge lies in “...and then the World was Consumed by Monsters” and can be
the fact that an object’s state is comprised not only of its immedi- downloaded from the development team’s website [9]. The project,
ate data members, but also the transitive closure of all the states oforganized by the Texas Aggie Game Developers, included 10 un-
the objects on which it depends [1]. To provide a “deeper” form of dergraduate student developers over a period of 6 months with no
encapsulation than directly supported by current languages, own-other experienced oversight. Thus, simplicity and understandability
ership types [2, 3] allow a class to identify its dependencies on were key to the success of the project.
other objects and then prevent outsiders from acquiring references  In the videogame development community, amateurs are often
to those dependencies. With these limitations on aliasing, it is pos- strongly discouraged from using concurrency by the more experi-
sible to reason about the correctness of a class by looking only atenced because of the difficult class of bugs it can introduce. How-
the code for that class and its dependencies. ever, several game constraints made it necessary to offload com-
However, local reasoning for the programmer is not the only putation and blocking API calls to other threads. First, as with
benefit from using aliasing boundaries. Researchers have demonimost interactive videogames, there is an underlying rendering loop
strated that higher-level program guarantees can be made by buildwhich repaints the screen. To maintain a visually smooth anima-
ing on ownership type systems [4-8]. This paper presents an ad-tion, each frame should take less than 30 ms. Second, the game
ditional example where aliasing boundaries in a program can be allows the user to control a character that roams around a virtual
beneficial: a library for concurrency developed and successfully world. The representation of the virtual world can be much larger
used in a large student videogame project. We show that the ali-than what fits in memory. This requires the world to be cut into
asing boundaries required for correct library usage strongly re- smaller chunks which contain all the geometry, collision data, and
semble the owners-as-dominators property enforced on an objectcreatures for a small area of the world. As the user moves into new
graph by ownership types [2]. Based on this, the paper presents aareas, chunks get loaded and dropped, which requires 1/O oper-
method by which code using the library could be checked using ations to load the memory, OS, and graphics resources for those
ownership types. chunks. Since some of these operations do not provide an asyn-
Based on the positive experience with the concurrency library, chronous option and can have a high latency, most videogames
this paper considers a family of related libraries that could benefit either try to perform them all at once before the game starts or
from a similar approach. Together, these libraries can be seen ashatch the operations and stall the user at chosen points when ex-
the decomposition of the separation facilities built into a traditional ecuting the batch. Such stalls did not fit nicely into the gameplay,
process, so that each individual separation facility may be applied so a separate thread was needed to handle concurrent world load-
at the sub-process level. ing.
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Figure 1. Travelling object with a tether, demonstrating the three
states 1-3 of the Job object.

The same mechanism used for loading was later expanded t0 g receive_returning()

simplify Al programming. Here, the problem is a possibly expens-
ive algorithm to find a path between two points. While the al-

gorithm could be extended to moderate its execution time, a simpler

be run in the rendering thread, tMonster creates dob object (1)
and ships it off to do the work in another thread. Before leaving, the
Job creates a tether to thdonster. Next, thelob arrives (2) and is
given a temporary local reference to tbata object which it can
use to do the path finding computation. While in a different thread
than theMonster, the tether held by théob cannot be dereferenced.
After Job finishes and returns to the original thread (3), it uses the
tether to check whether the tetheiddnster is still alive, and if so,

the Job hands over the computation results.

Although more general usage of travelling objects could be
supported using these library metaphors, the functionality required
by the project only needed threads to act like assembly lines which
processed jobs FIFO in the manner just described. Accordingly,
AssemblyLine is the library primitive for creating such threads:

template <class GenericHost>

class AssemblyLine {
GenericHost *xhost;

public:

void send(typename GenericHost::Guest *);

Since AssemblyLine does not know what to do with travelling

approach is sending requests for computation to another thread withOPI€cts, it is parametrized byGenericHost. The host's responsib-

a lower priority. Thus, for slower machines where rendering takes
a greater percentage of the time, enemies will simply take longer
to decide where to go instead of hurting the framerate. An obvious
additional benefit is the ability to utilize multiple hardware threads.
To avoid requiring the rest of the program to deal with shared

ility is to receive incoming travelling objects and to provide them
access to the necessary local data structures. Additionally, the type
of travelling objects is determined by ti@aest associated type of
GenericHost. After starting a new OS thread in its constructor, an
AssemblyLine will create an instance @enericHost, which will be

mutable data and locking, the model for concurrency was based onthe fir;t clier)t object local to the new thread. To allow returning
the communicating sequential processes (CSP) metaphor (wherdravelling objects to reenter the thread, the main thread synchron-
CSP processes are just threads and the shared address space is &S WithAssemblyLine by callingreceive_returning().

explicitly used). When extended to object-oriented programming,

To give a better idea of the library’s use, we now walk through

all objects are understood to belong to a single thread and mes-SOMe skeleton code using the library in the path finding scenario.
sages between threads take the form of objects that can dynamic/At the top-level of the application,@ame is created which, in turn,
ally change membership. Objects that are allowed to change mem-Créates amssemblyLine:

bership are calletravelling objectsand all others are callddcal
objects

A common need in the project was for a travelling object to
create a reference to a local object, travel to a different thread
to do some work, and then return to the original thread to use
the reference. The synchronization implied by travelling prevents
such behavior from being a data race. However, the situation is
complicated by the fact that the local object may be destroyed
while the travelling object is away. In a single-threaded scenario,
a weak pointerlibrary primitive comparable, e.g., to Boost weak
pointer [10], is used when the pointee is allowed to be destroyed
while another objects points to it. Although, the weak pointer

implementation could have been extended to be made thread-safe

class Game {
AssemblyLine<Host> ai_thread;

public:
void run() {
while (!quit) {

ai_thread.receive_returning();

}

int main() {
Game g;
» g.run();

at the expense of synchronization overhead for all operations, this}

is more powerful than is necessary: a weak pointer maintains the . ) . ) .
liveness of the local object while the travelling object is in other Whenai_thread is destroyed byGame, job processing will be
threads. All a travelling object needs is to discover, when it returns, StoPped, all pending jobs will be deleted, and the OS thread will

if the pointee has been destroyed in the interim.

To address the need for a simplified cross-thread weak pointer,

be releasedHost parametrizeAssemblyLine and holds the path
finding data that is needed bigbs:

the thread library provides a new, thread-aware smart pointer calledclass Host {

a tether Taking advantage of a tether’s restricted semantics, the
library is able to use the synchronization points already in place for

Data data;
public:

transferring travelling objects between threads to keep the tethers typedef Job Guest;

coherent when they change threads.

Figure 1 demonstrates a typical usage scenario for a tether. In

the figure: labels 1-3 show three steps in execution, the solid ar-

rows represent normal references, and the dashed arrows represe

tethers. In this scenario,Monster local object needs a path in or-
der to attack the player. Since the path finding algorithm should not
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void arrived(Job &guest) {
guest.do_work(data);

}
i

When a travelling object is sent from the main thread and gets
pulled off the queue byssemblyLine’s thread, it is handed over



to Host by callingarrived(). Whenarrived() returns,AssemblyLine on Joline [11] and Ownership Generic Java (OGJ) [3]. In some
will send the travelling object back to the main thread. In addition places, features of 4 will be mixed in where they are needed
to being compatible witlHost::Guest, a travelling object’s class by the library.

must inherit from theTravellerBase library base class: Another point to clarify is the meaning @iwnership Owner-

ship types are traditionally presented in the context of a language
with garbage collection and so the main issue is accessibility. How-
ever, in the context of €, ownership can also refer to the respons-

class Job : public TravellerBase {
Tether<Monster> tether;

public: ibility of an object to manage the lifetime of the resources it owns.
Job(Monster &m, ...) : tether(create_tether(m)) { ... } This paper limits its discussion of ownership to issues of accessib-
void do_work(Data &); ility; static guarantees involving object lifetimes are not addressed.
void welcome_back() { This section first discusses the basics of ownership types and
if (tether) then describes how they can be used by each piece of the library.
tether—>found_path(...);
}_} 3.1 Background

Ownership types can be used to statically limit what references
are allowed between objects. Considering objects and their refer-
ences as a graph, ownership types allow the user to draw boundaries
around parts of the graph, limiting incoming references. What fol-
lows is a brief explanation of how this is accomplished. Although it
sounds like extra runtime state and checking is being added, none
of itis needed after type checking; the runtime behavior of the pro-
gram is not modified.

First, every object is given a uniqoavnership contexiAn own-
ership context can be thought of as a value of an opaque type. The
only purpose of an ownership context is to be part of the type of an
object. An object’s class is augmented to take, as a generic para-
meter, the ownership context of some other object, which becomes

Travelling objects can choose to have any number of tethers
to local objects using th&ether template class, parametrized
by the type of the pointeeTether follows the G+ smart pointer
idiom and guards access to the pointee throajgdtator—>(). For
AssemblyLine and Tether to cooperate in keeping the tether coher-
ent when it changes threads, constructiorTether is abstracted
by the create_tether() protected member function inherited from
TravellerBase. When a travelling object is accepted back into the
main threadwelcome_back() is called.Job can then safely use its
Tether after testing that thonster object it was pointing to has
not been destroyed.

Finally, usingJob in Monster is fairly simple:

class Monster { its owner. Because ownership contexts are values, this creates a
AssemblylLine<Host> &ai_thread; relation between objects, not types. Additionally, there is an om-
nipresent, disembodiedorld ownership context which is not as-

public: sociated with any object. Because an owner has to be constructed

before the objects it owns, ownership is acyclic. Furthermore, all
objects have exactly one owner, so the ownership relation forms a
tree rooted aivorld.

} For an object to hold or use a reference to another object, static
void found_path(...); type checking demands that the reference have a type. Ownership
) types limit aliasing by controlling what types can be constructed:

if a type cannot be named, the reference cannot be held. Because
ownership contexts have been embedded in types, controlling ali-
asing reduces to controlling what objects have access to what own-
ership contexts.

Ownership contexts are accessible in a few ways. As the base
case: every object can access its own ownership context using the
overloadecthis keyword; theworld ownership context can be ac-

essed usingrorld keyword; and an object can access its owner’s
ownership context using th@vner keyword. Next, ownership types
allow an arbitrary number of extra ownership contexts to be passed
%o an object, as type parameters, with the restriction that all para-
" meters are ancestors of thener in the ownership tree.

The following code snippet shows an example of these concepts
in the syntax of the Joline language [11]:

void think() {
if (... | want to attack ...)
ai_thread.send(new Job(xthis, ...));

The project did not needbob objects after they returned to the
main thread, so thassemblyLine takes the liberty of deleting them.
Altogether, the end-to-end order of function calls corresponding
to Figure 1 is:Monster::think(), Job::Job(), AssemblyLine::send(),
Host::arrived(), Job::do_work(), AssemblyLine::receive_returning(),
Job::welcome_back(), Monster::found_path(), Job::"Job().

Although message-based schemes are often viewed as mor
complex than shared-memory schemes when used for low level
parallel programming, as used in the videogame project for simple
task-level parallelism, we found the message-passing approach t
be a clear mental model of concurrent execution for the program
mer compared to shared memory with locking. Programming with
this model, we did not experience data races. This could be attrib-
uted to the smaller scale of the student project, or the fear of con-
currency imbued in the team by horror stories, but we believe the class Bar {}

library design was an important part. class Foo<P1 outside owner> {

. this:Bar owned_by_me;
3. Checklng Usage owner:Bar owned_by_my_owner;
owner:Foo<P1> same_type_as_me;

The library described in Section 2 helps programmers by providing . Foo<owner> can_access_my_siblings;

a simple mental model and set of tools for programming concur-

rency. This section describes how the type system could be enlisted

to help as well. What is described is a correspondence between Because every class musttake an owner parameter, Joline makes
ownership typing judgements and aliasing restrictions in the con- the owner parameter implicit. Other ownership parameters are de-
currency library. The code shown is what the ownership type sys- clared between angle brackets, like type parameters. Ownership
tem needs to see, not what needs to be written in the actal C parameters are bounded to detsideother parameters (meaning
code. A lightweight embedding in+@ is discussed in Section 4.  an ancestor in the ownership tree), withner as the most general

The syntax used to express the ownership typing concepts is basedound. When supplying the actual parameters to a class, the owner
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Figure 2. Examples of aliases allowed and not allowed by ownership types

is also distinguished from the other parameters by placing it before class Outside<Inside extends Object<O>> {
the type, separated by a colon. this:O:SomeType mine; // wrong: two owners
Figure 2 illustrates the effect of ownership typing on the object }
graph. Diagram 1 shows the use of onhis, owner, and world.
Nodes represent objects and are labelled with the object’s class.
Arrows represent references between objects and are labeled wit
the type of the reference. Thus, the arrow labelgstC indicates
that the object of class is owned by the object of clage
The second diagram shows how additional ownership paramet-
ers can allow objects to access the ownership contexts of ownersclass Outside<class Inside> {
hlgher up in the Ownershlp tree. For examme;an referenc® this:Inside mine; // OK: Inside not already instantiated
becauseE has access to the ownership contextdd owner, B.
The identifier in parenthesis is the name of the formal parameter.  yninstantiated class parameters will be used extensively by the
The third diagram shows references that are not allowed basedjiprary types in the next section.
on the ownership tree. Looking at the pattern of what references  Another extension, which is also part of OGdrianifest owner-

are and are not allowed, we can see one-way boundaries emergghip This allows a class to hard-code its owner by inheriting from
on the object graph (drawn by the dotted lines). Visualizing these 3 class instantiated with an owner:

boundaries can help in understanding ownership types. A more

and supplying two owners is obviously wrong. What is needed is to
ass an uninstantiated class that can be instantiated with arbitrary
wnership parameters. This would be analogous to the “template
template parameter” mechanisms irt@nd will be denoted in the
parameter list by using thetass keyword:

formal statement is that ownership types guarante@wreers-as-  class Foo extends world:Object { ... }
dominatorsproperty on the object graph: an owner is a dominator \yritten this way,Foo cannot be given an owner and will be the
on the path fronworld to all objects it transitively owns [2]. sibling of all Foos in the ownership tree.

This forms the core of ownership types. On top of this, there  The |ast extension is owner polymorphic methods, which are
are three additional extensions that need to be discussed. The f'rsbart of Joline. This feature is one of several extensions which offer
is the ability to parametrize a class by another class. OGJ allows “principled violations of the ownership type system” (e.g., as de-
type parameters and ownership parameters to be mixed compactlyscriped in [12]). Generally, such extensions are included to support

as follows: common constructs such as iterators [13]. An owner polymorphic

class Box<Node extends Object<NodeO>> { method lets the caller give the callee access to an ownership context
Node held_in_box; for the duration of the call:

}

class Person {
In this code,NodeO is the owner ofNode and can be used to <You inside world> void lend(You:Gold yours) {
instantiate new classes. However, a subtle result of OGJ's treat- ~ You:Gold local.ref = yours;
ment of ownership parameters and Java’s type erasure semantics . // mine = yours; (error)
for generics is thaNode represents a class that has already been his: Gold mine:
i iated with an owner. This means itis an error to try to give it this:Bold mine;
instantiate : // You:Gold stolen; (error)
a new type because:

class Outside<Inside extends Object<O>> {

oy ) This example shows hoWou is only available for the duration
this:Inside mine; // wrong

} of the call, so references to théou:Gold cannot live past the
call. This gives the concurrency library a tool to alle@mporary

really means (swapping the formal parameieide with the actual aliasing between two objects dynamically determined to be in the

parameteSomeType): same thread without the possibility that a reference will escape.
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The height of the ownership tree described in this sectionis at ; .. . o TetherUser<class PtrT> (
most three. This might suggest a lighter-weight type system, like g inside world> void access_granted(O:PtrT);
Universes [14], to achieve the same static guarantees. However, (1),
the extensions used are based on an ownership type system, and (2) , . .
using this library in combination with similar libraries, as described _ _Tether's main job is to guard access to the pointee. To do
in Section 5, involves nesting, which creates more complicated thiS, Tether requires that its users implement tMetherUser in-

ownership trees requiring the full owners-as-dominators guarantee.terface- Similar to the double virtual dispa}tch in the Visitor pat-
tern, access_granted() gets called byTether in response to call-

3.2 Typing ing request_access(). This approach does three things fouther:
first, it lets Tether dynamically guard access to the reference;
second, the owner polymorphic methaéekess_granted() allows
rether to prevent the given reference or any copies from outliving
access_granted(); and third, Tether knows the duration of the ref-
erence’s visibility and can thus prevent the travelling object from
getting sent to another thread somewhere in the call stack.

As shown in theTether pseudo-code, the library implementa-
tion ignores ownership types internallyether stores a plain ref-
erence to the object and callecess_granted() without any owner-
ship context. This is similar in spirit to how, for example, &+C
std::vector presents a typed container interface to its users, but
internally works withmalloc()s, void*S, andmemcpy()s. As with
world, this exemption should only exist for classes that are part of
Ghe library.

Lastly, client objects in the main thread need an owner. Without
world and starting in the non-membetain() function, however,
there is no way to create objects. Following the same pattern as
AssemblyLine and Traveller, MainThread allows the client to gen-

This section describes how the concurrency library can use own-
ership types as a tool to prevent data races, analogous to how
library can useconst or accessibility modifiers to prevent clients
from modifying returned references or accessing implementation
details. The facility that ownership types add is statically enforced
aliasing boundaries. By creating aliasing boundaries around thread
and travelling objects, the concurrency library can guarantee to the
library user:if you can hold a reference to an object, it is safe to
access it

The first step is to disallow client usagewadrid, which would
allow allows client code to make and reference objects that are not
local to any thread. The library types that are roots of the various
ownership subtrees can then use the manifest ownership featur
described in Section 3.1 to allow creation by library users without
mentioningworld. We can now revisit the parts of the ownership
library that were introduced in Section 2. First, we consider the
modified AssemblyLine:

class AssemblyLine<class GenericHost> extends world:Object { erically embed an object which will be owned by thtainThread
this:GenericHost host; object:
public:

class MainThread<class ClientMain> extends world:Object {

void send(Traveller<GenericHost::Guest>); this:ClientMain host — new this: ClientMain:

void receive_returning();
} public:

. . . . int main() { return host.main(); }
AssemblyLine takes an uninstantiateGenericHost parameter

and instantiates it withhis. Without theworld ownership context

available, all objects created st will necessarily be owned With the library types covered, we can now consider what
by the AssemblyLine. To guarantee that only travelling objects get Ownership types are needed for the user's code. Héwe needs
moved between threadgnd() only accepts th@raveller wrapper to modify its arrived() member function which gets called by
type, which is shown next: AssemblyLine to reflect that it can only reference the arrived travel-

ling object temporarily:
class Traveller<class TravObjT> extends world:Object {

this: TravObjT obj; class Host {
public: owner:Data data;
<O inside world> Traveller(O:TravObjT::InitArgs a) { public:
obj = new<O> this:TravObjT (this, a); typedef Job Guest;
<O inside world, class LocObjT> <O inside world> void arrived(O:Job guest) {
this: Tether<LocObjT> create_tether(O:LocObjT); ) guest.do_work<owner>(data);
}
}

Traveller uses the same technique AsemblyLine for owning
a generic object. HoweveTravObjT cannot be default constructed
like GenericHost, SO Traveller takes in generic initialization data
to pass toTravObjT’s constructor. Sincereate_tether() returns a

The data member is a local object, so it is owned by the
AssemblyLine. TO pass a reference to theb, Host needs to pass
owner as well. As the travelling objecipb requires the most modi-

Tether owned bythis, only travelling objects can create tethers. To fications:
prevent direct constructiofether has a private constructor: class JobArgs {
class Tether<class PtrT> { owner:Monster m;
// private constructor, only available to friend Traveller }
PtrT ptr;
public: class Job implements TetherUser<Monster> {
bool alive(); owner: Tether<Monster> tether;
void request_access(owner: TetherUser<PtrT> p) { .
if (... same thread ...) public:

p.access_granted(ptr); typedef JobArgs InitArgs;

else <O inside world> Job(Traveller t, O:JobArgs j) {
.. error tether = t.create_tether<O,Monster>(j.m);

Y }
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<O inside world> void do_work(O:Data d);

void welcome_back() {
tether.request_access(this);

}

<O inside world> void access_granted(O:Monster m) {
m.found_path(...);

First, to support initialization in the generigaveller, Job has to
specify what data it needs with thebArgs class andnitArgs asso-
ciated typeJob also receives its owningraveller as a constructor
parameter, which it uses to create a tetherwkficome_back(),
Job calls request_access(), passing itself to be the receiver of the
access_granted() call. Instead of creating dob directly, Monster
now makes &raveller:

class Monster {
AssemblyLine<Host> ai_thread;
public:
void think() {
if (... | want to attack ...)
ai_thread.send
(new Traveller<Job>(new owner:JobArgs(this)));

¥
void found_path(...);

Having theJob embedded in th&raveller preventsMonster from
holding any references to the travelling object when it leaves.

In summary, the library requires all user objects to be owned by
a library object. User objects that share the same owner are static-
ally guaranteed to be in the same thread. Additionally, objects that

Foo *this_owned_a;
Foo xowner_owned_b;

where portions of identifiers are used as cues. Another approach
is annotations in smart comments, which is the approach used by
Universes [14]:

/#x* this: % /Foo xa;
/#% owner: */Foo x*b;

However, the least intrusive interface to an analysis tool is a trivial
template wrapper, such as:

this_owned_ptr<Foo> a;
owner_owned_ptr<Foo> b;

The templates are defined as any other template, using the
standard syntax of C++. The type checker, however, can recognize
the templates as an explicit ownership annotation. In addition to
providing a solid handle for an analysis tool to work on, the wrap-
pers can naturally introduce or remove operations on the wrapped
type. The reason for using a technique that does not require lan-
guage changes is that we eventually want to handle a large class
of annotations and do not want to define our own set of dialects
with their own compiler infrastructure. This is the SELL (Semantic-
ally Enhance Library Language) approach which we support with
a simple tools infrastructure called “The Pivot” [16].

Considering in particular annotations needed for the concur-
rency library, the primary case is when using an owner polymorphic
method:

class Job {
<O inside world> void do_work(O:Data data) {
// use data reference

}

are temporarily in the same thread can be allowed to reference eacht

other in a controlled manner using owner polymorphic methods. A
key part of this approach is that ownership types are not modified

To annotatelata we can write the following:

to include concepts of thread, local, travelling, and tethers. Rather, class Job {
these concepts are in the library, which then uses ownership types void do_work(caller_owned_ptr<Data> data) {

as a tool for library design.

4. Embedding Ownership

Section 3 demonstrates how the primitives provided by the concur-
rency library of Section 2 could be checked if everything is written
in an idealized language with ownership types. What is needed is

a translation to this checkable form from Standard .GNVe do not

have such a translation implemented, however we outline what we

// use data smart pointer
}
I8
Here, the presence of tleller_owned_ptr template wrapper indic-
ates to the translation to both declare an owner polymorphic para-
meter and bind it taata.
Aside from annotating references with ownership, some of

the constructs of the library had to be changed to accommodate
ownership types. In particular: global variables and non-member

believe is a promising approach to a minimal embedding in the lan- ¢,nctions need to be wrapped into a global object owned by

guage.

a MainThread; Tethers are “dereferenced” indirectly through a

The first problem to address is how to attach ownership 10 g4 ,ple dispatch instead of using the more natural arrow oper-

references. In the simplest case, no annotation is needed at all

ator; and inheriting fromTravellerBase is changed to embedding

First, references to the library types that use manifest ownershipj, y,veller. For these special cases, a translation from ghould

(AssemblyLine, Traveller, andMainThread) do not need any own-
ership parameters. Next, when an owner is neeéleger may be

be able to make simple patterned substitutions. For example, con-
sider the following:

used as a default. Defaulting has already been applied to Owner-
ship Generic Java [15] to allow Generic Java programs to compile A *global = new A;
unmodified. For users of the concurrency library, code that does not void foo(A xa) {}

deal with travelling objects will only refer to objects owned by the
same thread. Thus, depending on how much code deals with con-
currency, havingwner be the default can eliminate much of the

need for annotations.

int main() { foo(global); }

For type checking purposes, these globals can be collected into a
singleProcess class that gets embeddedNtainThread:

When the default does not work, the programmer needs 10 class Process {
make an annotation. There are many ways a programmer could A xglobal = new A;
make explicit the intent that a pointer or reference should represent void foo(A *a) {}
ownership. The goal is to allow programmers and tools to verify public:

that the ownership rules are obeyed. The most primitive approach

is to use a special class of names for variables such as:

68

int main() { foo(global); }



We can see that these semantics are analogous to that of a

" M'Z?n'?(gre{ad<pmcess> mt; traditional lock which protects the object getting pulled. However,
return mt.main(); without any additional work on the part of the user, the runtime

system can make optimizations over plain locks. First, by keeping
track of the tethers to an object, the runtime can tell which threads
can possibly request a lock at the same time. With this knowledge,
the runtime can use cheaper locks when, for example, it knows that
all contending threads are assigned to the same physical processor.
Conversely, in a non-uniform memory architecture, the runtime
system could look at the tethers that exist between objects and place

With the defaultowner applied, the code can type check. A
more involved example is converting uses of the arrow operator in
Tether to double dispatch. Here, the translation involves hoisting
the member function call, the arguments, and the return value into
an automatically generat@@therUser. For example:

class Job { threads which have many tethers between them “closer” together,
Tether<Monster> tether; with respect to the machine topology.
public: Another variation is to treat a tether as a homing device for the

void welcome_back() {
if (tether)
tether—>found_path(...);

object to which it points. Instead of pulling a distant object close,
tether could be augmented to provide a “take me to this object”

} operation which allows a travelling object to go to the thread that
¥ owns the pointee:
can be automatically translated into: class UpdateCourier {
. Update update;
class AutoUser : public TetherUser<Monster> { public:
void update_data(HomingTether<Data> d) {
public: d.go_to_thread(xthis);
AutoUser(...);
void access_granted(caller_owned<Monster> m) { void arrived_at_thread(Data &d) {
m.found_path(...); d.apply(update);
b L
class Job { Inthi | |thread updates d hatare local
Tether<Monster> tether: nthis example, a control thread updates data structure that are loca
public: to different processing threads by sending courier objects to the
void welcome_back() { threads with the update. Courier objects are giMemingTethers
if (tether) to indicate which data set needs to receive the update. Finally,
tether.request_access(AutoVisitor(...)); arrived_at_thread() is called byHomingTether when the transfer
y } is complete.

With these and related transformations, the syntactic burden 5.2 Variations on Libraries

over normal use of the library can be reduced while internally In this section we identify the design and typing of the concur-

generating the fully ownership-annotated source for checking. rency library as an instance of a more general pattern of library
design. The pattern is defined by: (1) providing library primitives
5. Discussion whose semantics imply aliasing boundaries, and (2) providing the

The opresentation so far has been concerned with describing ourtS€" of the library semantically-modified pointers to refer across
P . . : ) . ) 9 OUltjese boundaries. We now consider two other examples, how their
experience with a single library on a single project. This section

branches out to consider a wider range of features and a IicationsprimitiveS imply aliasing boundaries, and how users can refer to
. . 9 PP objects across these boundaries.
of this kernel experience.

5.1 \Variations on Tethers 5.2.1 Memory Protection

Fine grained memory protection has been used for security, fault
isolation, and efficient IPC since early capability-based architec-
ures [17] and continues to be researched. Recent work includes

ondriaan Memory Protection (MMP) which has been applied to
the Linux kernel [18]. The idea is to associgi®tection domains
with allocated memory regions and threads. Threads are then pre-
vented from accessing memory outside their current protection do-
main. This approach helps find errors that might have gone undetec-
ted and catches errant program behavior closer to the source.

A straightforward API for a memory protection library would
provide functions for: allocating and deallocating opaque protec-
tion domain handles; adding and removing memory regions to and
class Worker { o ) from domains; and changing the domain of the currently executing

PullTether<RenderPipeline> rpipe; thread. These API calls could be abstracted by an object-oriented
void re”de“dzta(“';) { deri library in the same manner that the concurrency library in Section 2
% z;ZZir:‘iveazgmc;uz:i;:_'?g abstracted low level locking and thread operations. The aliasing

PulledObject<RenderPipeline> po = rpipe.pull(); boundaries in this case would align with protection domains and
po—>render(...); a library pointer type would be provided to point to objects in other
protection domains. The library could then either offer travelling

1 mechanisms similar to the concurrency library or simply provide

The Tether construct presented in this paper was motivated by

the specific needs of a project, but other variations on the same
approach make sense for different situations. The essential idea
are: (1) regardless of aliasing boundaries, objects need to be abl
to point to objects in other threads, and (2) these pointers can
have different operations in place of the standard “dereference”.
We present two further examples here.

An opposite approach to callingssemblyLine::send() is for a
local object to use &ether to “pull” a travelling object into the
same thread. The pull operation waits until the target object is not
in use in its current thread and transfers it to the caller’s thread.
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a dereference operation. In addition to allowing a flat partitioning sider a modern web browser. Concurrency boundaries can be asso-
of memory, systems like MMP allow a region of memory to be in ciated with different browsing windows, security boundaries with
more than one protection domain. This lets the user create a nestinghe scripting interpreters, memory protection boundaries with less-
structure of permissions which directly corresponds to the owners- than-stable modules, and resource accounting boundaries where

as-dominators property enforced by ownership types. leaks are difficult to avoid. This implies a heterogeneous nesting
) of boundaries which we have not considered thus far. For the same
5.2.2 Resource Accounting reason it is necessary to cross homogeneous boundaries, it will be

A good operating system will release all resources requested by anecessary to compose each library’s semantically-modified point-
process when the process exits. This requires the system to record's 0 cross myltlple heterogeneous boundaries. T_hls ventures far
which resources have been allocated by the process. Thus, a simpl&0m the experience and example focused on by this paper but we
way to do “garbage collection”, not only for memory but all OS feel it points to an exciting use of ownership types as a tool for
resources, is to fork child processes to handle work items and thenfuture library design.

exit, automatically freeing the resources used to process the work

item. This approach has several performance disadvantages an®§g. Related Work

consequently developers usually need to use multiple threads an
careful resource management instead.

The utility of a process, with respect to resource management,
is that it provides a single collection point for resources. To achieve
the same effect at a finer granularity, we can introduce “resource
domains”. Each resource domain owns a set of objects and keep
track of all allocation requests made by objects it owns. One chal-
lenge for the library is to keep track of the current resource domain
as execution passes between objects owned by different resourc
domains. By aligning aliasing boundaries with resource domains,
the library user would be required to use a library mechanism when
pointing to objects in other resource domains. By controlling access
to objects in other resource domains, the library can keep track of

dSince the widespread recognition of the problems of aliasing in
object-oriented programming, and the need for local reasoning,
more than a decade ago [1], many type systems have emerged to
address the problems. The approaches vary from completely out-
éawing aliasing using variants of linear types [20, 21], to cutting the
object graph into fully encapsulated partitions [22,23], to enforcing
an owners-as-dominators property on the object graph using own-
éarship types [2], to even more flexible and/or less intrusive type
Systems with less guarantees [24-26]. Of these approaches, owner-
ship types have emerged as a promising compromise and many dif-
ferent aspects of the type system have been researched [3, 27, 28].
Boyapatiet al. have used and extended ownership types to guar-
antee the absence of data races and deadlocks [4], statically safe

changes: region-based memory management [5], and safe lazy upgrades to
class EnemyAl : ResourceDomainVisitor<EnemyGraphics> { persistent object stores [6].
CrossDomainPtr<EnemyGraphics> ptr; The work most similar to ours is SafeJava [4], which also uses
public: ownership types. More recent work to statically ensure the ab-
void think() { _ sence of data-races has been done by Jaeblas. using auto-
if (... decide to hold a fireball ...) matically verified annotations in the Spec# compiler [29, 30]. The

ptr.access. resource.domain(:this); main difference between our approach and these two is the basis

\];oid in_resource_domain(EnemyGraphics &g) { for concurrency: in our model, nothing is shared and objects travel
// allocate Fireball in graphics resource domain between threads; in the other two, there are shared objects which
g.shoot(new Fireball); are owned byworld and synchronized with locks. SafeJava does

allow unique types to be passed between threads via a synchron-
¥ ized global shared variable, but this places aliasing constraints on

the unique object which would not allow constructs like tethers.
Another difference is how the data-race freedom guarantees are
made. These approaches use concurrency constructs built into the
language and build concurrency guarantees into the type system.
In the approach we outline, the library both provides the concur-
rency primitives and uses a generic ownership type system to make
guarantees about use of the library.

In this example, the Al component of an enemy creates a
Fireball for the graphics component to show. The two objects are
in different resource domains, so tEaemyAl needs to use the
library-supplied pointer typ&rossDomainPtr. To access the ob-
ject, the same double virtual dispatch technique useTellyer in
Section 3 is used. This allows the library to change domains for the
duration ofin_resource_domain() S0 thatFireball is allocated in the
graphics resource domain. .

Hierarchical resource management is normally done+n @- 7. Conclusion and Future Work
ing constructors and destructors following the Resource Acquisi- |n this paper we presented a simple library for concurrency, suc-
tion Is Initialization idiom [19]. On the opposite end of the resource  cessfully used in a large student project, and demonstrated how
management spectrum, garbage collection fries to hide when re-ownership types could be used to statically check that client code
sources are released and does not associate an owner. The approaghspect the aliasing boundaries imposed by the library. To provide
presented in this section is therefore somewnhere in between: re-fiexible support for objects travelling between threads while carry-
sources have owners and deterministic bounds on their allocation,ing aliases to thread local objects, we combine owner polymorphic
but these bounds are more like catch-alls than proper manual re-methods with dynamic checks performed by the library to guaran-
source management. Thus, allocation domains can be seen as ge the absence of data races. Finally, we present an approach to
fine-grained way to handle leaks or a way to recover resources emped the necessary ownership annotations+inad to use an
when an error has left a portion of the system in an undefined state.extended type checker to enforce the rules on top of the language.

We also found the strategy used to support the concurrency lib-
5.2.3 Summary rary was also found to apply to a family of related libraries includ-
In the examples above, the library provides primitives that organ- ing memory protection and resource accounting. One direction for
ize objects in the program hierarchically. To fully utilize this lib-  future work is to examine existing programs that exhibit task-level
rary design, however, several libraries need to be able to coexist inparallelism, like the videogame example in this paper. By looking at
the same ownership tree in the same program. For example, con-more and larger programs, we can further develop both the concur-
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rency model and typing approach introduced here to address more[15]
usage scenarios.
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Abstract

The Universe type system is an ownership type system for object-
oriented languages that enforces the owner-as-modifier discipline.
One strength of the Universe type system is its low annotation over-
head. Still, annotating existing software is a considerable effort.

In this paper, we describe how we can analyze the execution of
programs and infer ownership modifiers from the execution. These
modifiers help to understand the organization of a system and can
also be re-inserted into the original source code. This allows a
programmer to enforce the maintenance of a specific ownership
structure. We implemented runtime Universe type inference as a
C program that traces the JVM execution, a Java application that
infers the Universe annotations, and a set of Eclipse plug-ins that
integrates the interaction with the other tools.

1. Introduction

The Universe type system [13] is an ownership type system for
object-oriented languages that enforces the owner-as-modifier dis-
cipline. The type checker and runtime support for Universe Types
are implemented in the JML tool suite [21].

At runtime, the owner of an object is either another object in
the store or the special root object. Objects that share the same
owner are grouped into a context; objects that have the root object
as owner are in the root context. Ownership builds a tree rooted at
the root object.

The owner-as-modifier discipline ensures that the owner of an
object controls all modifications of an owned object, that is, only
references to objects in the same context and to owned objects
can be used for modifications. This discipline enables the modular
verification of invariants [27]].

Statically, the Universe type system uses three different owner-
ship modifiers to build this ownership structure. The modifier peer
expresses that the current object this is in the same context as the
referenced object, the modifier rep expresses that the current ob-
jectis the owner of the referenced object, and the modifier any does
not give any static information about the relationship of the two ob-
jects. References with an any modifier convey less information as
references with a peer or rep modifier with the same class and are
therefore supertypes of the two more specific types.

The owner-as-modifier discipline is enforced by forbidding field
updates and non-pure method calls through any references. An
any reference can still be used for field accesses and to call pure
methods. The method modifier pure is used to mark methods that
leave objects in the pre-state of a method call unchanged.

A distinguishing characteristic of the Universe type system is
its low annotation overhead compared to other ownership type sys-
tems. The annotation effort is further reduced by default modi-
fiers. Reference types by default have the peer ownership modifier;
only exceptions and immutable types default to any. These defaults
make the conversion from Java to Universe Types simple, as all
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programs that do not directly modify caught exceptions continue
to compile. However, these defaults only provide a flat ownership
structure.

Standard techniques for static type inference [10] are not ap-
plicable. First, we do not have to check the existence of a correct
typing. Such a typing trivially exists by making all ownership mod-
ifiers peer, that is, by having a flat ownership structure. Second,
there is no notion of a best or most precise Universe typing. Usu-
ally, there are many possible typings, and it depends on the intent
of the programmer which one to prefer.

In this paper, we describe how ownership modifiers for deep
ownership structures can be found by runtime inference, that is,
by observing the execution of a program. This approach does not
require that the source code of the program is available. By using
the dominator algorithm we ensure that the result is the deepest
possible ownership structure that conforms to the Universe type
rules. A deep ownership structure maximizes encapsulation and
facilitates program verification. Nevertheless, it might not be what
the programmer intended. The solution of our program therefore
still needs to be reviewed by the programmer to ensure that it
corresponds to the intended design.

Runtime inference depends on good code coverage to produce
meaningful results. To achieve better coverage we use multiple
program traces to infer the ownership modifiers. We also combine
the results of runtime inference with our static inference tools
[291116] to ensure that the final solution gives valid Universe Types
for the complete program.

1.1 Related Work

Wren’s work on inferring ownership [32] provided a theoretical
basis for our work. It developed the idea of the Extended Object
Graph and how to use the dominator as a first approximation of
ownership. It builds on ownership types [8} 13, [7, 9] which uses
parametric ownership and enforces the owner-as-dominator prop-
erty. The number of ownership parameters for parametric type sys-
tems is not fixed and is usually determined by the programmer, as is
the number of type parameters for a class. Trying to automatically
infer a good number of ownership parameters makes their system
complex. No implementation is provided.

Daikon [14]] is a tool to detect likely program invariants from
program traces. Invariants are only enforced at the beginning and
end of methods and therefore also snapshots are only taken at these
spots. From these snapshots we cannot infer which references were
used for reading and which were used for writing. Therefore we
could not directly use Daikon, but our tool has a similar architec-
ture. In the future we hope to apply optimizations from Daikon to
our tool.

SafeJava [7]] provides intra-procedural type inference and de-
fault types to reduce the annotation overhead. Agarwal and Stoller
[[L] describe a run-time technique that infers even more annotations.
AliasJava [4] uses a constraint system to infer alias annotations.
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Another static analysis for ownership types resulted in a large num-
ber of ownership parameters [19]. In contrast, by using runtime in-
formation we achieve a deep ownership structure and the simplicity
of Universe Types makes the mapping to static annotations possi-
ble.

Rayside et al. [30] present a dynamic analysis that infers owner-
ship and sharing, but does not map the result back to an ownership
type system. Mitchell [26] analyzes the runtime structure of Java
programs and characterizes them by their ownership patterns. The
tool can work with heaps with 29 million objects and creates suc-
cinct graphs. The tool does not distinguish between read and write
references and the results are not mapped to an ownership type sys-
tem.

Work on the dynamic inference of abstract types [18]] uses the
flow of values in a program execution to infer abstract types. Yan et
al. [33] use state machines to map implementation events to archi-
tecture events and thereby deduce architectures. Both approaches
do not seem to be applicable to infer ownership information.

1.2 Running Example

We use the classes in Fig. [T]to illustrate how the algorithm works.
This is a very simple and artificial example to illustrate all aspects
of the algorithm. The main class is Demo; the Java entry-point main
creates an instance of class Demo and calls method testA on that
instance. The argument is a boolean that depends on the number
of command line arguments. Method testA creates an A instance.
Class A stores the boolean flag and creates an instance of class B.
Class B creates a C instance and a java.lang.0Object instance.
Finally, class C stores a reference to the A object it receives and
depending on the value of the mod field calls the of £ method on the
A instance. The execution of the main method in class Demo results
in the objects depicted in Fig. 2]

Outline. Sec. 2] describes the algorithm to infer ownership mod-
ifiers from runtime information, Sec. [3] gives implementation de-
tails, and Sec. [d] describes the Eclipse plug-ins. Finally, Sec. [5]dis-
cusses future work and concludes.

2. Runtime Universe Type Inference

The inference of Universe Types from program executions is per-
formed in the following five steps:

1. Build the representation of the object store

2. Build the dominator tree

3. Resolve conflicts with the Universe type system
4. Harmonize different instantiations of a class

5. Output Universe Types

We describe these steps in the following subsections. We discuss
static methods at the end of this section.

2.1 Build the Representation of the Object Store

From a program execution we get a sequence of modifications of
the object store. Instead of looking at only single snapshots of
the store (as in [26]), we build a cumulative representation of the
object store. This so-called Extended Object Graph (EOG) [32]
represents all objects that ever existed in the store, all references
between these objects that were ever observed, and, in particular,
which objects modified which other objects. The information about
modifications is particularly important since Universe Types do not
restrict references in general (unlike other ownership type systems),
but the modification of objects.

For each object in the EOG, we record information about its
fields as well as the parameters and results of its methods. We use
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public class Demo {
public static void main( String[] args) {
new Demo() .testA(args.length > 0);
}

public void testA(boolean b) {
new A(b);
}

class A {
boolean mod;
B b;

A(boolean m) {

mod = m;

b = new B(this);
}

void off() {
mod = false;

}

class B {
Cc;
Object o;

B(A a) {
c = new C(a);
o = new Object();

class C {
A a;

C(A na) {
a = na;
if( a.mod ) {
a.off();
}

Figure 1: Running example to illustrate our inference algorithm.

this information to infer ownership modifiers for these variables.
Local variables are treated in a subsequent step as we describe in
Sec.

We distinguish between two types of references in the EOG:
write references and naming references. Write references are used
to update a field or call a non-pure method on an object; these ref-
erences mainly determine the ownership structure of an applica-
tion. In addition we store references that were only used for read-
ing fields and calling pure methods. These naming references are
needed to map the resulting EOG back to the source code.

For example, a call . foo (y) introduces two edges in the EOG.
A write references from the current receiver object this to = rep-
resents that this modifies x by calling the non-pure method foo.
This reference will later influence the ownership relation between
this and x. A naming reference from z to y represents that a
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Figure 2: The store at the end of method main in class Demo.
Objects are depicted by rectangles and are labeled with an identifier
and the class name. References are depicted by arrows.

method of x takes y as parameter. This naming reference is labeled
with the name of the formal parameter and will later be used to
infer the ownership modifier of the parameter.

To determine whether a method call constitutes a modification,
we need purity information. We require that the purity of methods
is provided as input to our tool. There are algorithms [31] to infer
method purity and we also implemented a tool [17]] to help with
this task.

In our running example (Fig. [T), class A contains the statement
b = new B(this). On the bytecode level, this corresponds to two
steps, first the creation of a new object and then the update of the
field b of the current object. For an object creation, we insert a
write edge from the current receiver object to the newly created
object. In Fig. [2] this corresponds to the edge from object 2 to
object 3. This write edge ensures that the ownership modifier for
the object creation is either peer or rep, which is a requirement
of the Universe type system. For a field update, we store a write
reference from the current object to the receiver of the field update
and a naming reference from the receiver of the field update to the
object on the right-hand side. The naming reference is labeled with
the field name. All naming references for a field can later be used
to infer the correct ownership modifier for that field.

Arrays in the Universe type system use two ownership modi-
fiers, one for the relation between this and the array object, and
one for the relation between the array object and the objects stored
in the array. For arrays, we added a special kind of naming refer-
ence that stores the relationship between the array object and the
objects that are stored in the array. These references can then be
used to determine the second ownership modifier.

2.2 Build the Dominator Tree

Universe Types require that all modifications of an object are initi-
ated by its owner. For the EOG, this means that all chains of write
references from the root object to an object x must go through x’s
owner. Therefore, we can identify suitable candidates for the owner
of « by computing the dominators of z. The concept of dominators
is well-known in the compiler field [2]], and efficient algorithms
have been developed [22].

Universe Types do not restrict references that are merely used
for reading. Therefore, the naming references in the EOG do not
carry information that helps us to determine ownership relations
between objects. Consequently, we ignore them when we build
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the dominator graph. They are later used to find the correct static
ownership modifiers.

The result of finding the dominators for the graph from Fig.
is shown in Fig. 3a] Domination is depicted by rounded rectangles.
A direct dominator sits atop the rounded rectangle that groups the
objects it dominates. It is a candidate for becoming the owner of
this group of objects.

2.3 Resolve Conflicts with the Universe Type System

Domination is a good approximation of ownership, but it cannot
be directly used to infer Universe Types. The Universe type system
only allows write references within a context and from an owner
to an owned object. On the other hand, a dominator graph can have
references from an object to an object in an enclosing context. Such
write references are not permitted in the Universe type system. If
such references are found in the EOG, the involved objects are
raised to a common level until no more conflicts are present.

This problem is illustrated by the code in Fig. [1} If we observe
an execution of the constructor of class C when a.mod is false
then the off method is not called on the a reference. In this case,
the reference from object 4 to object 2 is used in a read-only
manner, that is, the EOG contains a naming reference between
object 4 and object 2. Under this assumption, the dominator graph
in Fig. [3a]is a valid ownership structure in Universe Types. The
reference between object 4 and object 2 is stored in field a of class
C. This field will be annotated with an any ownership modifier.

However, if a.mod is true, the non-pure method off is called
on a. This results in a write reference from object 4 to object 2. In
this case, the dominator graph does not represent a valid ownership
structure because there is a write reference to an object in an
enclosing context. This write reference can neither be typed with
a rep nor with a peer modifier and is, therefore, not admissible in
Universe Types. To solve this problem, we flatten the ownership
structure to make the write reference from object 4 to object 2
admissible. This is done by raising the origin of the write reference
(object 4) to the context that contains the destination of the write
reference (object 2). This makes the two objects peers, and the
write reference between them is admissible as it can be typed with
modifier peer.

However, raising object 4, creates a conflict for the write refer-
ence from object 3 to object 4 since now object 4 is neither owned
by nor a peer of object 3. Therefore, we apply the same solution
again; this time, object 3 is raised to be in the same context as ob-
ject 4. The resulting dominator graph is depicted in Fig. [3p] In this
graph, all write references are from a direct dominator to an object
it dominates or between objects with the same direct dominator.
Therefore, this graph represents a valid ownership structure that
can be expressed in Universe Types.

Our example shows that conflict resolution has to be applied
repeatedly because resolving one conflict can cause others. Never-
theless, conflict resolution can be implemented efficiently without
visiting the same write reference twice. To achieve that, we use a
list of conflicting write references and process the list in a top-down
way, that is, objects higher-up in the dominator graph are processed
first. Moreover, we resolve conflicts that cross a large number of
context boundaries before conflicts that cross fewer contexts. For
details see [24].

2.4 Harmonize Different Instantiations of a Class

After conflict resolution, the EOG is consistent with the owner-as-
modifier discipline. However, it might not be possible to statically
type the EOG because different instances of a class might be in
different ownership relations. To enforce uniformity of all instances
of a class, we traverse all instances of each class and compare the
ownership properties of each variable (field or parameter). This step
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Figure 3: Contexts are depicted by rounded rectangles. Owner objects sit atop the context of objects they own.

has to take into account both write and naming references in the
EOG.

If for any given variable the ownership relations are the same
(for instance, they all point to peer objects), the variable can be
typed statically. If they differ, we apply a resolution that is similar
to the conflict resolution described in the previous subsection. If
at least one instance of a variable is the origin of a peer reference
and the other instances of this variable are rep references, we raise
the targets of the rep references to make them peers and type the
variable with modifier peer. If at least one instance of a variable is
the origin of a reference that is neither a peer nor a rep reference,
the variable is typed with modifier any. In this case, downcasts are
needed at the point where this variable is used for field updates and
calls to non-pure methods.

For example, imagine that method testA in class Demo is once
called with false and once with true as the argument. Then we
have two instances of class A, once with a deep ownership structure
as in Fig.[3aland once with a flat structure as in Fig.[3b] The annota-
tion for field b in class A is once rep and once peer. The algorithm
then decides to use peer as annotation for field b and raises the
non-conforming instance to a higher level. Because we raise an ob-
ject together with all peers that reference it or are referenced by it,
this step cannot create new conflicts in the ownership graph.

2.5 OQOutput Universe Types

After the first four steps of the algorithm, we have determined
ownership modifiers for field declarations, method parameters and
results, and allocation expressions. The last step is to output these
ownership modifiers and insert them into the source code, if it is
available.

Local variables are not inferred from the EOG because that
would require monitoring every assignment of a local variable,
which would slow down the inference. As an implementation prob-
lem, Java JVMTI does not support monitoring of local variable as-
signments, and we deemed a solution using bytecode instrumenta-
tion too heavy-weight.

Inferring ownership modifiers for locals is very similar to Java’s
bytecode verification [23]]. Both infer the types of local variables
based on the types of fields and method signatures. Like bytecode
verification, we symbolically execute the bytecode of a method
body to obtain the ownership modifiers of local variables. This step
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might introduce downcasts when any references are used to modify
objects. These casts are not guaranteed to succeed at runtime.
Therefore, they should be reviewed by the programmer.

Fig. @] shows the result of our inference for the example source
code from Fig. [T} The ownership modifiers are inferred after pro-
cessing program executions with and without command-line argu-
ments. This source code complies to the Universe type system. By
inserting the ownership modifiers into the source code, we ensure
that future revisions of this code will maintain the ownership struc-
ture.

2.6 Static Methods

In Universe Types, static methods are either executed in the context
in which the caller is executed or in the context owned by this. In
the former case, the target type of the call to the static method has
a peer modifier; in the latter case, it has a rep modifier. any is not
permitted.

When we monitor the execution of a program, no object exists
that corresponds to the target of the static call. In the EOG, we
create an artificial target object as the receiver of a static method
call. The relationship between the current object and the artificial
object determines the ownership modifier for the static call. To
enforce that the target of a static call does not have the any modifier,
we always treat static method calls as non-pure. This creates a write
reference in the graph and ensures that a peer or rep modifier is
inferred.

Our treatment of static methods is illustrated by the example in
Fig. ] Consider the call z.foo(y). The execution of foo affects
three objects in the EOG: the receiver x, the parameter y, and an
artificial target object for the call to process, say z. We add a write
edge from z to z because x calls the static method. We also add
a write reference from z to y because process calls a non-pure
method on y. Since Universe Types do not allow rep modifiers
in static methods, the latter write reference forces the parameter p
of process to have a peer modifier. The modifier of the target
type of the call to process is determined by the relation between
the current receiver x and parameter y. Since process expects a
peer parameter, y and the artificial target object z must have the
same owner. Therefore, if © owns y, then x also owns z, and the
annotated call will be rep S.process(q). If x and y are peers,
the call will be peer S.process(q). In all other cases, step 2 of



public class Demo {

public static void main(any any String[] args) {

new peer Demo().testA(args.length > 0);
}

public void testA(boolean b) {
new rep A(b);
}
}

class A {
boolean mod;
peer B b;

A(boolean m) {

mod = m;

b = new peer B(this);
}

void off() {
mod = false;

}

class B {
peer C c;
rep Object o;

B(A a) {
c = new peer C(a);
o = new rep Object();

}

class C {
peer A a;

C(peer A na) {
a = na;
if( a.mod ) {
a.off();
}

Figure 4: Running example with inferred ownership modifiers.

the inference will automatically adapt the relation between = and y
and, thereby, the relation between x and z.

3. Implementation

Fig. [6] shows the architecture of the implementation. The tool is
split into two parts: Sec. describes the tracing agent, which
monitors the execution of Java programs. Sec. [3.2] describes the
inference tool, which determines the ownership modifiers.

3.1 Tracing Agent

We monitor a Java Virtual Machine (JVM) execution with a Java
Virtual Machine Tooling Interface (JVMTI) agent written in C.
JVMTI is the low-level interface provided by the Java Platform
Debugger Architecture (JPDA) [20].
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class S {
static T process(T p) {
p.nonpurelperation() ;

return p;
}
T foo(T q) {

return S.process(q);
}

Figure 5: Example for static methods.

The agent receives events from the virtual machine and pro-
duces a trace file that documents the execution of the program. The
trace file is in a simple XML format. Storing the execution of a
program in a trace file gives the following advantages: (1) Multiple
trace files can be generated to achieve good code coverage. In our
example, one should trace the execution of class Demo once without
any command-line arguments and once with an argument. (2) In-
teractive or long-running programs need to be traced only once for
each desired code path. This trace file can then be reused later with-
out requiring human interaction or recomputing results.

On the other hand, storing the trace files on disc and then parsing
them again in the next phase sometimes leads to a performance
overhead. In the beginning of this project, we investigated the Java
Debug Interface (JDI) as high-level alternative to the low-level
JVMTI. The JDI versions up to Java 5 did not provide enough
information to allow our Universe inference, especially the value
returned by a method was not accessible. In Java 6 the JDI API was
enhanced and we investigate adding JDI support as an alternative
source of program traces.

JVMTI does not provide the necessary events for array compo-
nent updates. Therefore we used instrumentation of the Java byte-
code to create artificial events for array updates.

3.2 Inference Tool

The main inference tool is an independent Java 5 application that
performs the steps outlined in Sec. 2] It reads (multiple) trace files
generated by the tracing agent and builds one Extended Object
Graph from the available information. Then the dominators are de-
termined, conflicts are resolved, multiple instances are harmonized,
and the output is written to an XML file. The different steps of the
algorithm are implemented as visitors that manipulate the EOG.

The application is configured by a simple XML file that deter-
mines what input and output files to use and which visitors and
observers to use. This extensible architecture allows us to support
a command line interface and the Eclipse plug-ins described in
Sec.[d] and will also allow us to add JDI as an alternative input.

The output of our inference tool is an annotation XML file that
contains the ownership modifiers for the encountered types. For this
annotation XML file, we defined an XML schema that can provide
ownership modifiers for the different types. If the source code of
the traced program is available then the annotations can be inserted
into the source code using a separate annotation tool we developed.
Producing the output in XML will allow us to support several
annotation tools, for instance, for the existing Universe syntax and
for JSR 308-style annotations.

To build the correct EOG, we need to know which methods are
pure. We use a separate annotation XML file as additional input to
the inference tool to provide this purity information. This XML
file has the same schema as the output file, which allows us to
use the annotation editor, visualizer, and insertion tool to create
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Figure 6: Architecture of the runtime inference tools. White boxes depict components of the inference tool. Boxes in light gray depict files
and data structures that are part of the inference tool, and boxes in dark gray depict external components and files.

the input. To ease the creation of this purity information, we also
implemented a purity inference tool [311 [17].

The XML file in Fig. [7] shows the result of applying the infer-
ence algorithm (without inference of local variables) to our running
example (see Fig. [ for the annotated source code). The Java struc-
ture is modeled in the XML structure, and the modifier attribute is
used to provide the ownership modifier for the corresponding type
or the purity for a method.

4. Eclipse Integration

To ease the usage of the command-line tools, we created a set of
Eclipse 3.2 [15] plug-ins that integrate the runtime inference into
the standard Java development environment.

4.1 Tracing

Eclipse allows one to execute Java programs directly from the IDE
using “Run As” configurations. The programmer can use these con-
figurations to set, for example, command-line arguments and the
JVM to use. We added a new “Run As” configuration that allows
one to trace program executions. The only additional information
the user has to provide is the name of the trace file. The plug-in
takes care of configuring the Java tracing agent correctly.

We provide the complete configuration information on a sepa-
rate tab. This information can be copied into a script and allows the
user to configure the tracing agent within Eclipse, but then use the
command-line tool directly.

4.2 Inference

Once the program was traced, the Universe Types can be inferred
with a separate plug-in. Similarly to the “Run As” dialog, we
provide the possibility to manage different configurations. The
main configuration tab (shown in Fig. allows one to easily
configure the trace files, purity information, and output file that
should be used. Again, we provide a tab that allows one to use the
configuration from the command line.
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<?xml version="1.0" encoding="UTF-8"?>
<ann:annotations
xmlns:ann="http://sct.inf.ethz.ch/annotations">
<ann:head>
<target>java</target>
<style>types</style>
</ann:head>
<ann:class name="4">
<ann:field modifier="rep" type="B" name="b"/>
</ann:class>
<ann:class name="B">
<ann:field modifier="rep" type="C" name="c"/>
<ann:field modifier="rep" type="java.lang.Object"”
name="0"/>
<ann:method name="B" signature="A" modifier="">
<ann:parameter index="0" modifier="any" type="A"
name="param0"/>
</ann:method>
</ann:class>
<ann:class name="C">
<ann:field modifier="any" type="A" name="a"/>
<ann:method name="C" signature="A" modifier="">
<ann:parameter index="0" modifier="any" type="4"
name="param0"/>
</ann:method>
</ann:class>
<ann:class name="Demo"/>
</ann:annotations>

Figure 7: XML output of the inference tool.

4.3 Annotation Management

The result of the runtime inference is an XML file that contains the
inferred ownership modifiers. This XML file can be either edited
with the standard XML editor or with a special annotation editor.
The annotation editor (shown in Fig. 0) allows one to edit the
ownership information, for instance, by providing drop-down lists
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Figure 8: Screen shot of the configuration dialog for the type inference. The user can set the tool options, for instance, which trace files to

use and what output file to generate.

of possible ownership modifiers. If the source code of the program
is available, we can automatically insert the ownership modifiers
from the XML file into the source.

4.4 Visualizer

The flexible observer architecture that we chose for the inference
tool allowed us to add a graphical visualizer to the inferer. This
visualizer (shown in Fig. [T0) uses the Eclipse Graphical Editing
Framework (GEF) to display the extended object graph while it
is built up and modified during the execution. This gives a clear
understanding of how the program executes and how the inference
algorithm works.

The visualizer adds a new toolbar to Eclipse. Here the user can
set the zoom level, use automatic or manual layout of the graph,
“play” the evolution of the inference algorithm, take a single step
of the algorithm, or pause the animation. It further provides buttons
that help in the manual layout of the graph. The automatic layout
of the graph nodes is used by default. It automatically positions the
nodes and routes the edges to have a nice diagram. It uses a simplex
algorithm that tries to minimize the crossings of edges [16]. The
manual layout can be used to manipulate the graph by hand.

The objects in the graph can be shown with and without the
fields and methods that the corresponding class has. The display
of this additional information follows the UML standard for object
diagrams.
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5. Conclusion and Future Work

This paper presented the current status of our work on runtime Uni-
verse type inference. We successfully used the tools in small case
studies such as linked list and tree implementations. In these exam-
ples, the overhead of tracing the execution and the calculation of
the ownership modifiers was reasonable. Even for small examples,
the support for multiple trace files was very useful to increase the
code coverage and, thus, the quality of the inferred ownership.

As future work, we plan to carry out non-trivial case studies.
Inferring ownership for major applications will not only allow us
to further evaluate and optimize our tools, but also provide insights
into the structure of real applications. We expect this information
to be valuable for further research on ownership in general.

Currently, our inference tool only works for non-generic Java.
We recently developed Generic Universe Types and we
will investigate whether runtime inference can be extended to
generics. The problem is that genericity in Java 5 is implemented
by erasure, that is, the type arguments are not visible to the virtual
machine. It will also be interesting to study runtime inference in
the presence of ownership transfer [28].

We plan to add JDI support to directly trace program executions
without creating trace files. The inference visualizer is under active
development and we have many ideas to make the interaction
more convenient and to improve scalability to large object graphs.
Examples include hierarchical folding of sub-trees, searching for
instances of a particular class, and visual enhancements.
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file. Editing is simplified by drop-down lists of possible values.

Finally, we are integrating the runtime inference with our static
inference tools [[16]. This allows us to propagate and check the par-
tial information that is inferred from program traces and ensures
that the resulting annotations comply with the Universe type sys-
tem.
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Abstract issues. Static analyses [29, 40] that approximate the runtime ob-

eject graph often produce large non-hierarchical graphs that do not

A developer often needs to understand both the code structur S .
convey design intent and do not scale to large programs (See visu-

and the execution structure of an object-oriented program. Class lizati o1 f |
diagrams extracted from source are often sufficient to understand@/1zations [2] for examples). . o
Many type systems enforcewnershipat compile time, i.e.,

the code structure. However, existing static or dynamic analyses ; =2 i
that produce raw graphs of objects and relations between them, do'ake one object part of another object's representation|[8, 7, 3, 11].
In the ownership domains type system [3], each object contains

not convey design intent or readily scale to large programs. . ) X .
Imposing an ownership hierarchy on a program's execution one or more .publlc or prlvatewnershlp .dolmalns— conceptual .
groups of objects — and each object is in exactly one domain.

structure through ownership domain annotations provides an intu- . ; 4 -
As with most other ownership type systems, adding ownership

itive and appealing mechanism to obtain, at compile-time, a visual- d . tati ; ; d trol aliasi
ization of a system’s execution structure. The visualization conveys omain annotations to a program's source code can control aliasing
and enforcenstance encapsulatiowhich is stronger than module

design intent, is hierarchical, and thus is more scalable than existing®. - > . > .
visibility mechanisms. Moreover, ownership domains can express

approaches that produce raw object graphs. . X . ) X
We first describe the construction of the visualization and then 2nd enforce a tiered runtime architecture by representing a tier as
an ownership domain. Mlomain linkcan abstract permissions of

evaluate it on two real Java programs of 15,000 lines of code each X X

that have been previously annotated. In both cases, the automati¥Vhen objects can communicate [1]. . .

cally generated visualization fit on one page, and gave us insights _ OUr contribution in this paper is to leverage ownership domain

into the execution structure that would be otherwise hard to obtain 21notations to obtain at compile-time a sound visualization of the
execution structure of a program with ownership domain annota-

by looki tth de, at existi lass di t dable; . . . -
y 100KINg atthe code, ar exising class glagrams, or at unreada etlons, the Ownership Object Graph. The visualization is hierarchi-

visualizations produced by existing compile-time approaches. cal, conveys design intent and compares favorably with existing
compile-time visualizations of two previously annotated Java pro-
1. Introduction grams, each consisting of 15,000 lines of code.

Currently, annotations are added mostly manually, however,
active work in the area of semi-automated annotation inference
[4,9, 24 25] promises to lower the annotation overhead. The vi-
sualization reflects the annotations, and the quality of the visual-
standing is a non-trivial task. Little work has been done on mini- ization reflects the quality of the ann.otations.. The desigln intent is
mizing this learning curve” [38]. expressed by choosing the ownership domains and their structure,

then adding annotations to the program — currently manually.

In many cases, developers cannot rely that external design doc- The id d techni f hi fund L for ob
umentation is up-to-date. Many tools can automatically generate € Ideas and techniques of ownership are fundamental for ob-

class diagrams from program source [21]. However, a class dia- {iNing such a compile time visualization. First, ownership domains
; rprowde a coarse-grained ownership structure of an application with

structure of the system. In object-oriented design patterns, much@ grr]anularity'larger ]Elhan ta)m object ﬁr_a class [37]. Sr(]a_cond, owna
of the functionality is determined by what instances point to what E'SNIP organizes a flat object graph into an ownership tree, an
other instances. For instance, in the Observer design pattern [15, phlerarchy is needed to achieve scalability and attain both high-
293], understanding “what” gets notified during a change notifica- 1€V€! understanding and detail. Third, different ownership domains
tion is crucial for the function of the system, but “what” does not and different places in the hierarchy provide precision about inter-
usually mean a class, “what’ means a particular instance Further-domain aliasing and conservatively describe all aliasing that could
more, a class diagram often shows several classes depending on ke place at runtime. Since two objects in two different domains
single container class such gsva.util.ArrayList. However cannot be aliased, the analysis can distinguish between instances
different instantiations of such a class often correspond to different that would be merged in a class diagram, allowing better under-

elements in the design, hence the need for an instance-based viewyt@nding of the runtime structure of the system. Fourth, ownership
to complemena class diagram. domain names are specified by a developer and therefore can con-

A running object-oriented program can be represented asan vey more design intent than the aliasing information obtained using
ject graph: nodes correspond to objects and edges correspond td Static analysis that does not rely on annotations [34].
relations between objects. Existing dynamic analyses can describe Ve first define the Ownership Object Graph (Section 2) and de-
the runtime object graph of a system for a particular set of inputs S¢'1P€ the algorithm to construct it at compile time (Section 3). We
and exercised use cases [12, 33]. Obtaining at compile time a finite 16N Present concrete and in-depth examples of the visualization of
and conservative abstraction of all possible runtime object graphs WO réal annotated 15,000-line object-oriented programs (Section
is more challenging because of aliasing, precision and scalability 4)- Finally, we survey related work in Section 5 and conclude.

When modifying an object-oriented program, both the code struc-
ture (static hierarchies of classes) and the execution structure (dy-
namic networks of communicating objects) must be understood.
“For a developer unfamiliar with the system to obtain this under-

81



2. The Ownershlp ObjeCt Graph class Branch< > /x Formal domain parameterx/ {
This section discusses the challenges in visualizing an annotated Public ;

program and describes the different intermediate representations -

we used to obtain the visualization. Customer c¢l:
A running object-oriented program can be representedas-a Teller ti;

time object graph: nodes correspondtmtime objectand edges Teller t2;

correspond to relations between runtime objects such as creation, xgﬁ:: x;

usage and reference [32]. The aim is to statically approximate all of '

the runtime object graphs that may be generated in any run of the class Bank {

program. The goals of the visualization are as follows: 1 I+ Private default domain s/

° $calability: to support h.igh-le.vel understanding, the visualiza- /+ Bind BranchcCUSTOMERS formal to ‘owned’ actual s/

tion groups runtime objects into relatively few top-level “ab- Branche & bl;
stract” elements, each represented by a canonical object; }

e Hierarchy: to provide detailed understanding, the visualization : : :
supports the ability to show the substructure of an abstract | Summary of syntax for ownership domains annotations [3]:
element. Thus the visualization can be viewed as a hierarchical | ¢ T o: declare objecb of typeT in domaind; .
tree of objects; [public] domain a: declare private [or public] domain;

. ’ . o . . . class C<d>: declare formal domain parameigon clas<C;
* Design Intent: the V'Sl'.lahzatlon groups runtime objects 'nt(.) C<actual> cObj: provide actual for formal domain parameter;
clusters that are meaningful abstractions — e.g., that an object| |inx , —> 4: give domainb permission to access domain

is in a tier — and documents design-level constraints using

domain links — e.g., that two tiers may communicate. The user rigyre 1. Ownership domains illustrated with a simplified Bank
provides the design intent regarding object encapsulation and system [3].Branch declares two domaingELLERS for Teller

communication using ownership domain annotations [1]; objects andVAULTS for Vault objects.Branch also declares a
* Soundness:to ensure that the visualization is a faithful rep-  qomain link from theTELLERS domain to theVAULTS domain
resentation of the runtime object graph, it mustseind. In to allow Teller objects to acces¥ault objects.Branch also

particular, all objects and relations present at runtime should be {5xes acusToOMERS formal domain parameter to hofthstomer
represented. Furthermore, if two variables may alias at runtime, objects Bank references &ranch object in fieldb1, binding the

they should appear in the graph as a single “abstract” element. cysTgMERS formal domain ofBranch to theBank’s own private
The analysis builds two intermediate representationsatan domainowned.

stract graph, which is converted intovasual graph, which is then

displayed as the Ownership Object Graph. solid border grey-filled rectangle with a bold label represents an
object. A dashed edge represents a link permission between two
2.1 Abstract Graph ownership domains. A solid edge represents a creation, usage, or

The abstract graphis built from ownership domain annotations ~eéférence relation between two objects. An object labeled “obj : T"
in the source code (Figure 1). The syntax for declaring and using indicates an object of tyg€ as in UML object diagrams. )
ownership domains follows that used for Java generics [3]. _ Object Merging. In the visual graph, a canonical visual object
For each type in the program, the abstract graph shows the own-iS created to represent a_II the abst(act objects of a given type in a
ership domains declared in it, and shows field and variable declara-9iven source-level domain declaration. Two abstract objects in the
tions asabstract objectsleclared insidabstract domainsThe ab- same domain in the abstract graph, if related by inheritance, could
stract graph provides scalability through ownership hierarchy and indeed refer to the same runtime object, and thus are merged for
captures design intent as described above, but is not adequate fopoundness. In general, this object may summarize multiple runtime
visualization for several reasons (See Figure 2). objects. For the _annotateq code in Figure 1, thg visual graph in
First, the abstract graph is not really hierarchical in the sense Figuré 3 merges into one visual object (labelled with Teller)
of an object having children; rather, an object has a type and the
type has domains and the domains have object children. Second,
it does not include all objects: a domain contains abstract objects
only for the locally declared fields, but if that domain is passed as
a domain parameter to another object, and that object declares its
fields in that domain, those non-local fields will not be represented. v
Third, it does not show all aliasing: different field declarations — Brgﬁich
and therefore different abstract objects, could be aliased and thus |
must be shown as one. To realize the properties above, the abstract
graph is converted intoasual graph.

2.2 Visual Graph

The visual graph is an intermediate representation which instanti-
ates the types in the abstract graph and shows only objects and do-
mains: eaclvisual objectcontainsvisual domainsind eactvisual
domaincontainsvisual objectsThus, in the visual graph, one can
view the children of an object without going through its declared
type. Furthermore, to support the visualization goals listed earlier,
the construction of the visual graph takes into accalject merg- ) ]
ing, object pullingandtype abstraction. Figure 2. The abstract graph for the Bank system. A black-filled

We visualize ownership domains as follows: a dashed border box represents a type, with white-filled domains declared inside it
white-filled rectangle represents an actual ownership domain. A and grey objects declared inside each domain.
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in a domain into a single visual object of typeva.lang.0bject
would result in a trivial and uninteresting visual graph. Thus, we
heuristically merge abstract objects whenever they share one or
more non-trivialleast upper bound type¥he resulting visual ob-
ject is marked as having an intersection type that includes all the
least upper bounds. In the example above, the least upper bound
would be the intersection of the sgtomponent, Accessible}.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The definition of “trivial” is user-configurable; typically types
_________________________ | such aflbject andSerializable are trivial, and so abstract ob-
jects which share these as a supertype are not merged according to
this heuristic. Again, a developer controls this heuristic by adding
or removing types from the list of trivial types.

Instantiation-Based View. Merging abstract objects based on

: I Type Abstraction. For soundness, it may be necessary to merge
| bank : abstract objects of different but compatible declared types. For ex-
[ Bl | ample, consider the classes from the Java Abstract Window Toolkit
=== -- SR i (AWT) library in Figurel 5. A variable of typalindow and a dif-
: I b'l_ I ferent variable of typ&rame in the same domain may alias each
| : By : : other, the corresponding abstract objects must therefore be merged
e [ N il for sound_n_ess._ o _
[ 78l v N K In addition, it may be useful to do further heuristic merging to
: I cL: L R R S R improve abstraction and reduce clutter in the graph. For example, if
Lk Customer | 1t [ Teller |1 | Vault ] ! abstract objects of typButton, Panel andFrame were declared
1l cusTomers ! TELLERS :. VAULTS : i in th(_a same _domaln, it may make sense to merge them into a sin-
Hy b s s s s s s s o o i gle visual object of typ€omponent or Accessible. On the other
: | owned i1 hand, merging can be taken too far: merging all the abstract objects

__________________ 2,

|

Figure 3. The visual graph for &ranch objectwithout pulling:

objectst1 andt2 are merged in domailELLERS, and similarly,
objectsvi andv2 in domainVAULTS. Objectc1 is shown in the
formal domain paramet&@USTOMERS (dotted border).
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| non-trivial least-upper-bound types can sometimes lead to un-
| TELLERS > VAULTS! | vt : wanted merging. For instance, in the JHotDraw case study dis-
e gre s l ] cussed in Sectioh 4.2, both interfac&smmand and Tool are in
|

the sameController domain and both extend the same inter-
face ViewChangeListener. As a result, the abstract objects for
Command and Tool get merged into the same visual object un-
less interfac&/iewChangeListener is added to the list of trivial
7777777777777777777777777777777 types. However, this would not work since several variables have

Figure 4. Objectc1* waspulled from the formal domain param- ~ ViewChangeListener as their declared type.

eter CUSTOMERS in Figure 3 into the actual domaBank . ovned The key insight however is that there are no object allocations
to which it is bound. The dashed edge represents a domain link Of the interfac&/iewChangeListener since an interface cannot be
betweerTELLERS andVAULTS. instantiated directly. As an alternative to merging abstract objects,

it is possible to achieve soundness by scanning object allocations
instead of field and variable declarations, and then only adding
visual objects for types that are actually instantiated and not the
they have the same declared type. ones that are just declared. This technique is similar to how Rapid

Mgrging objec.ts of th.e same Qeclared type that are in th? SameType Analysis (RTA)/[5] determines the receiver of a method call
domain may be imprecise. For instance, tiector objects in during the construction of a call graph.

the same dpmain yvould get merged even if they are never gliased. In the example above, if the analysis encounters an object allo-
Our anal.ySIS re’.“a'”s more precise than a class diagram which alsocation of aTool object but never that of ®iewChangeListener
summarizes objects by type, because the type system guaranteegbjectv the analysis would only create a visual objectTtarl, and

that two objects that are in two different domains can never be giniiary for command, thus achieving the desired effect of keeping
aliased. In some cases, adding generic types where applicable, €-9¢ommand andTool distinct. This solution can also prevent merg-

for generic containers, can minimize excessive merging. ing all the abstract objects in a domain into a single visual object of
A developer can also prevent merging by placing two objects

that should never get merged in separate domains, e.g., by defining
two domainsCASHVAULT and GOLDVAULT to storevl andv2 in

the abstract objects1 andt2 declared in domaimrELLERS since

Figure 1 instead of using a single dom&kULTS. ) «interface» ) TY TP
gObject Pulling. The a?bstrac%graph may display an object only € javarascassiviliy:Acessivte| LEIaaantiComponent]
in the domain where the domain is declared as a formal param- A
eter. But in the visual graph, each runtime object that is actually
in a domain must appear where that domain is declared. To en- | @ java:awt:Button | | @ javazawt:Container |

sure this property of visual graphs, an abstract object declared in-
side a formal domain ipulled into each domain that the formal

domain is transitively bound to. Figuré 3 shows objettin the |

formal domain paramet@USTOMERS (dotted border). In Figure| 4, @ jwvarawtzpanel | |_@lavazawt:window |
objectc1 — marked with+ — was pulled from the formal domain
CUSTOMERS in Branch to the actual domainwned in Bank (the
former is bound to the latter using the annotatianch<owned> | @ javazawt:Frame |

on fieldb1 in Figure 1).

Figure 5. Type hierarchy excerpts from AWT.
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_bank__bank_bank_owned_b1_b1_CUSTOMERS_c1_c1
_bank__bank_bank_owned_b1_b1_CUSTOMERS_c1_c1
_bank__bank_bank_owned_b1_b1_TELLERS_t1_t1
_bank__bank_bank_owned_b1_b1_TELLERS_t1_t1
_bank__bank_bank_owned_b1_b1_VAULTS_v1_v1
_bank__bank_bank_owned_b1_b1_VAULTS_v1_v1
_bank__bank_bank_owned_b1_b1
_bank__bank_bank_owned_b1_b1
_bank__bank_bank
_bank__bank_bank
_bank__bank_bank_owned_b1_b1_TELLERS_t1_t1
_bank__bank_bank_owned_b1_b1_TELLERS_t1_t1
_bank__bank_bank_owned_b1_b1_VAULTS_v1_v1
_bank__bank_bank_owned_b1_b1_VAULTS_v1_v1
_bank__bank_bank_owned_b1_b1
_bank__bank_bank_owned_b1_b1
_bank__bank_bank_owned_c1_c1
_bank__bank_bank_owned_c1_c1
_bank__bank_bank
_bank__bank_bank

type java.lang.Object. If the analysis does not encounter an al-
location expression of the foraew 0bject () inthe code, it never
creates a visual object for theva.lang.0bject abstract type.

A class hierarchy analysis could determine that a variable of
type ViewChangeListener could alias a variable of type — of

course, an alias analysis could do better. A newly allocated object

can be considered un-aliaseduarique [3]. A standard flow anal-
ysis can track the flow of an object from its point of creation to the
point at which it is first assigned to an ownership domain.

Design Intent Types.Since the visualization is instance-based,
labelling instances is important for conveying design intent. A

visual object can merge one or more abstract objects, and each

approximation of the true runtime object graph, as it may represent

multiple runtime objects with a single visual object, and similarly

for domains and edges. The following invariants relate the Owner-
ship Object Graph to the runtime object graph:

e Unique Representatives:Each object in the runtime object
graph is represented by exactly one object in the visual graph.
Similarly, each domain in the runtime object graph — as de-
fined in the dynamic semantics of ownership domains [3, p. 15],
is represented by exactly one domain in the visual graph;

e Edge Soundnessif there is a field reference from objeat
to objectos in the runtime object graph, then there is a field
reference edge between visual objetsand 05 in the visual

abstract object has an abstract type corresponding to a declared graph, corresponding 8 ando. — similarly for domain links

type in the program. A visual object is labelled “obj: T” as in
UML object diagrams — wherebj is an optional instance name
andT is an optional type name. An abstract object maintains the
field name or variable name in the prograsbj is selected from
one of the abstract objects merged into a visual objeista list of

and edges;

e Ownership Soundnessif object o is in domaind in the run-
time object graph, then objeét(corresponding t@) is in do-
main§ (corresponding to domaid) in the visual graph. Sim-
ilarly, if o declares domain in the abstract graph, thehde-

least upper bound types as discussed above. The user can optionally clares domair in the visual graph.

specify a list of informativelesign intentypes. Adesign intent type The Ownership Object Graph inherits other properties that are
is the preferred abstract type used to label a visual object. A trivial guaranteed by the soundness of the underlying ownership system
type is not used in the label unless it occurs as a declared type in— for example, that every object is assigned an owning domain
the program. Design intent types do not affect the soundness of thewhich is consistent with all program annotations and does not
Ownership Object Graph and are just for labelling. change over time. These invariants are correct up to the following
assumptions:

e All Sources Available: The program’s whole source code is
available, and the program operates by creating some main
object and calling a method on it (this justifies the Ownership
Object Graph’s focus on a single root object, although multiple
root objects could in principle be shown). The class of that main
object is the type of the root of the Ownership Object Graph;

2.3 Ownership Object Graph

A visual object can contain itself so the visual graph must represent
a potentially unbounded runtime object graph with a finite graph.
For example, consider a classwhich declares a domaidand a
field of typeC in domaind:

C'ajﬁ,fa‘{n & I+ Declare domain d=/ * No Reflective CodeReflection and dynamic code loading may
dC f; violate the above invariants by introducing unknown objects

} and edges, and possibly violating the guarantees of the under-
lying ownership system;

¢ Flow Analysis: Objects marked ashared andunique are not
currently shown in the Ownership Object Graph. Objects that
areshared would be trivial to add but would add many unin-
teresting edges to the Ownership Object Graph. Objects that are
unique would require a flow analysis to be handled properly
(See Section 315). Usage edges (e.g., method invocations, field
accesses) could be generated for a system with only ownership,
but a flow analysis is required for usage edges to be sound in

Since there is a unique canonical object for each type in each
domain, the object representingn domaind must also represent
the child object of typ€ in domaind of the parent; it is therefore its
own parentin this representation. A finite representation is essential
to ensure that the analysis terminates, but we want to show the user
a hierarchical view where no object is its own parent. We therefore
compute the Ownership Object Graph as a finite, depth-limited,
unrolling of the visual graph. In the example above, we would show
onec object within another down to a finite depth. h of bi

To summarize, an Ownership Object Graph is a graph with two the presence dfent objects. .
types of nodes, objects and domains. The nodes form a hierarchy__D€SPité the assumptions about the whole program source being
where each object node has a unique parent domain and each do"f“/""”"’lbh.a an_d restrictions on _reflectlon and dynamic loading, our
main node has a unique parent object. The root of the graph is asystem_ is stillrelatively soundin the presence c_)f these features.
top-level domain. In addition, the Ownership Object Graph has the In particular, as ang as the_ reflective operations are annotated
object merging, object pulling and type abstraction properties. Fi- CO'rectly and consistently with ownership information, then any
nally, there are two kinds of edges: edges between objects Corre_object referred to by some field in the source code that is available

spond to object creation, usage and reference relations, and edge‘g"”'fhro"\&Up n thnedﬁ)wnersir;ip ﬁj)brjefctrer:raph,ir?sxstp(rerg;lflle”%ra?ove.d
between domains correspond to domain links. Compared to ear- or edge soundness, all ield references in externa liorary code

X L . . ; t be annotated. Since it is often not possible to annotate all
lier definitions of object graphs [32], the Ownership Object Graph MUYS o ,, . : :

explicitly represents clusters of nodes, i.e., domains, and edges be-SUCh co_de, ylrtual [26] or gh_ost] fields may be dedared as
tween these clusters, i.e.. domain links. annotations in external files. ¥rtual field holds information that

is closely related to the meaning of an object, but need not be kept
directly in the object in a particular implementation [26]. These
annotations do not affect the execution of the system at runtime but
are treated as an object’s actual fields by the analysis.

2.4 Soundness

For the Ownership Object Graph to be most useful, it should be
a soundapproximation of the true runtime object graph for any
possible run of the program. In this section, we only present an 3. Analvsi
operational definition of the soundness of the Ownership Object “* nalysis
Graph and leave a proof of soundness for future work. At a high-level, the analysis works as follows: (1) Obtain an ab-
Intuitively, soundness means that every object, domain, and stract graph from ownership domain annotations; (2) Collapse the
edge in the runtime object graph is represented in the Ownershipinheritance hierarchy by copying fields into subclasses; (3) Instan-
Object Graph. However, the Ownership Object Graph may be an tiate abstractly the types in the abstract graph into objects in the
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visual graph, merging objects in the same domain by compatible
types (two types are compatible if they have a non-trivial least up-
per bound); (4) Pull objects in the visual graph from formal do-
mains to actual domains, again merging as necessary; (5) Add de-|
tails to the visual graph, such as field references, domain links, etc.;
and (6) Extract the display Ownership Object Graph as a depth-
limited projection of the visual graph.

3.1 Data Representations

The analysis first creates from the program texf\astractGraph
and then converts it into disualGraph. The data type declarations
of the AbstractGraph and VisualGraph are in Figuré 6, and will
be referred to by the metavariables shown in parentheses. To help|
keep the representations distinct, we use English letters (. .)

for elements of thé\bstractGraph, and Greek letters (0, 6, .) for
elements of th&/isualGraph.

The AbstractGraph consists of theéAbstractTypes in the pro-
gram, theAbstractDomains declared in each type, and thAdé-
stractObjects declared in each domain. AfibstractType also
lists AbstractEdges andAbstractLinks. TheVisualGraph instan-
tiates the types in thébstractGraph and showsVisualObjects
andVisualDomains: eachVisualObject containsVisualDomains
and eaclisualDomain containsVisualObjects. TheVisualGraph
also hasVisualEdges andVisualLinks.

The identifiers used for the elements in thisstractGraph and
VisualGraph do not correspond to the declared names of domains
or objects (e.g., field or variable names) since these cannot be as-
sumed to be globally unique, and do not take into account bind-
ing and scope. An implementation would typically have additional
fields to hold the user-friendly display name. In addition,/fdn
stract Type maintains its underlyindypeBinding to determine its
sub-typing relationship with respect to othesstract Types.

The analysis maintains a one-to-one mapping betwéaésal-
Domain ¢ and its correspondingbstractDomain d to avoid extra
copying. However, &/isualObject typically merges severaAb-
stractObjects as discussed earlier.

3.2 Extract an AbstractGraph from Annotated Code

An AbstractGraph is obtained from the annotated program text
using a visitor on the Abstract Syntax Tree of the annotated pro-
gram. Most steps in Figure 7 are straightforward and are not shown
in great detail. During the construction of tAéstractGraph, pri-

vate ownership domains are givepmtectedsemantics The de-

fault domainowned is considered to be declared at the first point
of use and inherited thereafter. diined were to be declared in
java.lang.0Object, all the objects declared in themed domain
would be in the same inherited domain and would get unnecessar-

® AbstractGraph (g)
= Root : AbstractObject /* the root */
= Types: List<AbstractType>
® AbstractType ()
= TypeBinding: TypeBinding/* Java type */
= Domains: List<AbstractDomain>
= Links: List<AbstractLink>
= Edges: List<AbstractEdge>
AbstractDomain (d)
= DomainType: public | private | parameter
= Objects: List<AbstractObject>
= DeclaringType: AbstractType
® AbstractObject (0)
= Type: AbstractType /* declared type */
= Domain: AbstractDomain /* my ouwner */
= Bindings: List<Binding>
= Visualized: boolean/* bookkeeping */
Binding (b)
= Formal: AbstractDomain
= Actual: AbstractDomain
AbstractEdge (e)
= From: AbstractType /* edge source */
= To: AbstractObject /* edge target */
= EdgeType: creation | usage | reference
AbstractLink (s)
= From: AbstractDomain /* link source */
= To: AbstractDomain /* link target */
® VisualGraph (7)
= Root: VisualObject
= Objects: List<VisualObject>
= Edges: List<VisualEdge>
= Links: List<VisualLink>
® VisualObject (0)
= Domains: List<VisualDomain>

= Merged: List<AbstractObject> /* abstract objects

merged into ‘this’ */

= Pulled: List<VisualObject> /* visual objects ‘this’

was pulled into */
= |sPulled: boolean/* bookkeeping */
= Parent: VisualDomain /* my owner */
® VisualDomain (§)
= Objects:  List<VisualObject>
domain */

= Parents: List<VisualObject> /* objects this domain

is part of */

= AbstractDomain: AbstractDomain /* map */
® VisualEdge ()

= From: VisualObject /* edge source */

= To: VisualObject /* edge destination */

= EdgeType: creation | usage | reference
® VisualLink (o)

= From: VisualDomain /* link source */

= To: VisualDomain /* link destination */

ily merged if they have the same declared type. Singletaired,
lent andunique AbstractDomains are created.

To simplify the treatment of inheritance when creating ¥ie
sualGraph, the AbstractGraph is post-processed by collapsing the
type hierarchy, i.e., pushing field references declared inAthe
stract Type corresponding to a given typeénto eachAbstract Type
of the sub-types of.

of the ownership domains type system, it can be easily applied
to other ownership type systems that do not have the concept
of multiple ownership domains per object and assume a single

Figure 6. Data types used bpbstractGraph and VisualGraph.
Some fields are for bookkeeping only.

3.3 Convert an AbstractGraph to a VisualGraph

Constructing theVisualGraph from an AbstractGraph takes into
- . . — . . account the properties described earlier. The pseudo-code for the
While the algorithm described in Figuré 7 is presented in terms algorithm is presented in Figures 8, 9 and 10. The notation

for (T anObject : setOfObjects) ...

/* objects in this

domain or “context” per object [8]. In those cases, we consider that is similar to the Java 1.5 “enhance&dr-loop” for iterating over

each class implicitly declares a single ownership domaited

and proceed according to the algorithm. The other details of the

transformation and visualization are unchanged.

1Domains declared in a class are inherited by its subclasseAus,
Domains rule(Fig.14)], but are called somewhat confusinglyivate.
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collections and arrays. An overbar represents a sequence.

The transformation takes as input tAbstractGraph g whose
root is the top-leveAbstractObject 0,00t, @and AbstractDomain
droot 1S the domain foro,..:. The top-level procedure 'gUAL-
1IZEGRAPH (Figurd 8) first creates a top-levélsualDomain 600t
and then visualizes th&bstractObject 0,00t-



1. For each type declaratiari in the program
(a) CreatéAbstractType ¢t and add it tag. Types
(b) For each formal domain parameterGh
i. Create correspondingbstractDomain d
ii. Add d tot.Domains
(c) For each declared ownership domain
i. Create correspondingbstractDomain d
ii. Add d tot.Domains
(d) For each domain link betweeh andds in C'
i. CreateAbstractLink between thé\bstractDomain of d;
and theAbstractDomain of d2
ii. Add AbstractLink to ¢.Links
(e) For each declaratiohC’<a> oinC
i. If C" has noAbstractType, createt’ for C’
ii. If AbstractType ¢ of TypeC' has noAbstractDomain d,
created and add{ to t.Domains
iii. CreateAbstractObject o and add tal.Objects
iv. Create bindings from formalsf of AbstractType t’ to
actualsa of t and add tw.Bindings
v. If declaration is a field declaration
A. CreateAbstractEdge e of type reference from Ab-
stractType t to AbstractObject o
B. Adde to ¢t.Edges
2. Collapse inheritance hierarchy
(a) Copy any public domains defined on an interface to the clg
implementing the interface
(b) Push field references from each super-class into its sub-cl

Sses

asses

Figure 7. Obtaining theAbstractGraph.

The conversion involves two mutually recursive functions; V
SUALIZEOBJECTto convert anAbstractObject into a VisualOb-
ject and VISUALIZEDOMAIN to convert amAbstractDomain into
aVisualDomain. EachAbstractDomain declared in thé\bstract-
Type of anAbstractObject is visualized in turn.

Before aVisualObject 6 is created for a\bstractObject o of
typet inside aVisualDomain ¢, the analysis calls INKDOBJECTt0
look for an existingVisualObject in § with which o can be merged,
i.e., if 6 has af of typet’ wheret and¢’ havenon-trivial least
upper boundsising procedure 6TLEASTUPPERBOUNDS. If such
an object does not exist, a n&fisualObject is created. |9 exists,
then it is used and is added to the list oAbstractObjects that
are merged by. Each call to iNDOBJECTtakes into account the
AbstractTypes of all theAbstractObjects that are merged into a
VisualObject.

Procedure RENONTRIVIALTYPES excludes from the com-
puted types any type mentioned in the list of trivial types. By de-
fault, the listincludegava.lang.0Object, java.io.Serializable
and other user-selected types. However, a trivial type is allowed to
be part of the least upper bounds, if thiestractObject is declared
of that type.

Once VisualObjects and VisualDomains have been created,
procedure BLLOBJECTSuses a worklist to pull existiny/isu-
alObjects: eachVisualObject is pulled from a formal to an ac-
tual domain, potentially creating a né¥isualObject if it cannot be
merged with an existing one. If a nefbstractObject is merged
into an existingVisualObject, the VisualObject is added back to
the worklist. NewVisualObjects are also added to the worklist so
they get pulled in turn. The analysis tracks WigualObjects that
a givenVisualObject is pulled into.

Finally, the top-level procedurelSUALIZE GRAPH calls Visu-
ALIZEFIELDREFSsto add field references to tAésualGraph and
VISUALIZEDOMAINLINKS to add the domain links.

When adding the field references associated wittisaalOb-
ject 0, ADDFIELDREFSs(Figurd 10) takes into account all the field
references declared in thebstract Type of eachAbstractObject
merged into &isualObject. ADDFIELD REFSalso adds field refer-
ences to all the pulleffisualObjects that are tracked by the book-
keeping fields.
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The algorithm given in Figure!8 is sound for systems that use
single inheritance and have no declared variables of a trivial type.
In systems that do not meet these restrictions, the algorithm may
produce multiple visual objects to represent the same runtime ob-
ject. In this case, two possible approaches can be used to restore
soundness. The first approach is the instantiation-based view de-
scribed in Sectioh|2 above, whereby visual objects are created for
each object that is instantiated rather than for each field or variable
declaration in the program.

In the second approach, the procedunedfOBJECTIn Figurd 8
is modified to identify alMisualObjects that could be merged with
the targefTypeBindings. If there is more than one subtisualOb-
ject, the analysis unifies théisualObjects and the resultinyisu-
alObject has the union of th¥isualDomains, mergedibstractO-
bjects, etc. The analysis then unifies recursively all tigualOb-
jects that a unifiedVisualObject was pulled into. The fDOB-
JECTprocedure then returns the unifigéualObject.

3.4 Convert the VisualGraph into the Ownership Object
Graph

The ownership object graph that is displayed is a depth-restricted
projection of the visual graph, starting from a root object. The
visualization currently uses the nested boxes discussed earlier but
the algorithm is not tied to a specific graphical notation.

This step is depends on the visualization package used. In our
prototype implementation, we use GraphViz [16]. Each dark grey
box for each object and white-filled node for each domain must
have a unique identifier — otherwise, nodes with the same identifer
get unified. Since there is onéisualDomain corresponding to
an AbstractDomain, and anAbstractDomain is shared across
all the AbstractObject instances of a giverbstractType, each
occurrence of &isualDomain that appears in ®isualObject must
be assigned a new identifier.

Because the Ownership Object Graph is a depth-limited projec-
tion, it may omit objects deeply nested in the ownership hierarchy.
These objects are conceptually summarized by their containing ob-
ject, and the visualization remains sound with this summarization.
However, those objects may have field references to objects that are
present in the projection; for soundness, the corresponding edges
should be shown. In our approach, these field reference edges can
be represented by summary fields in the leaf objects of the graph.

These summary fields are identified as follows. For each leaf
object 0,y in the Ownership Object Graph, for each transitive
child objectfcpiia Of Oica s, in anextended depth-limited projection
of the VisualGraph, we consider all actual field references from
VisualObject Ocni14 10 VisualObject Otarget, Wherebia,ger is not
a child of 0,..¢. Each such edge is represented by a summary
edge frombicas 10 Oparent, Wherebparent is the nearest parent
of Orarger that is visible in the Ownership Object Graph. This
algorithm will find summary fields for all fields present at runtime
as long as thextended depth-limited projectiqmojects below the
leaves of the graph until a cycle in thMésualGraph is reached —

i.e., for each path downward from a leaf, the saviialObject is
reached a second time. This projection must still be depth-limited,
as in general th&/isualGraph may have an infinite depth due to
reference cycles.

3.5 Limitations and Future Work

In future work, we plan on improving the precision of the analysis,
proving the soundness of the Ownership Object Graph, and evalu-
ating the scalability of the approach on large systems.

Precision. Merging objects of the same type that are in the
same domain can lead to unwanted merging in some cases. Adding
generic types improves the precision of the analysis, but for addi-
tional precision, an alias analysis may be needed [29].



Global: Map<AbstractDomain ,VisualDomain > map

Global: AbstractGraph g (input)
Global: VisualGraph ~ (output)

VISUALIZE GRAPH()

Oroot = New VisualDomain ()
droot-AbstractDomairF dyoot

~ =new VisualGraph ()

~.Root= VISUALIZEOBJIECT(Sro0t , Oroot)
PuLLOBJECTY)

VISUALIZEFIELDREFY)
VISUALIZEDOMAINLINKS()

VISUALIZEOBJECT(VisualDomain §, AbstractObject 0)

t = GETTYPEBINDINGS(0.Type)

0 = FINDOBJECT(J, t)

if (6==NuLL)

then 6 = new VisualObject ()

0.Objectsadd(f )
0.Parent=§
~.Objectsadd(6 )

0.Merged.addo )

0.Visualized= TRUE

for (d; : t.Domains)

do ¢; = VISUALIZEDOMAIN(0, d;)

6;.Parentsadd(6 )
0.Domainsadd(é; )

return 6

VISUALIZEDOMAIN (AbstractDomain d)
6 = map.get(d)
if (6 ==NuLL)
then § = new VisualDomain ()
map.put(d,d)
d.AbstractDomairr d
for (o; : d.Objects)
do if (0;.Visualized)
then continue
VISUALIZEOBJECT(S, 0;)
return §

FINDOBJECT(VisualDomain §, List<TypeBinding> )
for (0, : 6.0bjects)
do t,, = GETMERGEDT YPEY(0;)
0= GETLEASTUPPERBOUNDS(t,, £)
if (ARENONTRIVIALTYPEY(Y, 7))
then return 6;
return NULL

GETTYPEBINDINGS(AbstractType t)
> Obtain list of transitive supertypes

GETLEASTUPPERBOUNDS(List /, List z)
> Compute least-upper-bounds if they exist

ARENONTRIVIAL TYPEg(List Z, List t)

> Exclude from/ trivial types such agava.lang.0Object

> or in the user-specified list of trivial types
> EXCEPT if it is one of the declared typesin
return TRUE if remaining list of types non-empty

GETMERGEDTYPEYVisualObject 6)

List I = new List()

for (o; : 0.Merged)
do l.add(o;.Type)

return |

Figure 8. Pseudo-code for creatingisualGraph.
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PuLLOBJECTY)

Stackworklist = new Stack()
for (0 : ~.Objects)
do worklist.push(§
while (lworklist.iSEmpty() )
do VisualObject 0 = worklist.pop()
PuLL OBJECT(H, worklist)

PuLL OBJECT(VisualObject 0, Stackworklist)

> List.add first checks if element exists to avoid duplicates
> and returngRUE if element is addedsALSE otherwise.
> by | = by is shorthand foby = b1 OR b2
oy = 6.Parent
dy =6 ¢.AbtractDomain
for (do : GETACTUALS(dy ) )
doif (do ==dy )
then continue
da =map.get(d,)
tm = GETMERGEDT YPES(H)
6y = FINDOBJIECT(8q, tm)
changed = FALSE
if (0p ==NULL )
then 6, = new VisualObject ()
~.Objects.add@;, )
0p.Parent= 6§,
0p.1sPulled= TRUE
dq.Objectsadd(6,, )
changed = TRUE
0.Pulled.add@, )
for (o: 6.Merged)
do changed | = 0,,.Merged.addp )
> Add domains from merged object
for (9; : 6.Domains)
do changed | = 6,.Domainsadd(d; )
0;.Parentsadd(d, )
> If anything changed, add back teorklist
> so that merged objects get pulled too...
if (changed)
then worklist.push(@) )

GETACTUALS(AbstractDomain dy)

List I = new List()

05 =map.get(dy)

for (0; : 6.Parents) > Pull “up” only

do for ( o; : 6;.Merged)
do for ( b; : 0.Bindings)
do if (b;.Formal==d; )
then l.add(b;.Actual)

return [

Figure 9. Pseudo-code for creatingisualGraph (continued).

An object markedinique is not shown until it is assigned to a
specific domain. Thus, an inter-procedural flow analysis is needed
to track an object from its creation (at which point itusique)
until its assignment to a specific domain. In the current tool, this
flow analysis is not implemented, saaique object returned from
a factory method must be annotated with the domain in which it
should be displayed. In addition, the flow analysis can determine
what domain alent object is really in. A precise handling of
the lent annotation is needed to add to the Ownership Object
Graph usage edges corresponding to method invocations and field
accesses since many method parameters are annotatetewith
Those edges are currently missing.

Scalability. Finally, we lack empirical evidence of the scala-
bility of the approach to large systems. In the absence of semi-
or fully-automated annotation inference (a separate research prob-
lem), the main difficulty would be adding the ownership domain
annotations to legacy code.



VISUALIZEFIELDREFY)

for (0 : ~.Objects)
do ADDFIELDREFY )

ADDFIELDREFYVisualObject Osyc)

for (o : 0src.Merged)
do for (e : o.Type.Edge}
do for (d, : GETBINDINGS(0, e.To.Domain) )
do 6, = map.get(d,)
045t = GETMERGED(d, €.T0)
if (Ogs¢ '=NULL)
then ADDFIELDREFYOsrc, O4st)

ADDFIELDREFYVisualObject Osyc, VisualObject 64:)

n =new VisualEdge ()
n.From= 6,
77-T0= Odst
if (v.Edgesadd(n))
then for (Osrc,, : Osrc-Pulled)
do for (0ast,, : Oase-Pulled)
do ADDFIELDREFlsrc, s Oast,,)

GETBINDINGS(AbstractObject o, AbstractDomain d)

List I = newList()
for (b : 0.Bindings)
do if (b.Formal==d)
then l.add(b.Actudl
return [

GETMERGED(VisualDomain §, AbstractObject o)
for (0; : 6.0bjects)
do for ( om, : 0;.Merged)
doif (o ==0)
then return 0;
return NULL

VISUALIZEDOMAIN LINKS()
for (t: g.Types)
do for (s : t.Links)
do VisualLink o = new VisualLink ()
o.From=map.get(s.From)
o.To=map.get(s.To)
~.Linksadd(o )

Figure 10. Pseudo-code for creatingisualGraph (continued).

4. Evaluation

e Elide Private Domains: the tool allows the user to elide all the
private domains at once and show only the public domains in
the visible Ownership Object Graph;

e User Elision: the tool can elide temporarily uninteresting ele-
ments. When the sub-structure of an object is elided, the symbol
(+) is appended to its label;

e Traceability: the tool can show for a given visual object, the
list of abstract objects and their abstract types merged into it, to
help the user fine-tune the list of trivial types;

e Navigation: the tool supports zooming, searching Alystrac-
tObject or AbsractType name, etc.

4.2 Case Study: JHotDraw

The subject system for the first case study is JHotDraw [20].
Version 5.3 has around 200 classes and around 15,000 lines of
Java. The core types in JHotDraw were organized according to the
Model-View-Controller pattern as follows:
® Model: consists oDrawing, Figure, etc. ADrawing iS com-
posed ofFigures which know their containin@rawing. A
Figure has a list oHandles to allow user interactions;
e View: consists oDrawingEditor, DrawingView, etc.;
e Controller: includesHandle, Tool andCommand. A Tool is

used by @rawingView to manipulate drawing. A Command

encapsulates an action to be executed.

Annotation Process.JHotDraw was annotated without making
any structural refactoring such as extracting interfaces, etc. Since
JHotDraw Version 5.3 did not use generic types and to improve
the precision of the analysis, we used Eclipse refactorings [14] to
infer the most specific generic types of containers sucheasor
— and prevent objects of typector<Handle> and those of type
Vector<Figure> from getting merged. The annotation process is
described in detail elsewhere [1].

Ownership Object Graph. We made use of the visualization
during the annotation process: for instance, visualizing the anno-
tations encouraged us to make more use ofciieed annotation
sinceowned pushes objects down in the ownership hierarchy and
avoids cluttering the top-level domains.

The list of trivial types includes interfaces implemented by
many classes, e.gStorable, Animatable, constant interfaces,
e.g., SwingConstants?, as well as interfaces implementing the
Observer design pattern, e.JiewChangeListener. Both Tool
and Command implementViewChangeListener and are in the
Controller domain, so they may get merged otherise

Evaluation. Existing compile-time analyses [40, 19] cannot
produce, for a program the size of JHotDraw, a readable flat object
graph that fits on one page (See other visualizations [2]). The

To evaluate our approach, we built tools and conducted two casegp.-level Ownership Object Graph obtained from the annotated

studies on real object-oriented implementations.

4.1 Ownership Object Graph Tool

program using our approach is shown in Figure 11 and clearly
illustrates the Model-View-Controller design.
Each gray box corresponds to a “canonical object” that repre-

The tool obtains the Ownership Object Graph of an annotated Sents many instances at runtime and is labeled with one or more
program, represents it as a GraphViz clustered graph [16] and offers“design intent” type from the coréramework package (variable

the following features:

e Top-Level Objects:the displayed Ownership Object Graphis a

names were not particularly informative and are not shown).
In the visualization, theController domain clearly shows

depth-limited projection of the visual graph —the depth is user- Command, Handle and Tool instances. The self-edge drvol
selectable but cannot be too large. The user can interactivelyis explained by the fact that aindoableTool wraps aTool
select an object as the root of the graph to view its substructure; and similarly, arindoableCommand wraps aCommand. TheView

e Trivial Types: the tool allows the user to specify an optional

list of trivial types;

¢ Design Intent Types:the tool allows the user to specify an
optional list of design intent types for labelling objects;
e Object Labels: objects can be labelled with an optional field

domain shows instancesbfawingEditor (the application itself)
andDrawingView. TheModel domain shows instancesBfgure:

2Inheriting from a constant interface to access the constants without qual-
ifying them is a bad coding practice, the Constant Intertamgpattern[6|

name or variable name and an optional type name. The type ltem #17] and Java 1.5 suppoststic importsto avoid it.
used in the label consists of a least-upper-bound type or a designd The tool currently scans field and variable declarations and not object

intent type as discussed earlier;

allocations as discussed in Section 2.



aFigure has one or mor€onnectors that define how to locate a  refactored to us&ector<Vector<Node>>. The annotation pro-
“connection point”. cess is described in detail elsewhere [1].

Understanding whyrawing did not appear in th&odel tier Evaluation. The Ownership Object Graph in Figure 12 shows
led us to discover thaitandardDrawing, the base class imple-  clearly the core HillClimber top-level objectgindow, canvas,
menting thedrawing interface, extendSompositeFigure, thus a engine andgraph. Similarly, theSearch objectin thelogicTier

Drawing is-aFiguré]. Although this is not a design probleper se, domain merges many instances of sub-classes of $éassh such
itis inconsistent with the design intent in the cétamework pack- asMCHSearch, RandSearch, etc.
age: there, interfacBrawing does not extend interfadeigure. The Graph base class declaresnades:Vector<Node> field

This finding was unexpected in a framework as carefully designed and its subclas#illGraph refers to that same object. Generic
and as widely studied as JHotDraw. Although a class diagram could types improved the precision of the analysis and prevented the
reveal that é8tandardDrawing is aFigure, the Ownership Ob- merging of edges:Vector<Edge> and nodes:Vector<Node>.
ject Graph quickly pinpoints that. Thegraph:Graph object merges botraph andHillGraph and

The top-level domains have only 28 objects even though JHot- shows objectaodes andedges in its owned domain.
Draw has 200 around types and presumably each type is instanti- Since a domain is introduced where it is declared and then
ated at least once. This illustrates how the properties of the Owner-is inherited according to therotected semanticSHillGraph
ship Object Graph provide more abstraction and more design intentand Graph share the samewned domain. However, when two
than a visualization of the raw object graph[19, 40]. “unrelated” objects, e.g., Button object and @anel object get

In fact, designers often employ similar techniques in a design- merged (since they have a non-trivial least upper bound) and each
oriented class diagram, i.e., one not retrieved from an implementa- has its declaredwned domain, it is possible to have multiple
tion using a tool: ajnerge interface and abstract implementation domains of the same name in a given visual object — in that case,
class— although important for code reuse, such a code factoring is a domain name is fully qualified with the type name where it was
often unimportant from a design standpoint; angbpsume a set  declared in the abstract graph.
of similar classes under a smaller set of representative classes The visualization highlights the need to potentially make object
showing many similar subclasses that vary only in minor aspects on edgesIn, the incident edges on a node, encapsulated inside object
a class diagram often leads to needless clutter [36, pp. 139-140]. Itnode:Entity. This would require changing the annotations and
seems the JHotDraw designers used similar techniques to presenthe code as necessary to abide by the rules of the type system. This

the JHotDraw design in their tutorials [36]. in turn would push the object down the ownership tree and remove
In the Ownership Object Graph, all runtime figure objects ref- it from the top-level domain.
erenced in the program by tlfegure interface, its abstract imple- Themediator:ICanvasMediator object was introduced dur-

mentation classbstractFigure, or any of its concrete subclasses  ing a refactoring to decouple the code [1] and mediate between the

DecoratorFigure, ConnectionFigure, etc., appear as a single  graph and thecanvas. Finally, the object labeledindow: Frame

Figure object in theModel domain. merges several user interface objects representing dialogs, etc., thus
The distinction between public and private domains within each illustrating the type abstraction property.

object enables eliding all the private domains at once to show only

the top-levelModel, View and Controller domains in object 5. Related Work

Main. To illustrate the hierarchy however, objects were selected in- . L . .
an Y ) Program Visualization. There is a large body of software visual-

dividually and their internals were elided — those have the symbol . "~ T2 . . .
(+) appended to their labelBrawingEditor shows its internals: ization research where the emphasis is on novel kinds of visualiza-

its privateowned domain has aficonkit object among others, and tion using colors, shapes, 3D, e’tc. Our contribution in this paper is

IconKit has its own substructure, but the latter is elided. not the \_/lsuallzatlorpel_' Se—were using the sumple_put effective .
Currently, the visualization does not show multiplicities: at run- GraphViz package — it is in having developer-specified ownership

time, there is onerawingEditor (the application itself), one annotations drive a sound compile-time visualization of the pro-

IconKit, but one or mor®@rawingView objects. gram's execution structure. - . .
Many dynamic analyses visualize the execution structure but

43 Case Study: HillClimber ignore ownership: they instrument the running program, fiIt_er th.e
program traces based on various query criteria and then visualize
By many accounts, JHotDraw is considered the brainchild of ex- the summarized information in novel ways, often with a granularity
perts in object-oriented design and programming. In comparison, not larger than an object or a class[23] 37, 35, 17, 39, 30, 10]. On
the subject system for this case study, HillClimber, is another the other hand, such analyses handle programs for which source
15,000 line application that was mainly developed and maintained code is not available, do not require source code annotations or

by undergraduates. changes to the source code to add the annotations and allow more
In HillClimber, the applicatiorwindowuses aanvago display fine-grained user interaction in producing the visualization.

nodesandedgesof agraphin order to demonstrate algorithms for Ownership Annotation Inference. Annotation inference is an

constraint satisfaction problems provided by émgine. active area of research using both static [4, 9] 24, 25] and dynamic
Annotation Process.HillClimber was organized into data [41] analyses. However, a fully automated inference cannot create

ownership domain to store thgraph, a ui domain to hold the  multiple public domains in one object and meaningful domain pa-
user interface elements, andlegic domain to hold the engine, rameters to represent the design intent, such as the sepadatg
search objects, and associated objects. Unlike JHotDraw, addingview, andController in the JHotDraw case study. Existing in-
annotations to HillClimber involved refactoring to decouple the ference algorithms produce for each class a long list of domain pa-
code. Again, to increase the precision of the analysis, we refac- rameters, often place each field in a separate domain, or annotate
tored the code to use generics, mostly automatically using Eclipse. many objects withshared or 1ent [4].

However, Eclipse cannot infer the generic type of a variable of type Dynamic Object Graph Analyses.Dynamic analyses can infer
Vector storing arrays oflode objects: such code was manually  the ownership structure of a running program based on its heap
structure. Although these techniques have the advantage of not
4 According to the Release Notes for JHotDraw Version 5.1, this change was requiring abundant source code annotations, they can only infer the
made to support insertinglrawing as aFigure inside anothebrawing. equivalent ofowned, shared, lent andunique annotations. This
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Figure 11. Top-level Ownership Object Graph for JHotDraw. This graph was laid out automatically by GraphViz without user intervention.
The edges correspond to field references.
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Figure 12. Ownership Object Graph for HillClimber, laid out automatically by Graphd6éz without user intervention.

assumes a strict owner-as-dominator hierarchy which is not flexible show the ownership structure in a single run of a program, the Own-
enough to represent design patterns such as the Composite patterrership Object Graph obtained at compile time is prescriptive and
Rayside et al. [33] characterize sharing and ownership and shows ownership relations that will be invariant over all program
produce a matrix display of the ownership structure. Similarly, runs. Third, a dynamic analysis cannot be used on an incomplete
Mitchell [27] uses lightweight ownership inference to examine a program still under development or to analyze a framework sepa-
single heap snapshot rather the entire program execution, and scalegately from a specific instantiation. Finally, some dynamic analyses
the approach to large programs through extensive graph transfor-carry a significant runtime overhead — axtB0x slowdown in
mation and summarization. Flanagan and Freund [12] proposedone case [12], which must be incurred each time the analysis is
a dynamic analysis to reconstruct each intermediate heap from arun, whereas the main cost of adding annotations is incurred once.
log of object allocations and field writes, then apply a sequence  Static Object Graph Analyses.Several static analyses produce
of abstraction-based operations to each heap, and combine the revarious object graphs, but they do not use ownership and do not
sults into a single object model that conservatively approximates all convey design intent. ANGEA [40] produces a flat object graph.
observed heaps from the programs execution. Their toak oA WOoMBLE [19] uses syntactic heuristics and hard-coded heuristics
VARK, has the notion of ownership and containment and uses sim- for container classes to obtain an object model including multiplici-
ple heuristics to choose the most appropriate generalization. Nobleties, but its analysis does not attempt to be sound and the flat object
et al. [18, 28] and Potanin et al. [31] also process heap snapshotsgraph it produces does not scale to large programs: in particular,
and show both matrix and graph visualizations of ownership trees, the WoMBLE visualization of the 15,000-line JHotDraw does not
indicating an object’s “aliasing shadow” and “interior”. fit on one readable page [2] nor does it convey the Model-View-
There are several problems with dynamic analyses: first, run- Controller design.
time heap information does not convey design intent. Second, ady-  AJAX [29] uses an alias analysis to build a refined object model
namic analysis may not be repeatable, i.e., changing the inputs oras a conservative compile-time approximation of the heap graph
executing different use cases might produce different results. Com-reachable from a given set of root objects, and simplifies it through
pared to dynamic ownership analyses — which are descriptive anda series of transformations. Howevenax does not use ownership
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and produces flat object graphs. Althougbr& has been evaluated

on a system with as many as 36,000 lines of code, the object graphs
it produces are manually post-processed to become readable, and

its heavyweight analysis does not scale to much larger programs.
Lam and Rinard [22] proposed a type system for describing

and enforcing design: developer-specified annotations guide the

abstraction by merging objects witbkensand merging methods

[12] C. Flanagan and S. N. Freund. Dynamic Architecture Extraction. In
Workshop on Formal Approaches to Testing and Runtime Verification,
006.

[13] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended Static Checking for JavaPLI, 2002.

[14] R. M. Fuhrer, F. Tip, A. Kiezun, J. Dolby, and M. Keller. Efficiently
Refactoring Java Applications to Use Generic LibrariesEGOOP,
2005.

with subsystems, and are used to produce a flat object graph, that;s5) g Gamma, R. Helm, R. Johnson, and J. Viissidesign Patterns:

was evaluated on a 1,700-line program. However, the tokens and
subsystems are statically fixed (unlike domains, all instances of a

Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

class use the same tokens declared in the class), so they do nof16] E. R. Gansner and S. C. North. An Open Graph Visualization System

model runtime hierarchy, do not describe data sharing as precisely
as ownership domains, and do not handle inheritance. In contrast, 17
our approach does not require additional annotations just to obtain (17]

a visualization: ownership annotations are useful in their own right,

as demonstrated by the extensive research into ownership types

[8,(7,/4) 3, 11]. Finally, our approach handles inheritance.

and its Applications to Software Engineerin§oftware Practice &
Experience, 30(11), 2000.

J. Gargiulo and S. Mancoridis. Gadget: A Tool for Extracting the
Dynamic Structure of Java Programs. 2001.

[18] T. Hill, J. Noble, and J. Potter. Scalable Visualizations of Object-
Oriented Systems with Ownership Treeslournal of Visual
Languages and Computing, 13(3), 2002.

Rayside et al. had proposed earlier a static object graph analysis[19] p, jackson and A. Waingold. Lightweight Extraction of Object

based on Bacon and Sweeney’s Rapid Type Analysis (RTA) [5]

Models from BytecodelEEE Trans. on Softw. Eng., 27(2), 2001.

but indicated that it produced unacceptable over-approximations [20] JHotDraw.http://www. jhotdraw.org/, 1996.

for most non-trivial programs [34].

6. Conclusion

Ownership domain annotations with meaningful domain names add
hierarchy to a flat object graph, precision about inter-domain alias-
ing, convey design intent, and enable an instance-based hierarchica

[21] R. Kollman, P. Selonen, E. Stroulia, T. S¥sand A. Zundorf. A
Study on the Current State of the Art in Tool-Supported UML-Based
Static Reverse Engineering. WICRE, 2002.

[22] P.Lam and M. Rinard. A Type System and Analysis for the Automatic
Extraction and Enforcement of Design Information. HEOOP,
2003.

I[23] D. B. Lange and Y. Nakamura. Interactive Visualization of Design
Patterns Can Help in Framework UnderstandingOPSLA, 1995.

visualization of the execution structure of a system, to complement [24] V. Liu and A. Milanova. Ownership and Immutability Inference for

views of the code structure provided by existing approaches.

UML-based Object Access Control. IBSE, 2007.

Evaluating the approach on two previously annotated Java pro- [25] K.-K. Ma and J. S. Foster. Inferring Aliasing and Encapsulation

grams consisting of 15,000 lines of code each produced in both

Properties for Java. IBOPSLA, 2007. To appear.

cases a visualization that fits on one page and conveys the complex(26] S. McCamant and M. D. Emst. Early Identification of Incompatibili-

design intent better than existing compile-time approaches that do

not rely on ownership annotations.
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Abstract We believe this improved tool support promotes the adoptability

of the ownership domains technique by Java developers as follows.
First, all the Eclipse tool support such as syntax highlighting, refac-
aoring, etc., remains available to annotated programs. Second, using
annotations makes it easier to support in a non-breaking way ad-
ditional annotations such as external uniqueness [1é¢adonly
[17]. Third, using annotations gives the ability to incrementally and
eoartially specify annotations on large code bases. Fourth, using an-
notations will make it possible to study the evolution of programs
with ownership annotations, an area that has not received much
attention — since no one will maintain a program with limited
tool support. Finally, annotating existing code is difficult and time-
consuming and tools are being developed to add annotations semi-

utomatically/[6, 16]. One of the benefits of using annotations over
anguage extensions is that an inference algorithm cannot break an
existing program by inserting potentially incorrect annotations.

We made the following design choices for the annotation sys-

. tem. First, we worked within the limits of Java 1.5 annotations
1. Introduction [27], even though annotations may be more verbose than an ele-

Researchers have proposed many ownership type systems, e.g_gantly designed language. Moreover, Java 1.5 annotations impose
[15, 10, 3, 17, 41], but have not reported significant experience with several restrictions, e.g., no annotations on generic type arguments.
most of them on real code. Only a few systems, notably Ownership Other rese.archer.s.have tried to eliminate some of these restrictions
Domains [6, 3], Universes [17] and Generic Ownership [41], have by proposing revisions of the _Iangua@[lg], but until s_uch propos-
released tool support [46, 20, 40], and even fewer systems havedls are off|C|aIIy_ adopte.d, their prototype |mplement§tlons are not
been evaluated in substantial case studigs [6, 25, 2, 38]. Eclipse compatible, an important factor for adoptability. Second, to
The previous implementation of ownership dorrllalﬁb [3] used work around the Java 1.5 limitation of allowing annotations only

non-backwards compatible extensions of Java [46]. As a result, 0N declarations, we consistently declare additional temporary vari-
none of the rich tool support for Java programs was available to ables and add annotations to them. This has worked well for new

programs with ownership domain annotatibns expressions, cast expressions (both implicit and explicit) and ar-
In a previous case study|[2], we identified that adding owner- guments for method and constructors. Thqu, checking owne_rshlp
ship domain annotations to existing code often highlights refactor- d0mMain annotations only generates informational messages, i.e., no
ing opportunities. For instance, a lengthy domain parameter list is €70'S or warnings, and does not stop a developer from running
often an indication of tightly coupled code that could benefit from the program. Fourth, we hard-code a minimal number of implicit
refactoring — such as extracting an interface and programming to 9€faults and provide a separate tool to supply explicit reasonable
thatinterface. Itis unrealistic to assume that it is possible to refactor d€faults to reduce the annotation burden. In the future, this tool can
all such code prior to annotating it. In our experience, having ac- be repla_lced with a smarter annotation inference tool. Finally, the
cess to refactoring tool support during the annotation process wasdnotations are non-executable and do not affect the program's be-
invaluable. Using language extensions also makes it harder to par_hav[oL; unlike the earlier implementation, the current system does
tially and incrementally annotate existing code and thus conduct Ot include runtime checks. As a result, the annotation-based sys-
case studies on interesting systems. Finally, the previous tool used &M iS unsound at casts — but could be made sound using bytecode
modified research infrastructure [8] that is no longer actively main- eWriting to add necessary dynamic checks. )
tained and does not support Java generics — as of this writing. _The rest of the paper is organized as follows: we review owner-
To address these adoptability challenges, we re-implementeds_h'p domainsiin S_ectloﬂ 2, descrlb_e the annotation Ianguage in Sec-
the Ownership Domains type system using the annotation facility tlonB and the s_allent tool features in Sechn_4. We dl_scuss two case
in Java 1.5 [27], so that Java programs with ownership annotationsStudies in Section/5 and show how ownership domains express and
remain legal Java 1.5 programs. We also implemented the tool asem‘or_ce de5|gn intent related to obJect communication and encap-
a plugin to the Eclipse open source development environment thatSulation. We discuss some expressiveness gaps that we encountered
has become popular with researchers and practitioners [24, 37]. N Section 6 and conclude with related work in Section 7.

The Ownership Domains type system has had publicly available
tool support for a few years. However, the previous implementation
used non-backwards compatible language extensions to Java an
ran on a research infrastructure, which made it difficult to conduct
substantial case studies on interesting systems.

We first present a re-implementation of ownership domains us-
ing Java 1.5 annotations and the Eclipse infrastructure. We then us
the improved tool to annotate two real 15,000-line Java programs
while using refactoring tool support, generics and external libraries.

Ownership domains, as most other ownership type systems,
provide useful encapsulation properties. We illustrate using actual
examples from the subject systems how ownership domains also
express and enforce design intent regarding object encapsulatio
and communication and help identify tight coupling. Finally, we
mention some expressiveness gaps that we encountered.

1The Universes tools built on the Java Modeling Language (JML) infras- 2Annotations may increase the memory footprint and slow down class
tructure support both language extensions and stylized comments [20]. loading as a result, but no empirical data has been reported to date.

93



2. Review of Ownership Domains used to hold theons cells in the linked list that is used to represent

Ownership domainsre conceptual groups of objects with explicit thesequ?nce' The full elealmple i§ shown in.Figu 1
domain names and explicit policies that govern references between@Domains: declare public or private domains on a type.
them. Each object belongs to a single ownership domain, and a top- ® Format: identi fier

level domain is assumed. e Applies to: type (class or interface).
Public and Private Domains.Each object can declare one or ¢ Examples: the following declares a privaigmed domain
more public or private domains to hold its internal objects, thus (owned is private by naming convention), and a public domain

supporting hierarchy. A public domain is accessed using a syntax ~ iters to store thelterator objects of theSequence.
similar to field access. Domain declarations are added to a class,  @pomaing{"owned" ,"iters"})

but for each instance of that class, fresh instances of these domains class SequenceT> {

are created for that object, i.ehj1.DomainA andobj2.DomainA .

are distinct ifobj1 andobj2 are instances of the same clasand 4
do not alias each other. ' . @DomainParams: declare ordered domain parameters on a type
Explicit Domain Links. Each object can declare a policy de- or method domain parameters on a method.

scribing the permitted aliasing among objects in its public domains, e Format: identifier
and between its private domains and public domains. Ownership e Applies to: type or method.
domains support two kinds of policy specifications: a) a link from e Examples:Sequence declares a domain parameRner to
one domain to another allows objects in the first domain to access  hold its elements.
objects in the second domain; and b) permission to access an object
implies permission to access its public domains. In addition to ex-
plicit domain links, the following implicit policy specifications are
included: a) an object has permission to access other objects inthe }
same domain; and b) an object has permission to access objects i
any domain that it declares. Any reference not explicitly permitted
by these rules is prohibited, and link permissions are not transitive.
Ownership Domain Parameters.Two objects can access ob-
jects in the same domain, as long as implicit or explicit permissions
allow that access, by declaring a formal domain parameter on one
object, and binding that formal domain parameter to another do-
main. Method domain parameters are also supported and are often
needed for static methods.
Alias Types. In addition, the following special annotations are %%Omaiﬂpla"’am@ 'list", "Towmer"})
defined for increased expressiveness [3): e e Do)
e unique: indicates an object to which there is only one refer-
ence such as a newly created object. Unique objects can be }
passed linearly from one object to another, by destroying the
old reference to the object when the new reference is created,;
e lent: one ownership domain can temporarily lend an object to
another ownership domain, with the constraint that the second
ownership domain will not create any persistent references to
that object: e.g., a method formal parameter is often annotated
with lent to indicate that it is a temporary alias;
e shared: indicates that an object may be aliased globally. @DomainLinks({..., "iters -> owned", ...})
shared references may not alias non-sharegferences. class SequenceT> {
Unlike owner-as-dominatotype systems [15], public domains
in the ownership domains type system can express constructs such
as iterators|[3] (See Figure 1) or an instance of the Compos- @DomainAssumes:declare domain link assumptions.
ite design pattern [22, p. 163] that does not encapsulate its sub- ® Format: fromDomainld ->toDomainlds
components and gives clients the ability to add components to any ® Applies to: type (class or interface).
composite of the hierarchy and not only to the root compgsite [30]. ® Examples: the Sequence assumes that thewner of the
Developers can still express owner-as-dominator in ownership do- ~ Sequence has access to thowner domain containing the
mains by: a) never declaring a public domain; and b) never linking sequence elements.
a domain parameter to an internal domain [3]. @DomainAssumeg owner -> Towner") /+ default /
class SequenceT> {

@DomainParamE{ "Towner" })
class SequenceT> {

rZt’zJDomainlnherits: pass parameters to superclass or implemented
interfaces.

e Format: typename < parameter, ... >

e Applies to: type (class or interface).

e Examples: theIterator interface is also parameterized by
the Towner domain parameter. Clas®qIterator inherits
domain parametefowner from interfacelterator, and adds
thelist parameter to access thens cells.

@DomainLinks: declare domain links.
e Format: fromDomainld ->toDomainld
e Applies to: type (class or interface).
e Examples: theSequence givesIterator objects intheters
domain permission to access objects in twed domain,
including theCons cells.

3. Annotation Design }
In this section, we describe the concrete annotation syntax. For @Domain: declare the domain, actual parameters and actual array
maximum flexibility and to work around some of the limitations of parameters.
Java 1.5 annotations, all annotation values are strings. Annotations ® Format: annotation<domParams, . ..>[arrayParanms, . ..]
that are plural take values that are arrays of strings. = annotation: indicate a domain name (e.gwned), one of

The annotations are illustrated using snippets from a canonical the special alias types (e.gnique), or a public domain of
Sequence abstract data type, a common benchmark for ownership an object using a field access syntax (esgq.iters);
type systems. Within thBequence, theiters ownership domain = <domParams, . ..>: specify actual domain parameters by
is used to holdIterator objects that clients use to traverse the order of formal domain parameters, at object creation and
Sequence, and the defaulprivate owned ownership domain is access sites;
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= [arrayParams, ...]: in ownership domains, arrays have
two ownership modifiers, one for the array object itself and
one for the objects stored in the array. For variables of array
type, this argument specifies the actual array parameters by @bomain{{ "owned" ,"iters"})
order of array dimension (for multi-dimensional arrays). @DomainParam{ " Towner" })
= Applies to: local variable declaration, field declaration, ~@PomainAssumefowner -> Towner") .
@DomamL\nkS({ owned->Towner", "iters->Towner",
method formal parameter and method return value. "iters->owned" })
= Examples:the following declares anique Iterator ob- class SequenceT> {
ject and binds theist domain parameter ®eqlterator @Domair("owned<Towner>") Cons<T> head;
to owned domain onSequence, and theTowner domain void add(@bomair("Towner")T 0) {

@Domain(" d<T >n
parameter orseqIterator to the parameter by the same cOnKT; cons = n;yvnzronsiT>(o ,head);

name orSequence. head = cons;
@Domair("unique<owned , Towner>") @Domair("iters<Towner>") Iterator<T> getlter () {
Seqlterato<T> it = new SeqlteratokT>(head); @Domain("iters<owned, Towner>")
Seqlterato<T> it = new SeqlteratokT>(head);
= Examples:alent array ofshared Strings: ) return it;
@Domair("lent [shared]") String args[]; }

@DomainReceiver: declare the domain of the receiver of a con- @PomainParam{ "Touner" })
@DomainAssume(" owner -> Towner")
structor or a method. class ConscT> {

e Format: identifier @Domain("Towner") T obj;
e Applies to: constructor or method. @Domair("owner <Towner>")Cons<T> next;
e Examples:

Cons (@Domair("Towner")T obj,
Vel " @Domair("owner<Towner>") Cons<T> next) {
@DomainReceivef"state") . A
void run() { ... } th!S.ObJ—SbJ, -
this.next=next;
¥
}
4. Tool Design and Implementation @DomainParam{ "Touner" })
Ownership domain annotations are typechecked using two visitors interface Iterator<T> {

on the Eclipse Abstract Syntax Tree (AST). boolean haamert Oy MO

}
4.1 Ownership Domains Typechecking
. . . @DomainParamE{ "1ist", "Towner"})
A first-pass visitor performs the following: @DomainAssumel{ "1ist -> Towner"})

e |dentify Problematic Patterns: these will need to be replaced  @Domaininherit{{"Iterator <Towner>"})

with equivalent constructs, e.g., by declaring a local variable c'ass SeglteratoxT> implements Iterator<r> {

and adding the appropriate annotations b it; @Pomar(riist Towmer>") Conscl> current;

Read Annotations from AST: the Java 1.5 annotations added Seqlterator @Domair("1ist<Towner>")Cons<T> head) {

to a program are part of the AST. The visitor locates the an- current = head;

notations nodes in the AST and parses their contents using a }ub”c @Domair(*Towner®) T next() {

JavaCC[26] parser. The visitor also locates special block com- P @Domair( "Towner")T obj2 = current.obj:

ments on method invocation expressions as described later. In current = current.next;

addition, the visitor infers default annotations for some AST return obj2;

nodes that cannot be annotated, e.g., it implicitly defaults the .}

NullLiteral AST node tounique. The visitor maps each

AST node to an annotation structure in preparation for the sec- @pomaing{ "owned" ,"state" })

ond pass visitor which will typecheck the annotations; class SequenceClient{

Propagate Local Annotations:the visitor propagates the ex- final @Domair("ouned<state>") ,
plicit annotations from the AST nodes (for types, variables, Sequencecinteger> seq =new Sequencelnteger>();
and methods) to all the expression nodes in the AST, includ-  void run() {

ing translating formals to actuals. @Domair("state") Integer int5 =new Integer(5);

A second-pass visitor checks the annotations on each expression E@ego'n?;dr((";lts i cetate o

based on the static semantics of Ownership Domains. Checking the |teramr<|n?éger> it = this.seq.getlter ();
assignment rule requires a value flow analysis. A Live Variables while (it.hasNext()) {

Analysis (LVA) from a lightweight data flow analysis framework @Domair("state") Integer cur = it.next();

[5] — that also uses the Eclipse AST, is invoked intra-procedurally e

at each method boundary using a separate visitor. The LVA analysis }
verifies that ainique pointer only has one non-lemead.

}
4.2 Additional Features

The tool offers the following additional features:

Figure 1. A Sequence Abstract Data Type with ownership do-
main annotations.

3Using the Eclipse built-in refactoring (“Extract Local Variable”), this
operation can be performed with very little effort.
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@DomainParamE{ "state" }) class SequenceT> {
class Student {
@DomainParam@"TTowner") /x Method domain parameters/

} @Domair("shared") /« Domain for return value x/
@DomainParamE{ "state" }) static <TT> String

class Data ... { toString (@Domair("lent<TTowner>")SequenceTlT> seq) {
final @Domain("state<state<state>>") C
SequencecStudent> vStudent; }

void dump() {

@Domair("state<state>") Student @Domain("owned<shared>")
getStudentRecord@Domair("shared") String sSID) { SequenceString> seq = ...;
@Domair("vStudent . iters<state<state>>")
Iterator<Student> i = vStudent. getlter (); @Domair("shared")
while (i.hasNext()) { /% Provide <actuals...> using block comment«/
@Domair("state<state>") String str = Sequence.toString<state>x/(seq);
Student objStudent = i.next(); }
}
}
- Figure 3. Declaring and binding method domain parameters.

Figure 2. Adding annotations to generic code. ) ) ,
while (objCourseFile.ready ()){

. . this.vCourse.addfew Course(courseFile.readLine ()));
External Libraries. There are two approaches to support

adding annotations to the standard Java libraries and other third-/+ ABOVE MUST BE REWRITTEN AS ...x/

party libraries, one that involves annotating the library and point- W@ggzmgf’r:{]gﬁg;ztﬁ)Flslter-igzatliiyn(e)){_ courseFile . readLine ():
ing the tool to the annotated library and one that involves placing 5 5i(vstate<state>") Course crs =new Course (line):
the annotations in external files. The earlier tool used the former this.vCourse.add(crs);

approach [46], but we adopted the latter approach this time since it }

does not require changing library or third-party code — which may - — - - -
not be available and when it is, tends to evolve separately. Other ~ Figure 4. Re-writing a new expression using local variables.
annotation based systems adopted the same strategy [42]. The tool

supports associating ownership domain annotations with any Java

bytecode. class file using an external XML file, following the  own type; (3) It is only legal to use single-member annotations for
same annotation constructs described in Section 3. ) annotation types with multiple members, as long as one member
Generics.Our annotation system currently treat generic types s namedvalue, and all other members have default values. Oth-
as orthogonal to ownership domain parameters, so generic type pagryise, the more verbose syntax is required, @pme (first =
rameters and arguments are added separately from ownership donjoe..’ last = "Hacker"); (4) Annotation types cannot extend
main annotations — except that nested actual domains may needyny entity (class, interface or annotation); and (5) Annotations are
to be provided where applicable. Proponents of Generic Owner- gjjowed on type, field, variable and method declarations and not
ship [41] argue that this leads to awkward syntax, which may be ajiowed on type parameters or method invocations.
true. However, in our case studies annotating two 15,000-line Java  The fist restriction prevented us from using tbBomain an-
programs including using generic types, we did not observe this to notation to specify both the annotation on the receiver and on the
be a serious problem. Figure 2 illustrates the interaction between return type of a method. The second restriction prevented us from
generics and ownership domains: 8tident class is parameter-  haying shorthand constant annotations for the special alias types,
ized by thestate domain parameter. Thata class maintains a ¢ g. @owned instead ofeDomain ("owned"): such constants can-

Sequence Of Student objects and is also parameterizeddayte. not be used inside other annotations a@libmain (annotation
Method Domain Parameters.Java 1.5 annotations cannot be - goyned, parameters = {@owned}).

added at method invocation expressions. So we used block com-  Tq avoid having multiple ways of indicating the same mean-
ments to specify the actual domains for a parameterized methoding, we use strings for all the annotations and require annotations
(See Figure 3 for an example). Unfortunately, even proposals t0 of the form @Domain ("owned<owned>"). Although developers
improve the Java 1.5 annotation facilities [19] do not yet address may be more likely to introduce spelling mistakes in string annota-
adding annotations to such expressions. tions, the typechecker will catch these problems early enough. The

Defaulting Tool. To reduce the annotation burden, we imple-  third restriction, i.e., the lack of positional arguments, required the
mented a separate tool to add default annotations such as marking;se of the verbose synt@®omains (publicDomains = {"d1",

private fields aswned, method parameters aent, andStrings "d2"}, privateDomains = {"pda", "pdb"}).

asshared. However, an annotation added by the defaulting tool  The final restriction and the current lack of annotation inference
(e.g.,owned) may need to be modified manually to supply actual require converting some expressions to more verbose constructs by

domains for domain parameters (e@uned<owned>). declaring local variables and annotating them. The most common
/Annotation ‘owner’. We also added the speciagner anno- such expressions were new expressions (See Figure 4) and cast

tation, similar topeer in Universes[[17]. Usingwner can often expressions (See Figure 5).

eliminate a domain parameter: e.g., in FigureCdns. owner is We plan to address some of the following limitations:

Sequence, SeqIterator.owner IS Sequence. e Infer method domains: just as actual type arguments do not

have to be passed to a generic method in Java, it may be
possible to infer, in most cases, the actuals for method domain
Java 1.5 annotations suffer from the following limitations: (1) A parameters based on the types of the actual arguments;
declaration cannot have multiple annotations of the same annota- e Allow suppressing messagesince reflective code cannot be
tion type; (2) Annotation types cannot have members of the their annotated successfully using ownership domains [6];

4.3 Tool Limitations and Future Work
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ArrayList vCourse student.getRegisteredCourses ();
for (int i=0; i<vCourse.size (); i++){
if (((Course) vCourse.get(i)).conflicts(course))

L

}
/% ABOVE MUST BE REWRITTEN AS
@Domain("lent<state>")
ArrayList vCourse = student.getRegisteredCourses ();
for (int i=0; i<vCourse.size (); i++){
@Domain("lent<state>")
Course crs = (Course) vCourse.get(i);
if (crs.conflicts(course)){

}
}

Figure 5. Re-writing a cast expression using local variables.

Y

¢ Display annotations more elegantly:an Eclipse plug-in by
Eisenberg and Kiczales [18] can beautify Java 1.5 annotations
for interactive editing while the analysis uses the same AST.

5. Ownership Domains Case Studies

The annotation-based system is mostly complete — the domain
link checks are still being implemented as of this writing. We used
the tools to add and check ownership domain annotations on two
real Java programs with around 15,000 lines of code each.
JHotDraw. The subject system for the first case study is JHot-

that would not account for the learning effect of annotating the
same program twice. Anecdotally, we were more productive with
the annotation-based system than with the earlier tool using lan-
guage extensions. The overall process changed around 40% of the
lines of code in HillClimber. The 40% code changes included boil-
erplateimports to use our Java 1.5 annotations, and code changes
to support adding annotations to some expressions. To more accu-
rately gauge the manual annotation overhead, an AST-visitor was
used to count the instances where the current annotation is the same
as the one generated by the defaulting tool: over 40% of the annota-
tions were exactly the same as the default ones for HillClimber; that
number was around 30% for JHotDraw. There are 60 type errors re-
maining in JHotDraw and 42 errors remaining in HillClimber.

In this following discussion, we illustrate using actual examples
from JHotDraw and HillClimber, how ownership domains can ex-
press and enforce design intent related to object encapsulation and
communication, using code snippets from the subject systems. The
code was slightly edited for presentation by removing trivial modi-
fiers. Some code is highlighted using underlining.

5.1 Ownership domains enforce instance encapsulation

All ownership type systems can express and enforce instance en-
capsulation which is stronger than the module visibility mechanism
of making a fieldprivate. In ownership domains, placing a field

in the privateowned domain means that the object can be reached
only by going through its owner; as a result, no aliases to that object
can leak to the outside. Consid&impositeFigure in JHotDraw:

Draw [23]. Version 5.3 has around 200 classes and 15,000 lines of @pomaing{ "owned" })

Java. JHotDraw is rich with design patterns [22], uses both com-
position and inheritance heavily and has evolved through several
versions. We first used the defaulting tool then manually modified

@DomainParam@{ "M" })...
abstract class CompositeFigure
/1
@D

A
The figures that comprise this figure
omain("owned<M<M>>")Vector<Figure> fFigures;

the annotations as needed. Adding annotations was iterative. For

instance, over several iterations, we made more use ofihed
annotation. JHotDraw was annotated without making any structural

% *
+ Adds a vector of figures.

refactoring such as extracting interfaces, etc. Some code changes, ,ig aqgail (@bomai("u<ucu>>") Vector<Figure> figs) {
were needed however to use our annotation system, e.g., extract // cannot assign object in "MM>" to “owned<M>"

a local variable from a new expression and add an annotation on
the local variable, convert an anonymous class to a nested class to

add domain parameters to it, etc. JHotDraw Version 5.3 did not use
generic types, so we used Eclipse refactorings [21] to infer generic
types of containers.

HillClimber. By many accounts, JHotDraw is considered the
brainchild of experts in object-oriented design and programming.
In comparison, the subject system for this case study, HillClimber,
is another 15,000 line application that was mainly developed
and maintained by undergraduates [2]. In previous work, we re-
engineered the original Java program to an ArchJava [4] imple-
mentation with ownership domain annotations, but using language

/1 this.fFigures figs;

/I This is correct however
fFigures. addAll(figs);

}

}

Annotating fieldfFigures with owned encapsulates the list of
compositeFigures (fFigures) to prevent objects that only have
access to the composite object from modifying the list directly. If
a developer tries to subvert the language visibility mechanisms by
exposing grivate or protected field using apublic accessor
method, the ownership domains type system prohibipsitalic

extensions instead of Java 1.5 annotations [2]. The re-engineeringmethod from having aewned parameter or return value. Letting

case study also produced a version that refactored the original cod
by making most class fields asivate [2]. For this case study, we

&clipse generate a setter for thBigures field produces the fol-

lowing code — without annotations:

started from the refactored Java code and added ownership domain

annotations to it.
Unlike JHotDraw, adding annotations to HillClimber involved

void setFFigures (VectotFigure> figs) {
this.fFigures = figs;

refactoring to decouple the code as discussed below. We also refac-

tored the code to use generics, mostly automatically using Eclipse.

However, Eclipse cannot infer the generic type of a variable of type
Vector storing arrays oflode objects. Such code was manually
refactored to us®ector<Vector<Node>>.

Compared to the earlier case study with language extensions

[2], the annotation-based system allowed using Eclipse refactoring
tools to extract interfaces and infer generic types while adding the
ownership domain annotations. Comparing the number of hours

Upon adding the annotations, a developer can realize that the
setter is overwriting the existing field since the paramétats
cannot be marked asimed and any other annotation would fail
the assignment check when overwriting i gures field.

When manually adding annotations, it is possible to miss many
opportunities for making objectsmed. Indeed, we initially anno-
tatedfFigures with the domain parameterinstead ofowned. In
some cases, objects shoulddsaed but are not, and making them

would not be meaningful since the annotation-based system wasowned may require code changes, e.g., to return a copy of an object

still under development while the case study was under way, and
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Visualizing the annotations encouraged us to make more use of

the owned annotation sincewned avoids cluttering the top-level li*Drang is a container for Figures. Drawing sends
domains [1]. Perhaps better tool support can prompt a developer = out DrawingChanged events to DrawingChangelisteners
to encapsulate a field that could be annotated withed but is : ¥vr?:ng\t/)2:er3e?ar;t?ér:]tsisa[;edeweti idneVCaO'Ld ?ée?h-e Srawin
not, e.g., a lightweight cqmplle-t_lme own_ers'hlp inference algorithm =2 Viewsp and to enable multiple ’\J/iews. 9
[33] could suggest possible Eclipse “quickfixes”. ]

@DomainParam@E{ "M", "V"})
5.2 Ownership domains specify architectural tiers @Domaininherit{{"FigureChangeListener<M>" ,...})

. . . . L interface Drawing extends FigureChangelistener .. {
A tiered architecture is often used to organize an applicationintoa // Adds a listener for this drawing.

User Interface tier, a Business Logic tier, and a Data tier. Ownership  void addDrawingChangeListener( )

domains can express and enforce such a tiered runtime architecture ~ @Pomain("v<M,v>") DrawingChangelistener 1);
by representing a tier as an ownership dor_ﬁéin [3], and apermission  ;; aqds a figure and sets its container
between tiers as a domain link to allow objects in the User Interface  // to refer to this drawing.

tier to refer to objects in the Business Logic tier but not vice versa. ~ @Domair("M<M>") ) )

Such an architectural structure and constraints cannot be easily Figure add(@Domair("h<i>") Figure figure);
expressed in plain Java code. .
We organized the core JHotDraw types in Figure 6 according to
the Model-View-Controller design pattern as follows: Figure 7. Adding annotations tbrawing.

® Model: consists ofDrawing, Figure, Connector, etc. A
Drawing is composed of igures which know their containing

Drawing. A Figure has a list oHandles to allow user interac- @DomainParam@ "M" "y nCn})
tions. ADrawing also extend¥FigureChangeListener (not interface Handle {
shown) to listen to changes to Rsgures. void invokeStart (@Domair("v<M,V,C>")DrawingView Vv);
e View: consists c.)DrarfJingEditor, Drav.vingView an.d associ- @bomair( "M<M,V,C>") Undoable getUndoActivity ():
ated typesDrawingView extendSDrawingChangeListener )
(not shown) to listen to changesioawing objects.
e Controller: includes interfaces such &andle, Tool and Figure 8. Handle with M, V andC domain parameters.

Command. A Tool is used by &rawingView to manipulate a
Drawing. A Command encapsulates an action to be executed — ) . )
a Simp|e instance of the Command design pat@n [22, p. 233] the observer would not have been discovered this way. OWnerShlp

without undo support. domain annotations help make implicit communication explicit
Once we defined the three top-level ownership domaiisge, when a reference requires permission to access a new part of the
View andController, we passed the corresponding domain pa- Program for the first time. , . _
rameterst, V andc to various types as discussed below. A visual- [N HillClimber, adding ownership domain annotations exposed
ization of the JHotDraw execution structure based on these owner-CoVvert object communication through base classes from two par-
ship domain annotations is available [1]. allel inheritance hierarchies. During an early iteration, we param-
In HillClimber, the applicatiorwindow uses acanvasto dis- eterized the base clasgraphCanvas by the ui and data do-
play nodesand edgesof a graph in order to demonstrate algo- ~Main parameters. We then realized thaph, the base class for
rithms for constraint satisfaction problems provided byehgine. ~ HillGraph, required theui domain parameter (See Figure 12).

So we organized the HillClimber types in Figlre 12 as follows. ClassGraph only needed thei domain parameter to properly an-
The data ownership domain stores the graph objects (instances Notate a&raphCanvas field reference that we did not expect. This

of Graph, Node, etc., and those of their subclasse$]11Graph, in turn revealed thallillGraph andHillCanvas were commu-
HillNode, etc.). Theui domain holds user interface objects. The hicating through their base classesaph and GraphCanvas. In
logic domain holds instances #&fil1Engine, Search (and sub- the end, the reference @raphCanvas was moved fronGraph to

classes thereof) objects, and associated objects. A visualization offii11Graph and generalized as afillCanvas reference by ex-
the HillClimber execution structure based on these ownership do- tracting an interfac&Hi11Graph from HillGraph.
main annotations is available [1].

5.4 Ownership domains expose tight coupling

5.3 Ownership domains expose implicit communication Let us temporarily ignore the earlier limitation with adding anno-

Design patterns — such as Observer [22, p. 293], used to decoupletations to the listeners and assume thadwing could be param-
object-oriented code also tend to make the communication betweeneterized by only thel domain parameter. Let us consider whether
objects implicit. Adding ownership domain annotations helps make it would be possible to parameterize interfazadle (See Figure

that communication more explicit. [8) with domain andC. A Handle would be in thec domain and
We initially wanted to parameterizerawing (See Figuré 7) would access objects in that domain andt ilomain, i.e., it should
with only theM domain parameter, bbtrawingChangeListener not access objects in tledomain parameter. Note that even if the
is implemented byrawingView. SoDrawingChangeListener explicit parametec was not provided, that domain would still be
needed to be annotated with tilelomain parameter correspond- accessible tdlandle using theowner annotation.
ing to theview. By making implicit communication explicit, anno- A comment in the code indicated that Version 4.1 deprecated
tations seem to prematurely constraitawingChangeListener the originalinvokeStart method which took ®@rawing object
objects to be in th&#iew domain. Sinc®rawing was a core inter- as one of its parameters, in favor of amvokeStart method that
face referenced by other interfaces in the cdaremework package, takes instead a formal paramebefawingView parameterized by
this led to passing all three domain parameters to many additionalM,V, andcC. This required passing tendle the additional domain
interfaces and classes. parametel. SinceHandle is a core interface referenced by other

It is true that ifDrawing had to be parameterized by domain interfaces in the coréramework package, this also led to passing
parametel for some other reason, the implicit communication in  all three domain parameters to many additional types.

98



Figure 6. Simplified class diagram for JHotDraw (Adapted from manual class diagram by Riehle [43, 12]).

@DomainParame "M, vcr}) Instead of a method domain parameter, 1@t annotation

interface Handle { could also be used to allow a temporary alias to an object within
@DomainParamis{ "V" }) o a method boundary. We found a few such examples in JHotDraw.
void invokeStart (@Domair("v<M,V,C>")DrawingView v); MethodsetAffectedFigures in Figurel 11 makes a copy of the

lent argument so it cannot just hold on to it.

In fact, lent can be formally modeled as a method domain pa-
rameter. However, the type system does not allow a method to re-
Figure 9. Handle with only M andC domain parameters. turn alent value but it allows a method to return an object in a
method domain parameter. In the cas@rdwingView, lent can-
not be used because implementationsmfokeStart () construct
Undoable objects that maintain aliases to theawingView and

@Domain("M<M>") Undoable getUndoActivity ();

@DomainParamE{ "M" ,"C" })

@Domaininherit{{ "Handle<M,C>" }) thus require th& domain parameter.

abstract class AbstractHandleimplements Handle { For that same reason, tiiedoable interface requires the do-

/I Will not typecheck since 'V’ unbound main parameter becausadoable stores th®rawingView where

@Domair("v<M, v, c>")DrawingView view; the activity to be undone was performed in order to undo the

@DomainParami{ "v" }) changes to that view only. This may slightly violate the Model-

void invokeStart (@Domair("V<M,V,C>")DrawingView v) { View-Controller design, where model objects should not hold on to
/I Cannot store argument in field 'this.view’ view objects, because there might be multiple views that need to be

} updated in response to changes in the model. At the same time, it

) would be counter-intuitive for a user to undo a change in one view

Figure 10. Method domain parameters can enforce lifetime. and obs_erve changes in some other \_/iew. Thus, ownership dom_ain
annotations expose the tighter coupling that the Undo feature in-
troduced. Figuré 11 shows in more detail the interaction between

5.5 Ownership domains expose and enforce object lifetime Handle, Undoable andDrawingView.

in thi ion that the ref . hich introduced An earlier empirical study of JHotDraw mentioned that “a com-
Let us assume in this section that the refactoring which introduced 1,5, architectural mistake [...] was to proviBiggures with a ref-

the tighter coupling was never performed, ifandle still needed erence to th@rawing or theDrawingView. Figures do not by

aDrawing instéad of arawingView. Undo support was added  gefayit have any access to either Iewing or theDrawingView

to JHotDraw for the first time in Version 5.3. In particulizndle in which they are contained. This prevents them from accessing in-

now had a reference tndoable —which in turn required domain 5 mation such as the size of theawing. However, it is possible

parameterst,V and C becauselndoable’s getDrawingView() to overcome this problem by passing the view into the constructor

method returned BravingView. of a figure, which can then store and access this as required” [28].
Now, let us see if it would be possible to annofaieoable and Starting with Version 5.3, one could get to thegure’s Handles

Handle with only the domain parameteiisandC (See Figure 9) —  hrgugh itshandles () method then get BrawingView through a
the domain parametar can then be supplied ttnvokeStart () Handle’s UndoActivity objects.

as a method domain parameter.

Using a method domain parameter to annotate the formal pa- . . .
rameterv could enforce the constraint that a developer should not 5.6 Ownership domains promote decoupling code
store in a field th®rawingView object passed as an argument to  Ownership domain annotations highlight tight coupling and pro-
invokeStart(), as in Figuré 10. Of course, a developer could mote programming practices that decouple code.
store theDrawingView object in a field of typedbject, but that Programming to an Interface. It is recommended to “refer to
field would have to be cast tobrawingView to be of any use. objects by their interfaces” [7, Item #34] since interfaces can reduce
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@DomainParam@E{ "ui" ,"logic" ,"data" })
@Domaininherit{{"Node<data>"})
class HillNode extends Node {

@DomainParamE "M", "v", "C"})
@Domaininherit¢{{"LocatorHandle<M,V,C>"})
class ResizeHandleextends LocatorHandle {

@Override @Domain("data<ui,logic,data>")HillGraph graph;
void invokeStart(nt x, int vy,
@Domair("v<M,V,Cc>") DrawingView view) { }

setUndoActivity (createUndoActivity (view); . . .
) 4 yLview) When adding annotations, an unexpected domain parameter of-

} N ten indicates unnecessary coupling, e.g., why sh&dilNode
I o have access to thet domain? Thus a lengthy domain parameter list

* Factory method for undo activity. can be an objective measure of a code smell [2]. Furthermore, own-

+ To be overriden by subclasses. . h 8 .

] ership domain annotations can help a developer lower the coupling

protected @Domair("M<M,V,C>")Undoable by suggesting which specific type declarations need to be general-
createUndoActivity ( o ) ized to shorten the list of domain parameters on the enclosing type.
~ @Domair("v<m,v,c>")DrawingView view) { In HillClimber, one solution was to extract aiiil1Graph in-
@Domair("unique<M,V,C>") £ f | R h | . h .
ResizeHandle . UndoActivity terface from clas#illGraph that only requires th@ata domain
undoable =new ResizeHandle.UndoActivity (viewy; parameter and makeH 11Node object reference thBillGraph
return undoable; object through th&Hi11Graph interface. We decided against car-

} rying this refactoring further and eliminating the andlogic do-
@DomainParame "M", "y, nen}) main parameters citi11Graph itself. _ _
@Domaininherit{"UndoableAdapter<M,V,C>") Since theHillGraph, HillNode, etc., form a parallel inheri-
static class UndoActivity extends UndoableAdapter{ tance hierarchy t@raph, Node, etc., a similar refactoring was per-

];' : formed onGraph by extracting alGraph interface — even though
} Graph andIGraph are both parameterized lapta.
/* * r " an " 3 n " n
% Basic implementation for an Undoable activity @DomainParams( e logic", fata )
Wy @Domaininherit{{"Graph<data>",

) "IHillGraph<data>"})
@DomainParamE "M", "v", "C"}) ; P
@Domaininherit{"Undoable<M,V,C>") class HillGraph extends Graph

public class UndoableAdapterimplements Undoable { implements 1HillGraph {
@Domain("v<M,V,c>")DrawingView myDrawingView ; T

@DomainParamE{ "data" })
@Domaininherit{{"IGraph<data>"})
interface IHillGraph extends IGraph {

UndoableAdapter@Domair("v<M,V,C>")DrawingView dv) {
setDrawingView (dv);

@Domair("v<M,V,c>") DrawingView getDrawingView () {

return myDrawingView; @DomainParamE{ "data" })

@Domaininherit{{"Node<data>"})
class HillNode extends Node {
@Domain("data<data>") |HillGraph graph;

void setAffectedFigures@Domain("lent<M>")FigureEnumeration fe){
/l the enumeration is not reusable therefore a copy is mdde
// to be able to underedo the command several time

void setDrawingView (@Domair("V<M,V,C>")DrawingView dv) {
myDrawingView = dv;

rememberFigures (fe); Tightly coupled code was observed throughout HillClimber.
3 Similarly, we were surprised that a dialog cla&mtDialog re-
} quired thedata domain parameter. It turned out tintDialog
; - - had a field reference declared with its most specific 8fzhCanvas.
Figure 11. Concrete implementation classiéndle. In some cases, it is possible to generalize the type of the reference,

e.g., usejava.awt.Frame to eliminate the need for the domain
coupling between classes by splitting intent from implementation. parameter. HoweveEontDialog needed access to some of the
When fewer domain parameters are needed to annotate an interGraphCanvas functionality, so a different solution was needed.
face (as compared to the corresponding class), ownership domain Mediator Pattern. Defining an interface is sometimes insuffi-
annotations can enforce this idiom. cient to decouple code since referring to an object through its inter-

In particular, an implementation class can require a private face still requires access to the domain the object is in. One solution
ownership domain to be passed as an actual value for one itsis to use the Mediator design pattern|[22, p. 273], as shown here.
parameters. Since a private ownership domain cannot be named by In the original HillClimber implementationyode obtained a
an outside client, the client is then forced to use the interface which reference toGraphCanvas, which violates the Law of Demeter

does not require these parameters. [32], i.e., objects should only talk to their immediate neighbors:
For instance, in the earlieBequence exa}mple (Flgurar;), @DomainParame{ "data" })
the SeqIterator class receives thBequence’s private domain abstract class Entity {

owned and hides the extra parameterization behindItberator @Domair("data<data>") Graph graph;// parent graph
interface. This forces a client of tfB2quence to access the itera- x
tor objects only through theterator interface. A client may not } o
@DomainParamE{ "data" })
even cast théte_ere_ltor refe_rence to 8eqlterator clags. - @Domaininherit¢{ "Entity<data>"})
We used a similar technique to decouple the code in HillClimber class Node extends Entity {
(See Figure 12 for the inheritance hierarchy). The original im-

plementation for clas#lillNode had a field reference of type = 't tge“*e'ghth() { . FontMetri ,
HillGraph. However,HillGraph took the three domain param- }re urn graph.getCanvas (). getFontMetrics ()...;
etersui, logic anddata, which required passing all those param- }

eters taHillNode.
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Figure 12. Partial UML Class Diagram for HillClimber obtained from the original implementation using Eclipse UML [39]. This diagram
does not reflect some of the types introduced during refactoring, sugtragh, IHil1Graph andICanvasMediator.

Extracting an interface froriraphCanvas would not work, as
that reference would still need theé domain parameter. Moreover,
the implementation ofetFontMetrics () could not be moved to

Graph as it required access to objects in thiedomain.

@DomainParamE{ "data" })
abstract class Entity {
@Domain("ui")IGraphCanvas_canvas //

v

ui’ unbound

A mediator was defined as follows:

[ %

* Mediator
*/
interface ICanvasMediator{

@Domair("shared") FontMetrics getFontMetrics ();
}

[ %

*+ Mediator implementation class

#/

@DomainParam@E{ "ui" ,"data"})

class Mediatorlmpl implements ICanvasMediator{
@Domairn("ui<ui,data>")GraphCanvas_canvas

interface

Mediatorimpl (@Domair("ui<ui,data>")GraphCanvas c){
this.canvas= c;

@Domair("shared") FontMetrics getFontMetrics (){
return canvas getFontMetrics ();

}
GraphCanvas initializes the mediator:
@DomainParam@E{ "ui" ,"data" })

class GraphCanvasextends ...

@Domair("data<ui,data>")Mediatorimpl mediator

@Domair("data")ICanvasMediator getMediator (f
return mediator;
}

}

Entity andNode can then use the mediator as follows:

@DomainParamE{ "data" })
abstract class Entity {
@Domair("data") ICanvasMediator_mediatar

R
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[ % %
+ DrawApplication defines a standard presentation
+ for standalone drawing editors

*/

@DomainParam@g{ "M", "vV", "C"})
@Domaininherit{{"DrawingEditor<M,V,C>", ...)

class DrawApplication implements DrawingEditor ... {

// Opens a new window with a drawing view.
@DomainReceive("unique")
protected void open(...) {

flconkit = new Iconkit(this);

}

class lconkit {
static @Domair("unique")lconkit fglconkit = null;
/Il Constructs an Iconkit that uses the given editor
/l to resolve image path names.
@DomainReceivef"unique")
public Iconkit(@Domair("unique")Component comp{
fglconkit = this;

}
}

Figure 13. Annotating a singleton usinghique.

@DomainParamE{ "data" })
@Domaininherit{{"Entity<data>"})
class Node extends Entity {
int getHeight() {
return getMediator (). getFontMetrics ()...;

}

5.7 Ownership domains can help identify singletons

While adding ownership domain annotations, we discovered a cu-
rious instance of the Singleton design patt@runkKit’s construc-
tor was not private, although it had a statiestance () method.
Indeed, there is anique instance obrawingEditor (the appli-
cation itself) and anique IconKit (See Figuré 13) at runtime.

6. Expressiveness Challenges

In this section, we discuss some of the expressiveness gaps that we
encountered, some of which had been previously mentioned.



class DrawApplication implements DrawingEditor

1
4

class MDI_DrawApplication extends DrawApplication

@DomainParamE "M", "v", "C"})
@Domaininherit{{"MDI_DrawApplication<M,V,C>"})
class JavaDrawApp extends MDI_DrawApplication {

@Domain{{ "Model", "View", "Controller"})
class Main {
@Domain("View<Model ,View,Controller>")
JavaDrawApp app =new JavaDrawApp ();

public static void main(
@Domair("lent [shared]") String args[]) {
@Domain("lent")Main system =new Main();

Figure 14. Defining the top-level domains in a separate class.

6.1 An object cannot be in more than one ownership domain

Ownership domains, as most other ownership type systems, support

only single ownership, i.e., an object cannot be part of more than
one ownership hierarchy. Proposals faultiple ownership[11]

lift this restriction in other type systems. Ownership domains do
not supportownership transfef31] either, i.e., an object’s owner
does not change — onlyhique objects can flow between any two
domains. As a result, many fine-grained ownership domains cannot
be defined to represent multiple roles in design patterns: e.g., if an
object is both a mediator in the Mediator pattern and a view in the

/% %
+ DrawingView renders a Drawing and listens to its
x+ changes. It receives user input and delegates
* it to the current Tool.
*/
@DomainParamE{ "M", "v", "C"})
@Domaininherit¢{{"DrawingChangeListener<M,V>"})
interface DrawingView extends DrawingChangelListener .. .{
I/l Add a listener for selection changes
void addFigureSelectionListener (
@Domairn("?<M,V,C>") FigureSelectionListener fsl);

@Domain{{ "owned" })

@DomainParamE{ "M", "v", "C"})

@Domaininherit{{"DravingView<M,V,C>"})

class StandardDrawingViewimplements DrawingView ... {
I/l Registered list of listeners for selection changes
private @Domair("owned<?<M,V,C>>")
Vector<FigureSelectionListener fSelectionListeners;

StandardDrawingView (
@Domair("v<M,V,c>")DrawingEditor editor, ...){
/1 editor is in 'V’ domain parameter, not 'C’!
addFigureSelectionListener(editor);

I/l Add a listener for selection changes.

/I Command implements FigureSelectionListener

// but Command is in the 'C’ domain parameter!

void addFigureSelectionListener (
@Domair("?<M,V,C>") FigureSelectionListener fsl)
fSelectionListeners.add(fsl);

Model-View-Controller pattern, it cannot be in botiMadiator
ownership domain and&iew ownership domain at the same time.
For instance, creating top-level ownership domains to corre-
spond to the design in Figure 6 would have been more challeng-
ing than creating the three top-level domainsiMoedel, View and
Controller: placing abrawingEditor objectin aMediator do-
main would have prohibited it from also being in thisew domain.

6.2 An object cannot place itself in a domain it declares

An object cannot place itself in an ownership domain that it de-
clares. This is problematic for the root application object, i.e., the
JavaDrawApp instance (JavaDrawApgextend®rawApplication
which in turn extend®rawingEditor). True to form, we solve
this problem with an extra level of indirection by creating a fake
top-level clas$lain to declare thélodel, View andController
top-level ownership domains and declare fheaDrawApp object

in theview domain (See Figufe 14).

6.3 Public domains are hard to use

Public domains make the ownership domains type system more
flexible thanowner-as-dominatotype systems [15]. Also, public
domains are ideal for visualization because placing an object inside
a public domain of another object relates these objects without
cluttering the top-level domains [1]. However, public domains are
typically hard to use without refactoring the code. We started using
them in a few cases but quickly abandoned those attempts.

Since the Observer design pattern tends to make communica-

tion between objects implicit, we attempted to represent listeners
more explicitly using ownership domain annotations. For instance,
it might make sense to create a public doniaiSTENERS as a do-
main to hold theListener objects that abserver will notify
— alistener often needs special access to teserver, but
usually does not need special access t@iftgject.

JHotDraw uses a delegation-based event model: for instance,
aDrawingView calls methodfigureSelectionChanged to no-
tify a FigureSelectionListener observer of selection changes.
So it might make sense to declarBIEGzURESELECTIONLISTENERS
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Figure 15. How to annotateddFigureSelectionListener?

public domain ortommand to hold theFigureSelectionListener
objects. ButCommand implementsFigureSelectionListener,

SO aCommand is-aFigureSelectionListener. Thus aCommand
object cannot split a part of itself and place it in the public domain
FIGURESELECTIONLISTENERS that it declares.

6.4 Listener objects are particularly challenging

There were additional complications when trying to highlight the
event subsystem in JHotDraw using ownership domain annota-
tions. Command, which is in theController domain, implements
FigureSelectionListener, and so doeBrawingEditor, which
is in theview domain.

Consider methodaddFigureSelectionListener in (See

Figure 15). How would one annotate the formal paranietgtireSelectionList

The parameter should support both annotatior®,v,C> and
V<M, V,C>. Existential ownership [13, 29, 34] may be the answer
to increase the expressiveness, e.g., by annotating the parameter
with “any” [84]. Other problems of adding ownership domains
annotations to listeners had been previously identified [44].

6.5 Static code can be challenging

Even in such a well-designed program as JHotDraw, we found a
few instances where ownership annotations cannot be made to type-
check. In particular, in Figufe 16, the stafisshtable cannot have
theM, v, andC domain parameters because the domain parameters
declared on the clagsil1DrawingView are not in scope for static
members. Static members can only be annotated stiftred or
unique, and these values cannot flow to tite Vx or Cx method
domain parameters.

Annotating the generiBashtable also requires nested param-
eters:Hashtable has three domain parameters for its keys, values
and entries. BotbrawingView and DrawingEditor takeM, V,
andC as parameters. Although the number of annotations seems
excessive and maybe argues in favor of generic ownership [41], the



@DomainParamE "M", "v", "C"}) @Domain{{ "owned" })

@Domaininherit¢{"DrawingView<M,V,C>"}) @DomainParam@E{ "M" ,"V" ,"C"})
class NullDrawingView implements DrawingView ... { public class UndoManager{
static @Domain("unique<?<?,?,?>,7<?,7,7>,7>") /% *
Hashtable<DrawingEditor , DrawingView dvMgr = ...; * Collection of undo activities
*/
@DomainParam@ "Mx" ,"Vx" ,"Cx" }) @Domair("owned<M<M,V,C>>")Vector<Undoable> undoStack;
public synchronized static @Domain("Vx<Mx,Vx,Cx>")
DrawingView getManagedDrawingView ( void clearStackVerbose (
@Domair("Vx<Mx,Vx,Cx>") DrawingEditor ed) { @Domair("lent<M<M,V,C>>")Vector<Undoable> s) {
if (dvMgr.containsKey (ed)){ s.removeAllElements ();
@Domain("Vx<Mx,Vx,Cx>") }
DrawingView dv = dvMgr.get(ed);
return dv; void clearStackAny (

@Domair("lent<?<?,7,7>>")Vector<Undoable> s) {
s.removeAllElements ();

Yy }

. ; ; i fi 2 void clearStack (
Figure 16. How to annotate oljjects that are stored in static fields® @Domair("lent") Vector<Undoables s) {

s.removeAllElements ();

ownership domains for thigashtable key, value and entries need }

not correspond to thi, Vv andC ownership domains.
A solution that is not type-safe would be to storellaghtable Figure 17. Reducing annotations when they are not really needed.

asObject, then cast down to Hashtable upon use — the equiv-

alent of raw types but without re-implementing them in the own- ] ) ) o

ership domains type system. Another solution would be to refactor Universes [36, 17] on an industrial software application and refac-

the program to eliminate this static field since it gives any object ac- toring the code in the process. Although the subject system in the

cess to all th@rawingView andDrawingEditor objects. Since it ~ case study is larger than JHotDraw (around 55,000 lines of code),

is often unrealistic to perform such a significant refactoring, maybe the author annotated only a portion of the system. The author man-

the best solution would be to support package-level static owner- ually generated visualizations of the ownership structure whereas

ship domains, similar to confined types [9]. we had access to tool support to visualize the ownership structure
_ ] and adjust the annotations accordingly [1].
6.6 Annotations may be unnecessarily verbose Nageli [38] evaluated how the Universes and Ownership Do-

Ownership domain annotations tend to be verbose: e.g., formal Mains type systems express the standard object-oriented design pat-
method parameters need to be fully annotated even if they are nott€'ns [22]. However, in real world complex object-oriented code,
used in the method body or used in a restricted way. This producesdesign patterns rarely occur in isolation [43]. As we discussed ear-
particularly unwieldy annotations for containers of generic types. lier, these subtle interactions, combined with the single ownership
In Figure/ 17, methodlearStackVerbose indicates the cur- constraint of the type system, make the annotations difficult.

rent level of annotations needed. It should be possible to leave In @ previous case study, we re-engineered HillClimber using
out domain parameters when they are not really needed. ThisArchJava [4] to specify a component-and-connector architecture in
may involve using implicit existential ownership types as in code and owngrshlp domain annotations to specify the dat.a sharlng
clearStackAny: i.e., there exists some domain parametts [2]. In the earlier case study, we performed refactorings similar to
d2, d3, d4, such that the formal method parameteould be an- the ones described here. However, adding ownership domain anno-
notated withlent<d1<d2,d3,d4>>. Using appropriate defaults,  fations to the ArchJava program seemed easier. Indeed, ArchJava’s

the annotations could probably be reduced to the level needed toport construct effectively reduces coupling; in the plain Java im-

annotate a raw type, as showndhearStack. plementation, the same effect had to be achieved using program-
ming to interfaces, using mediators, etc.
6.7 Manifest ownership can reduce the annotation burden ArchJava’s properties are available at the expense of various re-

The current defaulting tool only adds tkaared annotation to strictions on object-oriented implementations. The previous case
String objects. However, during the annotation process, we found study also identified that adding ownership domain annotations re-
ourselves adding thehared annotation to many other types such quired less effort than encoding the architectural structure in Arch-
asFont, FontMetrics, Color, etc. Specifying a per-type default Qava@PB]. Fewer defects are introduced since code th_at passes_ob-
globally and not for every instance, asrimanifest ownershifl3] ject references need not be changed and the ownership annotations

would have reduced the annotation burden. need not affect the runtime semantics of the program. Moreover, the
ownership domain annotations, while tedious to add manually, are
6.8 Reflective code cannot be annotated relatively straightforward once the top-level domains are decided,

JHotDraw uses reflective code to serialize and deserialize its statetOMPared to re-engineering to use ArchJava. . .
Adding ownership domains annotations manually still required

and such code cannot be annotated using ownership domains [6]. . "> - . -
9 p dom: [6] significant effort, and researchers are still looking at scalable infer-

6.9 Annotate Exceptions adent ence of ownership domain annotations/[6} 16]. Current inference

We annotated exceptions willent since we were not particularly techniques [35, 33] however only_ |nfer_ the equivalentoohed, .
shared, lent andunique annotations, i.e., they assume a strict

interested in reasoning about them. However, richer annotations are - - S :
possible [45]. owner-as-dominator hierarchy which is not flexible enough to rep-

resent many design patterns. Some approaches do not map the re-
sults of the analysis back to an ownership type system [35, 33]. A
7. Related Work fully automated inference cannot create multiple public domains in
Case studies applying ownership type systems on real code are fewone object and meaningful domain parameters, which are critical
and far between. &thler [25] documented a case study applying for representing the abstract design intent, as in the three top-level
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Model, View, andController domains in JHotDraw. Existing in- [18] A. D. Eisenberg and G. Kiczales. Expressive Programs through
ference algorithms often generate imprecise annotations, producing Presentation Extension. KOSD, 2007.

for each class a long list of domain parameters, often placing each [19] M. D. Ernst and D. Coward. JSR 308: Annotations on Java types.
field in a separate domain, and annotating many more objects as http://pag.csail.mit.edu/jsr308/, 2006.

shared or lent than necessary [6, 16]. [20] Universes Toolsuww.sct.ethz.ch/research/universes/tools/,

2007.

8. Conclusion [21] R. M. Fuhrer, F. Tip, A. Kiezun, J. Dolby, and M. Keller. Efficiently
We presented an annotation-based system that re-implements the  Refactoring Java Applications to Use Generic LibrariesEGOOP,
ownership domains type system as a set of Java 1.5 annotations, :
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Abstract

Representation exposure is a well documented and studied prob-
lem in object-oriented systems. We introduce the Potential Access
Path methodology as a tool to reason about composite objects and
protection of their representation. Our system enforces the owner-
as-modifier disciplin, which does not restrict aliasing but requires
that all modifications to an encapsulated aggregate are initiated by
the aggregate’s owner. A novel design choice in our system is the
free mode that allows read-only aliases. This new weak unique-
ness property provides us with additional flexibility to transfer sub-
components from one aggregate to another.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.1.5 [Programming
Techniques]: Object-oriented Programming

General Terms Languages, Security, Theory

Keywords  Alias protection, Representation exposure, Ownership
types, State encapsulation, Java

1. Introduction

The recursive combination of smaller objects to one composite ob-
ject (object composition) is a central technique in the construction
of object-oriented software. The encapsulation of such composite
objects is an important criterion for the quality of object-oriented
designs. A lack of encapsulation makes the composite object’s cor-
rect functioning depend on its context — its implementation cannot
be verified in a modular way and cannot be safely reused in new
contexts.

When discussing object-oriented software systems one often
considers three related notions of the object concept. At the base-
level, the system is a flat ”sea” of elementary implementation ob-
Jects — instances of concrete classes. At the top level we have ab-
stract objects, which are defined solely by their operations’ exter-
nally visible behaviour (e.g described with the concept of interfaces
in Java along with some behavioural specification). The implemen-
tation of this behaviour is delegated to the in-between level — struc-
tures of collaborating implementation objects rooted in a represen-
tative. That representative, aided by its collaborators, provides the
desired functionality specified in the interface. This cluster of co-
operating objects will be referred henceforth as the composite ob-
Ject (or the aggregate).

An abstract object’s invariant — specified in the behavioural
component of the interface — may depend on the internal structure
of the composite object. In general, object-oriented languages do
not prevent “outsiders” from obtaining references to the internal
structure. Such exposure of the internal representation can lead to
mutation of the structure while the representative object remains
completely oblivious to the changes. The invariant may be violated
and the implementation of the abstract object might behave incon-
sistent with its specification.
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Among the first attempts to address the perils of representation
exposure are [11] and [3]. Here the composite object is fully encap-
sulated and neither incoming nor outgoing references are allowed.
The absence of incoming references guarantees that any modifica-
tions to the internal structure of the composite object must be trig-
gered through the representative object’s interface. Unfortunately
the full encapsulation is well too restrictive and many common
object-oriented idioms are impossible to implement in such sys-
tems.

The ownership type (OT) system introduced in [8] relaxes the
restriction on the outgoing references. Each object is treated as a
representative of a certain composite object, which is owned by the
representative. Which objects constitute the owned composite ob-
ject is specified by program annotations (ownership contexts). A
tree-like ownership structure is established among the run-time ob-
jects and the system satisfies the owner-as-dominator property: All
reference chains from the root object to any other object o (thus
any reference chain leading inside the composite object to which o
belongs) must pass through o object’s owner (the representative).
The owner-as-dominator property guarantees again that any mod-
ifications to the internal structure of the composite object must be
triggered through the representative object’s interface. Outgoing
references are permitted, but only upwards in the ownership tree
structure. Incoming references are still prevented by the type sys-
tem. Although more flexible than full encapsulation, many popular
design patterns cannot be implemented using ownership types. An
often cited example is that of the Iterator pattern. A composite ob-
ject — collection — often provides clients with an external iterator
that allows the client to travers the elements stored in the collection.
To move from one element to another, the iterator must be able to
access the internal structure of the collection composite object. But
because the ownership type system does not permit incoming refer-
ences, the iterator must itself be part of the encapsulated composite
object. This again prevents the external client to acces the iterator.

Systems that enforce the owner-as-modifier discipline [14],
[17], [13] and [10] constitute a natural evolution of the ownership
type system. We still have a tree-like hierarchy of object ownership
and the mode annotations determine membership in the composite
object. But unlike in the OT systems, the ownership information
determines the legality of method calls. Arbitrary incoming and
outgoing references are permitted. At the same time the owner-as-
modifier property is satisfied: If an object o is modified (the com-
posite object changes) then the change has been triggered through
a sequence of method calls originating in the o’s owner (the repre-
sentative).

In this workshop paper we describe the Potential Access Pass
methodology introduced in [17] as a tool to reason about composite
objects and representation protection. We also put forward a novel
weak uniqueness property for reference paths that generalizes the
standard notion of free or unique references by allowing read-only



aliases. This property provides us with an additional flexibility to
transfer sub-components from one composite object to another.

Outline In section 2 we present an example — the Set composite
object. Section 3 introduces the Potential Access Path methodol-
ogy. In section 4 we present our language JaM and develop the
formal mode-system. Section 5 provides the operational semantics
for our language. Next we formally verify the CSE property (sec-
tion 6). In section 7 we revisit the Set example — guiding the reader
through the design and implementation process and and providing
detailed JaM code. Related Work follows in section 8. We briefly
conclude the paper with section 9.

2. The Set Example

We will consider now the implementation of an abstract object
Set. Our Set shall provide the standard methods add, remove and
contains. We will also supply an external iterator that provides
clients with the possibility to traverse all the Ser elements. How
would we go about implementing the Set? Let’s assume that we
have available a pre-existing List component (implemented as a
composite object with a single linked list of nodes ni with data
objects di, node iterator nlt and the representative /). We can use
the List component to implement our Set. The node iterator can be
used to implement an iterator over the data elements. Assuming
three elements in our set, we end up with the following (run-time)
object structure — s is the representative of the composite Set object
and dIt an iterator over the set elements:

cll

—

cl2

)
B ) [

In general, it is possible that other objects obtain references into
the above structure. Through these references the Set composite ob-
ject might be modified. For example, an object c// with a reference
to n2, could send the message setNext to n2 with nil as param-
eter, destroying the integrity of the Set composite object. What’s
worse, the representative object s will not even be aware about the
changes. Such situation certainly must be prevented. In a differ-
ent setting, an outsider, c/2, might obtain a reference to d3. Here
it is not so clear, if c/2 should be allowed to modify d3. It all de-
pends on what elements are stored in the set. If the set is used by
an online lottery to maintain a viewable list of winning numbers,
it would be undesirable to allow some dishonest players to make
modifications to the element d3 (replacing legitimate number with
one selected by the devious player). Only the owners of the set
(e.g. lottery providers) should be allowed to make modifications to
d3. On the other hand, if the set is used to keep track of players
registrations, the participants should be permitted to make modifi-
cations to their registration data (update e-mail address, telephone,
etc.). From the set (or lottery organizers) perspective, what matters
is that the created registrations are preserved, not their contents. In
both scenarios we want the representative object s to protect the in-
tegrity of the composite object Ser. What differs is the extent of the
protection.

What does it mean that s protects certain objects? We take the
viewpoint that any changes to the state of these objects should
be initiated by s itself. We will be referring to the set of objects
protected by s as the composite of s. In our Set example, depending
on the context, we have two different composites. (The dark grey
area represents composite that corresponds to the set of player
registrations; the larger boundary corresponds to the set of winning
numbers.):

cl2

We still need to specify what it means that changes to these
objects are initiated by s. To this effect we separate the methods
of s into two kinds: observers and mutators. When executing an
observer on s we are guaranteed of no changes to its instance
variables, whereas mutators have the right to modify them. But
this is not enough. Observers shall never affect changes to instance
variables of any object in the composite of 5. As a consequence, for
an object in s’ composite to change its state, s must be executing
a mutator — s is aware of the fact that it’s composite state might
change.

The next issue we have to address is: How can programmers
specify membership inside a composite object? We borrow here
from work of others [11], [15], [8] and use mode annotations
on object’s references. To begin with, we will use three kinds of
modes: rep, co and read. The most important mode is rep -
if a reference from an object o to an object w is designated by
programmer as rep, we put w into o’s composite. The co mode
states that the two objects linked by a co-reference belong to the
same composite object. The third mode, read, tells us that based on
that particular reference no statement about composite membership
of both objects can be determined. In our original example we
could assign the following modes (if we want to model the winning
numbers set — in the other case replace co-references from n to d
with read-references):

Unfortunately, to address both Set scenarios, we would need to
define the class Node twice - once with a co-reference to its data
and in the second case with a read-reference. If we want to reuse
components, the modes rep, co and read are not enough. We need



more flexibility. To this effect we introduce an additional class of
modes o € A and parameterize the base modes with correlations.
Now our complete modes are of the form p < « u' >. The
intuition is as follows: if o has a reference of mode u <o = u' >
to w and w has a reference of mode « to another object w’, then o
can potentially obtain a p’ reference to w (via a series of method
calls). An a-reference o — w does not tell us anything about
o’ and w’s membership in a composite object. We need some
external reference to o, to possibly determine w’s membership.
The described association modes' and correlations are crucial for
the structural flexibility of the mode technique. They allow a class
to fix the modes of references in its instances without fixing the
reference targets’ assignment to a composite object. This decision
is postponed to each instance’s clients. Hence the same class can
be reused in many different structural contexts. In our example we
obtain the following situation:

free<dit-dest=rep>

cll

—
— Tead<data=read>
- rea lata=reau

> n3

data

read

cl2

The above diagram tells us, that / could potentially obtain an
1st-elem-reference to di, and therefore s could obtain a rep-
reference to dI. s could also obtain a rep-reference to d2 (via [,
nl and n2). Additionally we can infer that dit (the data iterator)
can obtain a read-reference to n2 and dit-dest-reference to d2.
Hence with the help of dIt, s can avail of a rep-reference to d2 —
this time via a different path.

To allow a safe transfer of sub-components, we introduce one
additional mode: free. By assigning a free-reference from o to
w we state that w belongs to a special part of 0’s composite — its
movables. o has the right to transfer the sub-component represented
by w to another aggregate. Note, that w can be aliased by other
read references.

In section 7 we revisit this example and elaborate more on
transfer of sub-components.

3. Potential Access Paths and Composite Objects

During the execution of object-oriented programs, new objects are
created, old ones are destroyed and links between objects (through
which messages can be exchanged) are established. The run-time
system constitutes a graph with objects as nodes and references as
edges. If the programmer has the option of annotating references
with the previously introduced modes, these annotations will be
reflected in the graph.

Our tool in reasoning about composite object protection are
paths of references between two (not necessarily directly) con-
nected objects.

Paths in a graph are non-empty sequences m = h1,...,hy, of
object references h; = o; Hi, w; with 0,41 = w; (also written
7 =01 5 03...0n £ 0,11). Among all the possible paths in
a given graph, we are only interested in certain kinds, namely those
that allow us to make judgements about membership in composite

! They are related to, but nevertheless different from ownership parameters.
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objects. We already discussed in section 2 how to arrive at the
judgment for immediate paths of length one. Now let’s turn our
attention to paths that emerge from combination of two adjacent
edges. We first look at the following path: o 2w p. w
belongs to 0’s composite and therefore ¢ must also belong to o’s
composite (remember the intuition behind co). We could as well

imagine an inferred edge o e  in our graph. This inferred edge
tells us directly, that ¢ belongs to o’s composite. In contrast to

0~ w0 i  does not tell us if o has direct access to . But
potentially, o could obtain a direct access to ¢ if there is a method
of ¢ that returns this and if ¢ is propagated then to o as a result
of some w method. Therefore we will refer to the inferred edge
0%  as a potential access path. As mentioned before, many of
the paths in the graph will convey no meaningful information about
composite object membership. From our perspective interesting
access paths are defined as follows:?

<o, u,w>€g
ghH<o,u,w>€ PAP(o, u,w)

gk m € PAP(o,1,q) ¢t m € PAP(q,co,w)
gk meme € PAP(o, u,w)

For association modes with correlations we have the additional
rule:

gbm € PAP(o,p{...,a=p/,..
gk m € PAP(q,a <>,w)
gF mieme € PAP(o, pu,w)

0,9

The modes rep (and free) not only decide about the composite
object membership, but also allow us to make statements about
the yet to be defined object ownership. If there is a reference

o =25 w, then o is considered the owner of object w (having

complete control about the changes to w’s state). But the ownership
property can extend beyond objects reachable directly via rep-
references (consider the extensions via co- or a-references). We
formalize these concepts with the following definition.

DEFINITION 1. In a graph g we call an object o the owner of an
object w iff there exists an ownership path from o to w. The set of
ownership paths from o to w is defined as follows:

Oshg(0,w) = PAP,(o,rep,w) U PAP,(o, free,w)

For each object o in g, the corresponding composite object is

defined as:
U

Oshg(o,w)#D

compositeg (0) = {o} U compositeg (w).

o is called the representative of the composite object. If w €
compositeg(0) then o dominates w.

In general it is possible that an object has more than one owner
in a given object graph. This is counterintuitive to our understand-
ing that the owner controls the changes to the state of objects in
its composite. We lose this exclusive control right, if an object has
more than one owner. It is desirable (and for our composite state
encapsulation property essential) that all objects in a given object
graph have a unique owner.

DEFINITION 2. We say that an object graph g has the Unique

Owner (UO) property, g £ UO, iff Vo,6,w . (Oshg(o,w) #
@ A Oshg(6,w) # @) = (6 =o).

2 For technical reasons, the PAP’s are determined in the object graph to
which inverses of all co-labeled edges are added



There might be more than one ownership path from o to w, and

in case of rep-paths, two of these paths may start with different
. rep co rep co

references outgoing from 0,e.g0 — ¢ — wando — x —
¢ =5 w. This is fine, as long as the owner is unique. The situation
changes in case of free paths. free-references were introduced to
allow safe transfer of sub-components (after destructive read). In
the previous situation when replacing rep with free we arrive at

following paths: o Iree, 1 = wand o Iree, X = o 2w We
still might have a unique owner of w, but this is not enough. Even if
we read destructively the free-reference from o to x, o will retain
another free access path to w (via %) and it would not be safe
to pass this sub-component to another composite object. Here we
need a stronger property.

DEFINITION 3. We say that an object graph g has the Unique
Head (UH) property, g £ UH, iff Yo,6,w,h,m, h,# (hem €
PAP,(o,free,w) A he# € Oshg(6,0)) = (h h A
mult(h,g) =1).

UH tells us that if we have multiple free paths to an object w,
the initial free-reference must be unique (thereafter we can have
multiple co-paths leading to w). Under such circumstances, after
destructive read of the initial reference we are guaranteed that o
does not own w anymore.

Both UO and UH are properties of the object graph at a frozen
point in time. When the graph changes, so might its compliance
with UO and UH.

When an object w executes a method f, we can find in the object
graph a path of references through which a sequence of method
calls leading to the call of f took place. When the method f is a
mutator, the state of w (and therefore the composite state of any
object o to whose composite w belongs) might change. We expect
that o actually initiates the change. The next two properties help us
with it.

DEFINITION 4. The Representative Control (RC) property en-
sures that if w (belonging to the composite object o) executes a
mutator, then this mutator execution is nested inside a mutator ex-
ecution on o. The Mutator Control Path (MCP) property ensures
that a mutator on an object w is always invoked via a sequence of
calls along the edges of an ownership path to w. >

Notice, that o does not necessarily control the membership in its
composite object — through temporary rep, co or free references
in the execution of observers new paths can be established that add
an object to compositeg (0). Even though this addition is only tem-
porary, it is a change of compositegq (o) not necessarily controlled
by o. The desired state encapsulation property does not require us
to impose control on temporary additions since temporary mem-
bers cannot be used to represent the composite’s state. To represent
state, only a core of composite object’s members can be used that
remains in the composite between method invocations.

DEFINITION 5. For an object o, its state representation is defined
as:

strepg (0) = compositeg (o),
where'g C g is a subgraph containing references stored only in the
instance variables of objects. The composite state of an object o is

defined as
U

wEstrepg (o)

compStatey (o) = state(w)

strepg (0) is a set of implementation objects which collectively
represent the composite object’s state by virtue of their shallow
states.

3 A formal definition of these properties can be found in [17]
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At this point we state the main property of our system:

DEFINITION 6. The Composite State Encapsulation (CSE) prop-
erty ensures that if an execution step of a JaM program trans-
forms an object graph g into g’ such that compState (o) #
compState; (0) then o is executing a mutator”*

One of the features of our system is the ability to move sub-
components from one aggregate to another. The set of all objects
belonging to a composite object can be divided into two parts,
depending on the ability of the composite object to transfer these
objects.

DEFINITION 7. Fixtures is the subset of compositeq(0) that is
reachable via rep path sequences only:

U ({w} U fizturesg (w))

PAPg(o,rep,w)#D

fizturesq (o) =

Movables, another subset of compositeg(0) is defined as:

movablesg (0) = compositeg (0) \ (fizturesg (o) U{o})

Objects in fizturesgy (o) can never be removed from the com-
posite object. movablesq(0) on the other hand contains objects,
which can be safely transferred between different agregates (via de-
structive read of free references). However, the transfer can hap-
pen only as sub-components and not as single objects.

DEFINITION 8. Let w € compositeg(0) and let ¢ be an object
such that g & m € PAP(p,free,w) for some path . Then
compositeg (w) is called a (movable) sub-component of o.

4. Mode Checking in JaM

So far we did not introduce the syntax of our language JaM (Java
with Modes). It is a fully orthogonal extension of a Java subset
that classifies object references by mode annotations. To reduce the
complexity of the formal treatment, we omit several nonessential
features (e.g. static methods, subclassing). The grammar of JaM is
defined below:

pEP D*
deD == classC{(T Id;)" Meth"}
f€Meth == KTId(T Id)"){(T Id;)* S; return E}
k€K mut | obs
teT MC
weM (rep | co|read|free |A)<A>
seA (A= M)*
ses S;S|V =FE|if(F©® E){S}
| while(E © E){S}
0€0 == 1=
ecE val(V) | destval(V) |null <A >
|new<A> C() | E < Id(E")
veV u= wv|thisw

Notable difference from Java is the introduction of modes, marking
of methods as mutator or observer and the explicit read operations
(val and destval). All JaM programs stripped of their annotations
are legal Java programs. Java programs can be translated into legal
JaM programs by annotating all variable/parameter declarations
with co, declaring all methods as mut and introducing the explicit
non-destructive read operator val.

4 A more formal definition of CSE can be found in section 6



In general, when executing JaM programs, the properties listed
in section 3 will not hold. We rule out illegal JaM programs with
the help of a mode-system, which is orthogonal to the standard Java
type-system.’ For space reasons we concentrate here on deriving
the correct modes for expressions. When checking method defini-
tions in the class ¢, we must verify that the method body is well
typed (moded) and the result is of the same type as declared in
the method signature. The verification of the method body happens
with respect to a type/mode assignment I'. It is constructed by as-
signing to this the mode ref co, and by assigning to each local
Vaﬁriable/parameter with the type 7 in the signature, the type ref
T.

The typing judgment I',x = e : 7 expresses that term e is
legal inside a method of kind x (mut or obs) and has static type
7 in the context of type assumptions I' for local variables and
parameters. Selected rules for deriving types/modes in base-JaM
are given below:

D,kbv:ref T 7" = 7[free — read]
Ikt val(v):7*

'k v:ref freec v =this.y= k=mut
I,k b destval(v) : freec

F cok
I'kFnew<d> ¢() : free<d> ¢

IkkFvirefr T,rbFe:7™ F1o<,T
v # this v =this.y = k = mut
I''kFv=e:Cmd

Dokbe:pe FH(f:7iis71)eX(ue)
k¥ =mut = k = mut A u # read
F,K,FCVL'ZTZ-/ FT{ S'm Ti
Nkbe< f(e): 7

Non-destructive read of a variable v is assigned the type 7 of the
reference stored in that variable. But this works only if the mode of
the reference is rep, co or read. If the mode is free, we cannot
do it. The copy of that reference could be then stored in another
variable with the mode rep (as free can be converted to any other
mode) and the UH property would be violated. We do not want
to disallow a non-destructive read of free variables and therefore
change in such cases the resulting mode to read (which is always
safe).

We can destructively read only free variables (we would not
gain anything by allowing it for rep, co or read). There is no
restriction on reading local variables and parameters, but if the read
variable is an instance variable, we can do it only inside mutators
(we are setting the instance variable to nil, therefore modifying
the state of the object executing the method).

In the creation expression we decided to specify the correlation
set 0 to be added to the free mode of its value. Although not
necessary, it simplifies the formal treatment.

Assignment to instance variables is legal only inside mutators.
Also, the mode of the value must be compatible with the mode of
the variable.”

5 We also disallow certain class of modes — see section 6

6In the full formal system the set of types is extended to include ref T, so
we can distinguish between values of type 7 and variables that hold values
of that type. As ref types are not visible to the programmer, we excluded
them from the JaM syntax.

7We have ;1 <> <, read <>, free<6> <p rep<d>, read<d,a =
W, 8'> <p read <§,d8’> and read <aw = pu> <p read<a = p/> if
1 <m p'. We elaborate more in section 6.
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Method invocations e < f(e1,...,ey) are rather tricky. As-
suming that f has the (mode) signature p — fi it is tempting to
return to the sender of a message f as a result reference with the
mode specified in the signature of f, namely fi. But what the sig-
nature of f tells us is merely the mode of the temporary reference
to the result that the receiving objects has. When this reference is
passed from the receiver to the sender, that mode might have to be
adjusted. Let’s consider the following situation:

Object [ invokes next() on Node nl which returns the co
reference nl — n2. The reference [ — n2 which [/ obtains must
not be a co reference, since n2 must be owned by /. The return of

the co reference can be better understood as the mode-preserving

shortening of two-reference path / P 0l = n2 to a one-

reference path / Z%2, 2. Should, on the other hand, the node n/ call
next () on its co-object n2, then the returned reference’s mode is
not adapted, since the return simply shortens co path n/ = n2 =%
n3 to nl = n3. Analogously, the mode of references passed as
parameters has to be adapted: If / has created a new Node object n0
in its composite (to be included in the list structure), then it should
supply to n0’s setNext operation (expecting a co reference) one
of its rep references, namely / X%, 1, and not a reference [ <> n’
to a node that is a co-object in the same composite as /.

Consequently, two notions of signatures have to be distin-
guished:

Exported signatures The interfaces which all instances of a class
¢ export have a signature 3(c) defined by the class. Its entries
f : pidi — p d specify the types of the parameter values
which implementations of operation f expect to receive, and the
type of the result values which they ensure to produce. Against
this signature, the operations’ implementations in class ¢ are
type-checked.

Imported signatures The interfaces which senders import through
ur-references to c-objects have the signature Y(u,c) with
modes from c-objects’ signature X(c) adapted relative to call-
link mode p.-. Its entries f : p, o u; di — pr o p d specify the
types of the parameter values which the sender must ensure to
supply, and the type of the result values which the sender can
expect to obtain.

The method invokation rule type checks against the imported
signature. The following rule provides us with the imported sig-
nature of a class c relative to the call link p, (here we show the
simplified rule for modes without correlations):

F(f:pidi = pd) € 3(c)
i #rep i = co = U, # read
F(f e o pidi > py o pd) € By €)

How do we read this rule? Our system disallows rep as param-
eter mode and permits calling of methods with co parameters only
via references that are not read. If the call over the . link is legal,




the sender must supply an argument of mode p,- o i (not just ju;).
The returned reference is viewed by the sender as p, o p (and not
). The adaptation, called the import of p through p,. and written
Wr © w, is defined as follows:

pr o read<a = p> = read<a = i O >
pr 0 free<a = pu> = free<a = pr o u>
pr orep<a = p> = read<a = i O 1>
proa<>=yu if pr=p<a=p>.
Let’s verify the plausibility of these definitions with respect to

the result ji-reference returned via a p,-reference (we leave out
correlations for now):

e [, = read: The receiver returns a read reference and therefore
does not know anything about the targets owner. Without this
information, the sender can accept it only as a read reference
— any other choice would be unsafe. This is what y, o read =
read gives us.

[t = free: The sender can safely accept a free reference from
the receiver as free, since it was the unique initial segment of
ownership paths to all co-objects reachable through it, and all
these old ownership paths are destroyed by the removal of the
receiver’s free handle from the graph (via destructive read).
ur o free = free does it.

[ = rep: If the receiver returns a rep reference, the receiver
may still possess further rep handles with the same target, and
thus remain the target’s owner. Hence the sender cannot accept
the handle as free or rep without risking a violation of unique
ownership. Accepting it as co would make the sender a co-
object of the target, and thus also owned by the receiver. This
might raise a uniqueness conflict with any old owner of the
sender. Only read is safe and p, o rep = read gives us the
right mode.

[t = co: If the returned reference is co, i.e., points to the
receiver’s co-object, the sender best accepts it with the mode
1 of the call-link: If i1, is rep or free, then the sender already
had an ownership path to the target by concatenation of the
call-link and the receiver’s co handle. Hence it is reasonable
to shorten it to a direct u,- handle. In case of free, the accepted
reference will replace the unstored free call-link as the unique
initial edge of free ownership paths to the receiver and all
its co-objects. If u, is co then sender and target were already
co-objects through the call-link and the handle of the receiver,
so that a direct co-handle is safe. And if p, is read then the
accepted handle can only be read, since a read call-link gives
the sender no information about the receiver’s owner. Again
r © co = p, is the right choice.

Similarly we consider the parameter passing mechanism. The
receiver of a method expects a parameter of mode fi. The sender
passes [i argument over u.-reference. The call rule tells us that f
must be compatible with p, o fi. Is it sensible?

® (i = read: A parameter of mode read means that the receiver
makes no assumptions about the target’s place in the object
graph. Hence the sender can supply references of any mode and
any mode is compatible with read = p, o read.

e i = free: If the receiver expects a free parameter then
only free references of the sender (which are destroyed in the
call step) can guarantee the necessary uniqueness of the initial
ownership path segments. 1, o free = free does the trick.

e i = rep: If the receiver expects a rep-reference then a ref-
erence to an object in the receiver’s composite object must be
passed. However, no mode on sender’s reference can guaran-
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tee that the target is in the receiver’s composite. Hence methods
with rep parameters are disallowed.

® i = co: A parameter of mode co means that the receiver
expects a handle to an object with the same owner as itself.
If the call-link is of mode p, = read then the sender has no
information about the receiver’s owner and thus cannot know
which handle’s target would have the same status. This situation
is disallowed by the typing rule. The other call-links provide
us with enough information about the owner of the receiver.
If the call-link is of mode p, = co, then sender and receiver
have both the same owner. Therefore it is safe to pass a co-
reference (the object at its end has again the same owner). And
if the call-link is of mode p,, = rep or free then respectively,
rep or free handle of the sender guarantees that receiver and
target have the same owner, namely the sender. In all three cases
Wr © co = . does the trick.

Notice that we are also required to recursively import the modes
“hidden” in the correlations. A related discussion can be found in
[17].

5. Operational Semantics

The formalization of the execution of JaM programs is provided
in the style of small-step semantics. We take the standard ap-
proach, where transformation of program terms (e, 7j, s,om) —
(¢/,1/,s',om’) is defined in the following three contexts: a dy-
namic stack 77 of environments n; € Env that maps local identi-
fiers to locations, a changing store s € Gtore that maps locations
£ € Loc to values currently at these locations and a growing object
map om € Omap that maps identifiers o € O of created ob-
jects to object “values™: tuples of field environments p, (mapping
field names to locations), and method suites F,, (mapping operation
names to methods).

The reduction steps are the expected ones, but we include three
non-standard features specifically for accommodating reasoning
about composite objects:

e We formalize reference values as so-called handles: A handle
is not just the object-identifier w of the target object, but a triple
h =< o,u,w > which also includes the identifier o of the
source object and the mode p of o’s reference to w.

e We record call-links (references through which method invoca-
tions are made) in the computational state (as annotations to the
stack environments)

e Object graph is included (and manipulated) as an explicit fourth
context g of the term reduction rules.

The meaning of program p as a computational process is for-
malized now as a sequence of reduction steps (e, 77, s, om, g) =
(¢/,1,s',om’, g). The transformations starts with the expression
new <> cy ()< main() in the initial context (10, So, 0mo, o) =
(0251 read.nit>» 0, 0, 0). Each reduction step replaces in the term
e one subterm, the redex, by another term. In particular, locations
£ € Loc are substituted for identifiers x (using ) and for field
names this.x (using pcnis). Values of variables are substituted for
read access expressions (using s) and method bodies are substituted
for operation call expressions (using om). Through these substitu-
tions, the transformed terms are not just the statements and expres-
sions of the program syntax, but belong to the larger category R of
runtime terms .*

The sources in all handles in the store and the runtime term
should coincide with the object to which the corresponding store
location or method nesting level belongs (source consistency). At

8 Detailed syntax for R can be found in [17]



locations £ = p,(x) of fields = of object o, we expect to find
only handles s(¢) = h whose source is o. Then the object-map
is source consistent, in symbols, =5 om. Analogously, at locations
£ = n;(x) of local variables and parameters x in environments 7); of
invocations with receiver r, we expect to find only handles s(¢) =
h whose source is r. Then the environment is source consistent,
=s n. And at all method nesting levels in the runtime term e
with corresponding receiver r, we expect to find only handles h
with source r, and locations ¢ containing handles s(¢) = h with
source r. If this is the case the runtime term is source consistent, in
symbols, =, €.

We split the definition of reduction steps into two complemen-
tary aspects. On one side are sub-terms that can be completely sub-
stituted in one step to a new term. This substitution will be captured
in redex replacement rules (e, 77, s, om, g) — (¢’, 1/, s, om’, g).
On the other side we must select a suitable sub-term for the next
substitution. This selection can be conveniently specified with the
help of a reduction context. A reduction context £ is a runtime term
”with a hole” symbolized by ‘[J’. A complete runtime term ¢ =
Ele] is obtained by filling a term e into the hole. Reduction steps
are then written (£[e], 7, s, om, g) = (€]¢’], 7, s’,om’, g') and
performed according to the following reduction rule:

EeRr”
(Ele], 1,5, 0m,g) = (E[e/], 7,8, om’, &)

(6, 777 S, 0, 9) — (6/, 77_‘/, S/, om/, g)

A selection of redex replacement rules is given below.

s(l) =< o,p,w> ' = p[free — read]
(Val(l)7 ﬁ7 s, 0m, g)

’
—)(< o,u',w>,ﬁ,s,om,g@o“—>w)

s(l) =< o, p,w >
(destval(l), 7, s,om, g)
— (<o, p,w >,17, sl =< o, 1,nil >], om, g)

h=<s,u,r> F VarMths(c) = ({z; : ref t;}, F)
fresho € O. freshl; € [ref p; ¢
p={z;—1l;} h;=<o,u;nil >

(new<d> c(),7*np, s, 0m,g) —

(< r,free<d>, 0 >, 7y, s[l; — hi),

omlo—< p, F >],g€9rﬁi>o)

re0. om(r)=<...,F>
F(f) =" 7 f(piciy){w) ¢ 25 s;return e}
fresh! € [ref coc] freshl! € [ref u; ¢
freshl € [ref p; ]
= {this — Ly, — 1}, z; — I}
s =sll =< rcor > 1Y —< 1,0 >,

IZ =<7 uj,nil >
g =g0ssoorSrartso
(<8, pry 7> J(< 8,137, 00 >), 1, 8,0m, §) —
(<< s;returne >>7ﬁ. ﬁgs*,,u,r,’r>7 8/7 om, g/)

l € Loc, ¢
(l =< 0, .EL7G) >,ﬁ,s,0m,g) I

(6,77, 8l < 0,1,& >],om, g8 0 5 S s() Do > @)

(s =s[l— L |1 €im(n)

g =g0s M wostror S wos(im(n))
L return <7, ft, w >>>, 77. ﬁz,s,u7~,7'>7 S, 0, g) I
(<87HTOU7w>7ﬁysl70mvg/)
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Below we provide the rationale for the given semantics rules
(explanation for graph modifications is provided separately):

e Non-destructive read access val(l) copies the value from the
store (at location £) to the runtime term (at the redex position).
This value is always a handle < o, ,w >. In case of a free
handle, an exact copy would immediately violate UH. The copy
is safe if its mode is weakened to read.

Destructive read access destval(l) evaluates to the value at
location /, but resets the store at £ to a nil-handle.

An object creation expression instantiates the class ¢ to a new
object with a fresh object-identifier o. It evaluates to a free
handle from the current (creator) object r to the new object o.
Instantiating ¢ also involves the initialization of fresh locations
¢; of respective types ref u; c;, to nil-handles with source
o and modes p;. Furthermore o is mapped to an object value
<A{zi— L} F >.

A method invocation is executed after all its subexpressions, ar-
guments and the receiver have evalueted. The execution contin-
ues with the body <s; return e>>. The newly created en-
vironment contains this, parameters and local variables. They
are bound to fresh locations of corresponding ref-types. These
locations are initialized to: a handle to the receiver (of mode
co), argument expression values adapted to the parameters’
modes, and nil-handles of the local variables’ modes.

e An assignment statement is executed after the left-hand side
has reduced to a location ¢ and the right-hand side to a value
< o,p/,w’ >. It updates the store at £ to the handle with the
mode adapted according to the location’s store partition.

e A return statement is executed after its return expression
has evaluated to a result handle. Evaluation continues in the
environment 77 with the result handle adapted to the calling
context, i.e., with the sender as the new source and with a
mode adapted to the sender’s perspective. The current top-level
environment is removed from the stack and the locations of the
names in it (parameters, locals, and this) are removed from the
store.
The object graph is formalized as a multiset g € NC*M*O of edges
whose multiplicity represents the number of the corresponding han-
dlesoccurrences in s, 7, or e. The multiplicity of edges is increased
and decreased in accordance with the addition and removal of han-
dles to/from e, n and s.

We will examine now some of the graph transformations during
different reduction steps.

e Non-destructive read increases the multiplicity of the handle
h =< o, ', w >. This models the redex’s substitution to h,
which increases the number of h’s occurences in the term.

Destructive read of a (free) variable leaves the object graph
unchanged: The new occurence of handle h =< o, 1,w > in
the term is balanced by removing one occurence from the store.

New object creation adds creator object r’s initial reference to
the new object w to the object graph: g’ = g < r, free,w >.
This models the redex’s substitution to < r, free,w >.

Method invocation equips the receiver with a new this refer-
ence < r,co,r > and with a parameter handle < r, pu;, w; >
for every argument handle < s, pu;,w; > supplied by the
sender. That is, the multiplicity of < r,co,r > and edges
< r,pi,w; > increases, while that of edges < s, pul,w; >
decreases. This matches the arguments’ disappearance from the
term and the parameters’ and the this-reference’s appearance
at fresh locations in the store. The call-link < s, p,,7 > is



not changed. Its disappearance from the term is balanced by its
occurence in the new top-level environment.

Variable update converts a handle < o, i,& > to < o, y, © >,
i.e., decreases the multiplicity of the first handle and increases
that of the second one. This matches, respectively, the disap-
pearence of the right-hand side handle < o, fi,& > from the
term and the appearance of the handle < o, u, & > at location
£ in the store. Additionally, the multiplicity of the old handle
< o, jt,w > at location ¢ decreases since the update at location
£ overwrites it.

Method return combines the call-link < s, ., r > and the
return handle < r,p,w > to the edge < s, pr o p,w > in
the sender, i.e., the former two edge’s multiplicity decreases
while the latter one’s multiplicity increases. This matches the
appearence of < s, it © w,7 > in the runtime term and the
disappearence of handle < r,u,w > from the term and of
call-link < s, ., r > (together with the finished invocation)
from the environment stack. Additionally, since the locations
of the finished invocation’s variables in the store are reset, the
multiplicities of all (non-nil) handles lost by this are decreased
to keep the object graph in sync.

For the implementations of the JaM language, no representation
of the object graph at runtime is needed. The graph has no impact
on the computation and is invisible from outside of the program.
It can actually be calculated from the other run-time contexts. We
included it in the rules to make the nature of transformations more
obvious.

6. Verifying Run-Time Properties

The reduction rules are a tool that enables us to establish the
properties that we expect to hold during execution of legal JaM
programs. (In the following, eo = new <> ¢, ()< main(), is the
initial expression of a legal program p.)

The ownership paths in all object graphs reachable in the execu-
tion of legal JaM programs satisfy the Unique Owner and Unique
Head integrity invariants.

THEOREM 1. If (eo, 70, S0, 0mo, ) =" (e, 7,8, 0m, g) then
gEUH,UO

The structure of mutator access as recorded in the environment
stack during the execution of legal JaM programs is always con-
sistent with ownership paths as captured in the integrity invariants
Representative Control and Mutator Control Path.

THEOREM 2. If (eo, 70, S0, 0mo, o) =" (e, 7,8, 0m, g) then
8,7 RC and g,77 = MCP

The following theorem is the main result, which establishes the
Composite State Encapsulation property.

THEOREM 3. Let (eo, 10, S0, 0mo, 8o) =" (e, 7], s,0m, g) =
(e',n',s',om’,g'). Then for all o € dom(om):

compState (o) # compState (o)

= Ji<ne r; =0 A K; = mut,

where 1] = 771;1,...71771;2 with h; =< s, pi, i >.

The theorem simply states that if a state of a composite object
(represented by o) changes, then the representative o is executing a
mutator.

The proofs for the first two theorems are by induction on the
number of reduction steps from ep to e. Once we establish these
properties (plus several helpful lemmas), the proof for Composite
State Encapsulation is straightforward.
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Complete set of proofs for JaM and base-JaM (without associ-
ation modes and correlations) can be found in [17]. Although of-
ten tedious and lengthy, proving these results in base-JaM is fairly
manageable. Things change, when introducing association modes
with correlations. While the formal treatment of many JaM prop-
erties is a simple forward adaptation from base-JaM, the proofs of
the unique owner and unique head invariants must be redone com-
pletely. Potential access paths in JaM have much more complicated
structure than in base-JaM. The possibility of extending p-paths to
non-u paths is the culprit. We were forced to restrict permissible
association modes and their correlations.

’

e We don’t consider extensions 0 ~2» ¢ -%» w and 0 *»
g %s w of co- and association paths by association paths.
Also the extension o > ¢ -%» w of potential access paths by

association paths to co- and free paths 0 ~=+ w and o free, w
is disallowed. This simplification is reflected in constraints on
the nesting structure of mode-terms. Only modes free, rep and
read are parameterized by correlations (free<d >, rep<d >
and read < ¢ > are legal, but co< § > and a< d > are not).
Also, only correlations to rep, read and association modes are
permitted (u < o = rep<{d>>, p<a = read<§ >> and
p<la = y<>>).

Implicit mode-conversions from free <> to co<> or a <>
caused by assignment or parameter passing is disallowed. (Te-
dious invariants about all sequences of association paths start-
ing from targets of free< > paths are needed in order to show
that such conversions preserve the uniquness of ownership.)
This simplification is reflected in the definition of the mode
compatibility relation <,,,.

At this point we want to comment on the sub-mode rules introduced
in section 4. There we constrain the width- (more or fewer corre-
lations) and depth- (correlations with compatible modes) compati-
bility between modes. Without this restriction it would be possible
for an object to convert read references to rep. We could weaken
a rep<data=rep<>> reference to w to a rep<data=read<>> ref-
erence. Through this reference the source could store a read ref-
erence in w as a data reference and read it back through the
original reference as a rep. The same scenario can be set up
using width-compatibility. Two distinct rep<data=rep<>> and
rep<data=read<>> references to w could be converted to the
same mode rep<> and then linked by a co-reference. By read-
ing it back through the original references the source can obtain,
as with depth-compatibility, a rep<data=rep<>> reference and
a rep<data=read<>> reference to the same object. Depth- and
width- compatibility in JaM’s type system exists only between
read modes. The read modes are compatible because through con-
verted read references nothing can be stored in the target (since
only observers can be called on the target).

7. The Set Example Revisited

We take a look now at concrete implementation of our Set compos-
ite object. The relevant interfaces are: Iterator<T>, List<T> and
Set<T>. The types of variables, parameters and results are prefixed
by our mode annotations (e.g. rep Node<T>).” We don’t show val

9 Although generic types are not part of our syntax, we use them in the
example. This does not really affect our system, as the mode annotations
are completely orthogonal to the standard Java types.



and destval in our code.'® We also use void methods, which are
not declared in our syntax.!!

interface Iterator<T>{
void stepQ);
dest T current();

}

interface List<T>{
void add(lst-elem T e);
void remove(read T e);
lst-elem T contains(read T e);
free<nit-dest=1lst-elem> Iterator<Node<T>>
getNodeIter();
}

interface Set<T>{
void add(set-elem T e);
void remove(read T e);
set-elem T contains(read T e);
free<dit-dest=set-elem> Iterator<T>
getDatalter();

Inspecting the add method of the List<T> interface we see,
that to add an element to a List, we must supply an element that has
the same composite membership as the other list elements. Notice,
that we are not saying anything about what the membership will
be (e.g in the composite of the list object itself or in some other
composite). This will depend on the context in which List<T>
instantiations are used. The contains method tells us, that when
we look for an element in the list, we can supply any element
without worrying about its composite membership. But if we find
this object, we return it with the information that it belongs to
the same composite as all other list elements. The getNodeIter
method returns an iterator that can be passed to other components
(this is the meaning of free). At the same time we specify that this
iterator’s destination is in the same composite as the list elements
(this is what the correlation <nit-dest=1st-elem> tells us). In
the case of the Set<T> interface we can extract similar information:
we can only add elements that belong to the same composite as all
the other set elements. The set iterator can again be passed to other
components, and the iterator’s destination is in the same composite
as all the set elements.

The List abstract object will be implemented with objects of the
class Node<T>:

class Node<T>{
co Node<T> next;
data T value;

void setNext(co Node<T> n){
this.next = n;

}
void setValue(data T p){
this.value = p;

}

co Node<T> getNext(){

10 The compiler can deduce, based on the context, which read operation
should be used.

"We can view them as syntactic sugar for methods that return this as
result and assign it right back to the variable trough wich the method was
invoked. This is particularly helpful, if we try to send mutators over free
references without losing them.
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return this.next;

}

data T getValue(){
return this.value;
}
}

Here we notice that the next link points to an object in the same
composite as the referring node (co Node<T> next). The values
stored in our nodes belong to some yet unspecified composite data.
The signature of the setNext method tells us, that we must provide
an object belonging to the same composite as the node executing
that method.

Next we implement a node iterator, that allows us to traverse
nodes contained in some structure:

class NodeIt<T> implements Iterator<Node<T>>{
nit-dest Node<T> curnode;

void startAt(nit-dest Node<T> n){
this.curnode = n;

}

void step(){

this.curnode = this.curnode<=getNext();

}

nit-dest Node<T> current(){
return this.curnode;

}

Here the iterrator points to a current node that belongs to some
composite nit-dest. To set up the initial point of the node traver-
sal, we need to supply a node that belongs to that nit-dest com-
posite.

We use the node iterator to implement an iterator DataIt<T>
that traverses not the nodes themselves, but the values stored in the
nodes:

class Datalt<T> implements Iterator<T>{
rep<nit-dest=read<data=dit-dest>>
Iterator<Node<T>> nIlt;

void wrap(free<nit-dest=read<data=dit-dest>>
Iterator<Node<T>> newnIt){
this.nIt = newnlt;

}

void step(){
this.nIt<=step();
}

dit-dest T current(){
dit-dest T res;
if (this.nIt<=current() != null){
res = this.nIt<=current()<=getValue();
}

return res;

}

This iterator “wraps” the node iterator. It puts the internal node
iterator nIt into the composite controlled by the data iterator (the
base mode rep does it). Any changes to the state of nIt can only be
initiated on data iterator’s instigation. At the same time we specify
that we don’t expect any information about nit-dest composite



(setting <nit-dest=read<...>> says exactly this). The method
current returns objects in dit-dest composite.

Now we are ready to direct our attention to the List implemen-
tation:

class ListImp<T> implements List<T>{
rep<data=lst-elem> Node<T> anchor;

void add(1lst-elem T e){
rep<data=lst-elem> temp;

temp = anchor;

this.anchor = new<data=lst-elem> Node<T>();
this.anchor<=setData( e );
this.anchor<=setNext( temp );

}
void remove(read T e){
}

1st-elem T contains(read T e){

}

free<nit-dest=rep<data=lst-elem>> Iterator<T>
getNIt O {
free<nit-dest=rep<data=lst-elem>> NodeIt<T>
nlt;
nIt = new<nit-dest=rep<data=lst-elem>>
NodeIt<T>()<=startAt(this.anchor);
return nlt;
}
}

The anchor points to the initial node that is put into the
list’s composite (via rep). Concurrently we specify that objects
in that node’s data composite belong to list’s 1st-elem compos-
ite. getNIt provides a node iterator over the node structure. The
iterator belongs to List’s movables (free mode) and therefore can
be safely passed to other composite objects (e.g the SetImp<T>).
Also, the iterator’s destination objects (the nodes) belong to list’s
composite (via rep).

The remaining part of the puzzle is the SetImp<T> class imple-
mentation:

class SetImp<T> implements Set<T> {
rep<lst-elem=set-elem> T entrylList;

void add(set-elem T e){
if (entryList<=contains(e) == null){
entryList<=add(e)
}
}

set-elem contains (read T e){
return entryList<=contains(e)

}

void remove(read T e){
entryList<=remove (e)

}

free<dit-dest=set-elem> Iterator<T> getDIt(){
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free<nit-dest=read<data=set-elem>>
NodeIt<T> nlt;
free<dit-dest = set-elem> dIt;

nIt = entryList<=getNIt();
dIt = new<dit-dest=set-elem> Datalt();
return dIt<=wrap(nIt);

The Set is implemented with the help of a List component. The
list is put into set’s composite, so only the set can make changes
to list’s structure. Even if some other objects have references to the
nodes, they cannot send setNext () to them. The list elements (in
the composite 1st-elem) end up in the composite set-elem.

In the following code we define the class OnlineLottery
that holds both, the winning numbers and the players’ registra-
tions. winningNumbers are in OnlineLottery’s composite and
therefore cannot ever be transferred to another composite object.
playersReg on the other hand is part of OnlineLottery’s mov-
ables and can at any point be ”sold” to another “lottery enterprise”.

class OnlineLottery {
rep<set-elem=rep> SetImp<NUM> winningNumbers;

free<set-elem=reg> SetImp<REG> playersReg;

free<dit-dest=rep> Iterator<NUM> getWinIt(){
return winningNumbers<=getDIt();

}

free<dit-dest=reg> Iterator<REG> getRegIt(){
return playersReg<=getDIt();

3

void newDraw() {
rep<dit-dest=rep> Iterator<T> internallt
= this<=getWinIt();

while (internallt<=current() '= null) {
internalIlt<=current () <=setNum(random) ;
internalIt<=step()
}
}

free<set-elem=reg> SetImp<REG> sellRegSet() {
return destval(playersReg) ;

}

read<set-elem=reg> SetImp<REG> exposeRegSet() {
return val(playersReg) ;
}
}

OnlineLottery class provides two iterators getWinIt() and
getRegIt (), which either iterate other the set of winning num-
bers or the set of registrations. The getWinIt() iterator, when
used internally (e.g. in the newDraw method), returns rep refer-
ences that can be modified. When requested by an external client,
the exported mode is adapted to free<dit-dest=read> allowing
only read acces to the numbers.'? Player’s registrations belong to
some composite reg and therefore getRegIt() iterator returns
immutable references to an OnlineLottery object. On the other
hand, clients that own reg, will receive mutable references from
getRegIt ().

12 See the import operation in section 4



Our OnlineLottery objects can sell the registration set,
playersReg, to another gambling provider. Notice the destval in
sellRegSet. The new owner can modify the sel1RegSet (adding
and removing registrations), but cannot change the content of any
registrations (only the owner of the reg composite can). We can
also expose the playersReg set, but the value of such operation is
not clear here (the set cannot be modified - we can only obtain an
iterator from such set, which is identical to the iterator obtained via
getRegIt()).

If we want the OnlineLottery to own both, the list of reg-
istrations and the registrations themselves and later on transfer
the ownership of the list and the registrations to another provider,
we might be tempted to declare playersReg with the mode
free<set-elem=free>. Unfortunately we cannot do it — our sys-
tem does not allow it. We simply cannot guarantee the unique-
ness of the references to the set elements (e.g. we could repeat-
edly call observers that return "free” references to the same set
element and every-time store them in a different free variable
of OnlineLottery). To make the described transfer feasible, we
would need to modify the Node class. The mode of value needs
to be change to free. The OnlineLottery (or playersReg set)
owns now the registrations indirectly through the nodes, which
are the direct owners of the registrations). The DataIt must be
changed now as well, returning a read reference (via val — not
destval).

8. Related Work

Blake and Cook were the first to characterize the problem of com-
posite object encapsulation [4]. They warned that the common
handing out of references to part objects enables clients to mod-
ify them in a way violating the integrity of the whole.

The Islands approach [11] proposes three techniques for mak-
ing object interaction more predictable: the observer/mutator dis-
tinction, the uniqueness of certain references and the isolation of
specific regions in the object graph (Islands). The work also con-
tributes a system of access mode annotations with read, unique
and free. read references cannot be assigned to variables but they
can be bound to parameters. Island’s free indicates references to
whose target no other reference exist. unique is a variation on
free with temporary aliases. Only un-captured references are al-
lowed in or out of Islands. They must be either read or aliases of
unique.

Flexible Alias Protection (FAP) [15] is another approach to-
wards encapsulation of composite objects. FAP addresses the cou-
pling caused through sharing of mutable state by a two-pronged
strategy: the absence of all inbound references into composite ob-
jects representation and the independence of container objects from
their contents’ state. It is the first system to introduce the rep mode,
which describes references from an object to its state-representing
components. The ability to specify rep references by some kind of
annotation is fundamental to nearly all typing disciplines for com-
posite object encapsulation. FAP also introduces association roles
«, for a user-defined classification of object references according
to different semantic roles.

Ownership Types (OT) [8] was the first system of composite ob-
ject encapsulation presented with complete formal definitions (typ-
ing rules, interpretation of annotations, encapsulation property) and
a proof sketch. The authors introduced the graph-theoretical notion
of dominator to define the relaxed hiding policy of representation
containment. The concept of co references was introduced in OT
(under the name owner). The authors also observed the importance
of co for the proper typing of this. a roles from FAP reappear
here as context parameters to the class. Like any hiding policy, OT
excludes iterators and other common patterns. Some of the OT de-
scendants and variations are [6], [5], [1], [12] and [16].
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The Calculus in [9] is an ambitious foundational work on the
isolation of regions in the object graph with several technical in-
novations. The OT system is generalized to cover the missing lan-
guage features and make it more flexible. The formalization is done
with the help of an object calculus. The decisive step towards more
flexibility was to loosen the connection between the structure of
object composition and the nesting of protection domains, the own-
ership contexts.

Universes [14] is the first technique that enforces a policy of
encapsulation without hiding. Universes simplify OT by replacing
OTs problematic context parameters by runtime ownership checks.
Universes prevent flexible object creation and composition by fix-
ing new objects owner always to their creator.

AliasJava [2] is characterized as a capability-based system.
It combines aliasing annotations with ownership annotations. It
makes aliasing patterns explicit and enforces a relaxed hiding pol-
icy. The authors are the first to develop a constraint-based algorithm
for inferring the new annotations, and the first to report on the us-
ability of their system for real-world software like Java’s standard
library. A drawback of AliasJava is its need to represent ownership
parameters at runtime.

The work most closely related to ours is [13] and [10] (the later
evolved from [14]). [13] introduces a novel type system “Effective
Ownership Types” (EOT). Each method definition is provided with
effective owners. A method owned by o can only update objects
with an owner that dominates o. The ownership tree is established
in the same manner as in OT. The static type system tracks down
the unsafe mutations. As in our system, object references and non-
mutating access are unrestricted. OT system is a special case of
EOT, where all methods belong to the owner of the defining object.
Unlike in our system, mutator calls via inside-out references are
permitted. EOT also can express mutating iterators. Such iterator
carries a reference to its collection object and can therefore add and
delete elements by making calls on the collection’s interface. This
is not possible in our system. Our system allows the safe transfer of
sub-components (inside the movables) from one composite object
to another. In EOT the owner of an object is fixed for its lifetime
and transfer of sub-components is not possible.

Transfer of ownership has been first described in [7]. The au-
thors introduce the concept of “external uniqueness”. Here unique
describes the only reference into an aggregate from outside the ag-
gregate. Internal aliases to a unique reference are permitted. The
authors work in the owner-as dominator setting. In JaM, free ref-
erences can have arbitrary read aliases and the free reference as
well as its aliases can be captured in variables.

Ownership transfer is not possible in the Universe Types system
[14], [10]. As in our system read-only references (or any in [10])
are allowed to cross the boundary of encapsulation. In both cases
modification of objects through such references is disallowed. [14]
cannot produce iterators that deliver mutable objects (a dynamic
downcast from read to rep is required). This has been rectified
in [10]. The Viewpoint Adaptation in [10] is closely related to our
Signature Import. In our system we have to deal additionally with
free modes. Without them Viewpoint Adaptation and Signature
Import appear almost identical.

9. Conclusion

We presented the Potential Access Path methodology as a toll to
reason about composite objects and their state. The main technical
result of this paper is the Composite State Encapsulation property
— a guarantee that modifications to composite object’s state are
controlled solely by its representative.

Our system enables the definition of nested composite objects
with a complex internal structure, their observation through exter-
nal iterator objects, their incremental construction, and their trans-



fer across abstraction boundaries. It is a purely static system in
which container objects and their iterator objects can each be en-
capsulated individually (state-protected from one another).

The flexibility of our system results from a novel weak unique-
ness property for reference paths. That property generalizes the
standard notion of free or unique references (which are not aliased
by any references). We believe that our system is one of the first to
combine object-as-modifier discipline with transfer of ownership.

In our system all ownership information is removed from ob-
jects. This should mitigate the loss of ownership information prob-
lem in subclassing. The association modes (or roles) are not place-
holders for reference target’s owner, but uninterpreted type tags on
object’s references. The available roles are not limited by a param-
eter list, nor by the references targeting it. Our system allows the
bottom-up construction process, in which sub-objects are created
before their owners.
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