
Resource Usage Protocols for Iterators

Christian Haack ∗

Radboud University Nijmegen, The Netherlands
chaack@cs.ru.nl

Clément Hurlin †

INRIA Sophia Antipolis - Méditerranée, France
clement.hurlin@sophia.inria.fr

Abstract
We discuss usage protocols for iterator objects that prevent con-
current modifications of the underlying collection while iterators
are in progress. We formalize these protocols in Java-like object
interfaces, enriched with separation logic contracts. We present ex-
amples of iterator clients and proofs that they adhere to the itera-
tor protocol, as well as examples of iterator implementations and
proofs that they implement the iterator interface.

1. Introduction
Objects are often meant to be used according to certain proto-
cols. In many cases, such protocols impose temporal constraints
on the order of method calls. A simple example are protocols for
output streams that impose that clients do not write to streams
after the streams have been closed. Whereas object interfaces in
typed OO languages formally specify type signatures, they usually
do not formalize object usage protocols. To improve on this, re-
searchers have recently spent considerable efforts on designing for-
mal specification and verification systems for object usage proto-
cols. Some of these systems are based on classical program logics,
using ghost variables (Pavlova et al. 2004) and temporal logic ex-
tensions (Trentelman and Huisman 2002). The problem with these
specification techniques is that static verification of protocol ad-
herence is difficult because of aliasing. So-called typestate systems
have focused on automatic static checkability. In order to deal with
the aliasing problem, these systems employ linear type-and-effect
systems (DeLine and Fähndrich 2001; DeLine and Fähndrich 2004)
and ideas from linear logic (Bierhoff and Aldrich 2007).

While in simple cases usage protocols only constrain method
call order, more sophisticated objects need more intricate tempo-
ral constraints. A prominent example are iterator objects, as fea-
tured in languages like Java or C]. Usage protocols for iterators are
meant to prevent so-called concurrent modifications of the underly-
ing collection: while an iterator over a collection is in progress, the
collection should not get modified by other actions that interleave
with the iteration1. Concurrent modifications need to be prevented,

∗ Supported by IST-FET-2005-015905 Mobius project.
† Supported by IST-FET-2005-015905 Mobius project and ANR-06-
SETIN-010 ParSec project.
1 Such interleaving actions may execute in the same thread as the iterator.

IWACO’08 July 7, 2008, Paphos, Cyprus.

interface Collection {
Iterator iterator();

}

interface Iterator {
boolean hasNext();
Object next();
void remove();

}

readyFor
Remove

ready
readyFor

Next

retrieve access right
for collection c

turn in access right
for collection c

it.hasNext()=true

result=it.next()
get access right
for result

it.remove()
turn in access
right for result

it.hasNext()

it=c.iterator()

Figure 1. Basic iterator protocol

because they may temporarily break invariants of the collection,
resulting in iterators seeing collections in inconsistent states. Con-
current modifications can be caused both by modifications of the
collection itself (i.e., adding or removing collection elements), or in
some cases by modification of the collection elements (i.e., reset-
ting fields of collection elements). Consider for instance a collec-
tion of mutable point objects, subject to the invariant that the sum of
all x-coordinates is greater than the sum of all y-coordinates. This
invariant could get temporarily broken by removing a point whose
x-coordinate is larger than its y-coordinate. It could also get broken
by resetting a previously positive x-coordinate to zero.

Figure 1 represents a usage protocol for iterators as a state ma-
chine. The protocol prevents concurrent modifications and runtime
exceptions due to iteration beyond the end of the collection. We
now explain the protocol: Following the permission interpretation
of separation logic, each piece of heap space is associated with
an unforgeable permission to access this space2. Such permissions
are abstract entities; they are not represented or checked at run-
time, and are only used in static verification rules. According to
our protocol, when an iterator over collection c gets created, the
caller of c.iterator() temporarily abandons the access permis-
sion for c. Iteration is then governed by a three-state protocol. The
solid state transitions in the picture are associated with method
calls. For instance, in the ready-state the method it.hasNext()
can be called an arbitrary number of times. When it.hasNext()
returns true, the iterator client has the option to either move
to the readyForNext-state or stay in the ready-state. Once in
the readyForNext-state, the iterator client may call it.next().

2 We use the words permission, access right, access ticket interchangeably.

Note that the protocol enforces that it.next() can only be called
after it.hasNext() has returned true at least once. This pol-
icy prevents runtime exceptions due to iterations beyond the end
of the collection (NoSuchElementException in Java). Calling
it.next() takes the iterator client into the readyForRemove-
state, and furthermore gives the client permission to access the
space that is associated with the returned collection element. There
are two ways to go on from the readyForRemove-state: either re-
move the previously returned element from the collection by calling
it.remove() (in this case the access right for the removed element
stays with the client), or abandon the access right for the previously
returned element. The latter state transition is not associated with a
method call or any other concrete runtime event, and for that reason
we have represented it in the picture by a dashed arrow. At runtime,
this dashed state transition “happens” somewhere between the last
access to the state of the previously returned collection element,
and the first concrete event that is enabled in the ready-state or in
a state that can be reached from the ready-state by a sequence of
dashed transitions.

We now express this protocol as a contract in our specification
language (Haack and Hurlin 2008b), which is based on intuition-
istic separation logic (Ishtiaq and O’Hearn 2001; Reynolds 2002;
Parkinson and Bierman 2005). Compared to standard presentations
of separation logic, a peculiarity of (Haack and Hurlin 2008b) is
that we define logical consequence proof-theoretically, using a nat-
ural deduction calculus that is common to the (affine) logic of
bunched implication (BI) (O’Hearn and Pym 1999) and (affine) lin-
ear logic (Girard 1987). Our specification language has just one im-
plication, namely -* (called magic wand, separating implication or
resource implication in BI, and linear implication in linear logic).
Compared to full BI, having just one implication has the advantage
that it simplifies the natural deduction rules, because no bunched
contexts are needed. The usual intuitive interpretations of the lin-
ear logic operators (as for instance explained in (Wadler 1993), and
as we explain below) are sound with respect to the Kripke resource
semantics of separation logic. In particular, we can soundly repre-
sent state transitions by linear implications, as advocated by (Girard
1995) in Section 1.1.4. We find that the linear logic interpretation
of the logical connectives very intuitively relates to the so-called
“permission-reading” of separation logic (and we tend to think in
terms of permissions rather than in terms of heaplets).

Here is the Iterator interface that formalizes Figure 1:

interface Collection {

//@ req this.space; ens result.ready;
Iterator/*@<this>@*/ iterator();

}

interface Iterator/*@<Collection iteratee>@*/ {

//@ pred ready;
//@ pred readyForNext;
//@ pred readyForRemove<Object element>;

//@ axiom ready -* iteratee.space;
//@ axiom (fa Object e)(readyForRemove<e> * e.space -* ready);

//@ req ready; ens ready & (result -* readyForNext);
boolean hasNext();

//@ req readyForNext;
//@ ens readyForRemove<result> * result.space;
Object next();

//@ req readyForRemove<Object>; ens ready;
void remove();

}

This interface declares three heap predicates ready, readyForNext
and readyForRemove. Interface implementations must define
these predicates in terms of concrete separation logic formulas.
The predicate definitions must be such that the two class axioms
are tautologically true, and that the methods satisfy their contracts

(after replacing abstract predicate symbols in method contracts
by concrete predicate definitions). In method contracts, the key-
word req indicates the beginning of the precondition (aka requires-
clause), and the keyword ens the beginning of the postcondition
(aka ensures-clause). Each class extends a generic predicate space,
which has a default definition in the Object class. This predicate
should define the heap space that is associated with an object —
often consisting of the object fields only, but in the case of collec-
tions sometimes also including the object spaces of the collection
elements. Reference types and predicates may be parametrized by
values. For instance, the Iterator class is parametrized by the
collection, and the readyForRemove predicate is parametrized by
the collection element that is ready to be removed. The resource
conjunction F * G expresses that both resources F and G are inde-
pendently available: using either of these resources leaves the other
one intact. The &-operator represents choice. If F & G holds, then
F and G are available, but are interdependent: using either one of
them destroys the other, too. The &-operator can be used to repre-
sent non-deterministic state transitions, as exhibited in the postcon-
dition of hasNext(). The resource implication F -*G grants the
right to consume F yielding G. Boolean expressions e are treated
as copyable resources, i.e., they satisfy e -* (e * e). An example
of a boolean expression is the result-variable in hasNext()’s
postcondition3.

The basic iterator protocol above has several shortcomings: it
does not support multiple read-only iterators over the same collec-
tion, it does not support unrestricted access to immutable collection
elements4, and it does not support collections where the element
access rights stay with the elements rather than being governed by
the collection. In the remainder of this paper, we refine the basic
protocol to address these shortcomings.

2. A Variant of Separation Logic for Java

We sketch our system from (Haack and Hurlin 2008b), which is
based on intuitionistic separation logic.

We distinguish between values and specification values. The
former include integers n, booleans b and read-only variables x. The
latter, in addition, include fractional permissions (Boyland 2003),
which may occur in contracts and as type parameters, but not in
executable code.
Values and Specification Values:

n ∈ Int b ∈ Bool x ∈ Var

v ∈ Val ::= b | n | x π ∈ SpecVal ::= v | 1 | split(π)

Derived form: π

2n
∆= splitn(π)

Fractional permissions are binary fractions in the interval (0,1].
Fractional permissions have type perm. Predicates and types may
be parametrized by fractional permissions. As usual (Bornat et al.
2005), fractional permissions are arguments of the points-to pred-
icate, in order to govern access rights : v. f π7→ e asserts that v. f
contains e and grants π-access to the field v. f . Writing the field re-
quires 1-access, and reading it requires π-access for some π . The
verification system ensures that, at each point in time, the sum of all
fractional permissions for the same heap location is at most 1. As
a result, the system prevents read-write and write-write conflicts,

3 For separation logic experts, we note that each -* in the iterator interface
can equivalently be represented by ⇒: in the postcondition of hasNext()
because the antecedent is pure, and in the axioms because in intuitionistic
separation logic true |= F ⇒G iff true |= F -* G. In the implementation
of the iterator interface, we use a true resource implication.
4 We mean persistent immutability, in contrast to (Bierhoff and Aldrich
2007) which uses the term “immutable” for temporarily immutable state.

while permitting concurrent reads. The key for flexibly enforcing
this global invariant is the split-merge law:

v. f π7→ e *-* (v. f
π/27−→ e * v. f

π/27−→ e)

Interfaces and classes can declare predicates. Semantically,
these are predicates over heaps with at least one additional ar-
gument of type Object — the receiver. Predicates can be extended
in subclasses in order to account for extended object state. Seman-
tically, a predicate extension for predicate P defined in class C gets
*-conjoined with the predicate extensions for P in C’s superclasses.

P ∈ PredId κ ∈ Pred ::= P | P@C

The qualified predicate v.P@C<π̄> represents the conjunction of
all predicate extensions for P in C’s superclasses, up to and in-
cluding C. The unqualified predicate v.P<π̄> is equivalent to
v.P@C<π̄>, where C is v’s dynamic class. Our structured way of
extending predicates facilitates modular verification (preventing re-
verification of inherited methods), and is inspired by the so-called
“stack of class frames” (DeLine and Fähndrich 2004; Barnett et al.
2004).

Expressions are built from values and read-write variables, us-
ing a set of operators that includes standard relational and logical
operators, and an operator C isclassof v that returns true iff C
is v’s dynamic class. Formulas are built from boolean expressions,
the points-to predicate and defined predicates, using a small set of
logical operators.
Specification Formulas:

op ∈Op ⊇ {==,!=,!,&,|} ∪ {C isclassof |C ∈ ClassId}
lop ∈ {*,-*,&} qt ∈ {ex,fa} ` ∈ RdWrVar

e ∈ Exp ::= π | ` | op(ē)
F ∈ Formula ::= e | v. f π7→ e | v.κ<π̄> | F lop F | (qt T x)(F)

Derived forms: v. f π7→ T ∆= (ex T x)(v. f π7→ x)
v.κ<π̄,T, π̄ ′>

∆= (ex T x)(v.κ<π̄,x, π̄ ′>)
F *-*G ∆= (F -*G) & (G -*F)

F ispartof G ∆= G -* (F * (F -*G))

Appendix A presents a natural deduction calculus for our log-
ical operators. The natural deduction rules are the standard rules
of (affine) linear logic (Wadler 1993). They are also the standard
rules of (affine) BI (O’Hearn and Pym 1999), as the natural deduc-
tion rules for linear logic and BI coincide for our restricted set of
logical operators. Furthermore, the appendix presents axioms that
capture specific properties of our particular model, namely typed
heaps with subclassing and extensible abstract predicates. The ap-
pendix also presents Hoare rules for a small command language.
These are standard separation logic rules, although we omit some
structural rules that we do not need. The semantic interpretation
of our formula language is pretty standard and is detailed in our
technical report (Haack and Hurlin 2008a). There we also prove
the soundness of our axioms with respect to the semantic model,
as well as soundness of the Hoare rules: verified programs are par-
tially correct, data-race free and never dereference null.

We assume that the Object class contains the following default
declaration of the space-predicate:

class Object {

//@ pred space<perm p> = true;
//@ axiom space<p> *-* (space<p/2> * space<p/2>);

}

In the class axiom, we have omitted a leading universal quantifier
over p. By convention, free variables in class axioms that are not
bound by class parameters are universally quantified in front of
the axiom. The space-predicate in the Object class is meant to

final class MutableInteger {

//@ private int x;

//@ pred space<perm p> = x
p7−→ int;

//@ ens space<1>;
public MutableInteger(int x) { this.x = x; }

//@ <perm p> req space<p>; ens space<p>;
public int get() { return x; }

//@ req space<1>; ens space<1>;
void set(int x) { this.x = x; }

}
final class Integer {

//@ private int x;

//@ pred space<perm p> = (ex perm q)(x
q7−→ int);

//@ axiom (fa perm p,q)(space<p> *-* space<q>);

//@ <perm p> ens space<p>;
public Integer(int x) { this.x = x; }

//@ <perm p> req space<p>; ens space<p>;
public int get() { return x; }

}

Figure 2. Mutable and immutable integer objects

be extended in subclasses. Note that the class axiom imposes a
constraint on the way subclasses may extend it.

Figure 2 presents classes for mutable and immutable integer ob-
jects, which we will use in examples throughout this paper. We
explicitly quantify over auxiliary variables in method contracts, en-
closing quantifiers in angle brackets in front of method declara-
tions (analogously to type parameters in Java). Note that the space-
predicate in the Integer class ignores its parameter. This is inten-
tional. As a result, the class axiom for Integers trivially holds.

3. Iterator Protocols
3.1 Protocol 1 — Permission-parametrized Iterator Type
Our first protocol parametrizes the Iterator interface by a frac-
tional permission:

interface Collection {

//@ req space<1> * e.space<1>; ens space<1>;
void add(Object e);

//@ <perm p> req space<p>; ens result.ready;
Iterator/*@<p,this>@*/ iterator();

}

interface Iterator/*@<perm p, Collection iteratee>@*/ {

//@ pred ready;
//@ pred readyForNext;
//@ pred readyForRemove<Object element>;

//@ axiom ready -* iteratee.space<p>;
//@ axiom readyForRemove<e> * e.space<p> -* ready;

//@ req ready; ens ready & (result -* readyForNext);
boolean hasNext();

//@ req readyForNext;
//@ ens readyForRemove<result> * result.space<p>;
Object next();

//@ req readyForRemove<Object> * p==1; ens ready;
void remove();

}

The interface can be instantiated to give rise to read-write iterators,
read-only iterators, and iterators over collections of immutable ob-
jects, see Figure 3. In the third instantiation, direct access of im-
mutable collection elements is allowed. In the first two instantia-
tions, access to mutable collection elements is governed by the col-
lection. Fortunately, however, the collection releases access control
to collection elements that get removed, see the read-write iterator
in Figure 3.

Read-write iterator (Protocol 1):
Collection c = new List();

{ c.space<1> }
MutableInteger i0 = new MutableInteger(0);

{ i0.space<1> * c.space<1> }
c.add(i0);

{ c.space<1> }
MutableInteger i1 = new MutableInteger(1);
c.add(i1);

{ c.space<1> }
Iterator<1,c> it = c.iterator();

{ it.ready }
if (it.hasNext()) {

{ it.readyForNext }
MutableInteger x = (MutableInteger) it.next();

{ it.readyForRemove<x> * x.space<1> }
x.set(42);

{ it.readyForRemove<x> * x.space<1> }
{ it.ready } (by Iterator axiom)

} { it.ready }
MutableInteger y;

{ it.ready * y.space<1> }
if (it.hasNext()) {

{ it.readyForNext * y.space<1> }
y = (MutableInteger) it.next();

{ it.readyForRemove<y> * y.space<1> }
it.remove();

{ it.ready * y.space<1> }
} { it.ready * y.space<1> }

{ c.space<1> * y.space<1> } (by Iterator axiom)

Concurrent read-only iterators (Protocol 1):
Collection c = new List();

{ c.space<1> }
MutableInteger i = new MutableInteger(0);

{ i.space<1> * c.space<1> }
c.add(i);

{ c.space<1> }
{ c.space<1/2> * c.space<1/2> } (by Object axiom)

Iterator<1/2,c> it1 = c.iterator();
{ it1.ready * c.space<1/2> }

Iterator<1/2,c> it2 = c.iterator();
{ it1.ready * it2.ready }

if (it1.hasNext() & it2.hasNext()) {
{ it1.readyForNext * it2.readyForNext }

MutableInteger x1 = (MutableInteger) it1.next();
MutableInteger x2 = (MutableInteger) it2.next();

{ it1.readyForRemove<x1> * x1.space<1/2> *
it2.readyForRemove<x2> * x2.space<1/2> }

x1.get(); x2.get();
{ it1.readyForRemove<x1> * x1.space<1/2> *

it2.readyForRemove<x2> * x2.space<1/2> }
{ it1.ready * it2.ready } (by Iterator axiom)

} { it1.ready * it2.ready }
{ c.space<1/2> * c.space<1/2> } (by Iterator axiom)
{ c.space<1> } (by Object axiom)

Iterator over a collection of immutable elements (Protocol 1):
Collection c = new List();

{ c.space<1> }
Integer zero = new Integer(0);

{ c.space<1> * zero.space<1> }
{ c.space<1> * zero.space<1/2> * zero.space<1/2> } (by Object axiom)
{ c.space<1> * zero.space<1> * zero.space<1> } (by Integer axiom)

c.add(zero);
{ c.space<1> * zero.space<1> }

Iterator<1,c> it = c.iterator();
{ it.ready * zero.space<1> }

Integer x;
{ it.ready * zero.space<1> * x.space<1> }

if (it.hasNext()) {
{ it.readyForNext * zero.space<1> * x.space<1> }

x = (Integer) it.next();
{ it.readyForRemove<x> * zero.space<1> * x.space<1> }

x.get(); zero.get();
{ it.readyForRemove<x> * zero.space<1> * x.space<1> }
{ it.ready * zero.space<1> * x.space<1> } (by Iterator axiom)

} { it.ready * zero.space<1> * x.space<1> }
{ c.space<1> * zero.space<1> * x.space<1> } (by Iterator axiom)

A shallow iterator (Protocol 2):
Collection<false> c = new List();

{ c.space<1> }
MapEntry e = new MapEntry(0,42);

{ c.space<1> * e.space<1> * e.ispace }
c.add(e)

{ c.space<1> * e.space<1> * e.ispace }
Iterator<1,false,c> it = c.iterator();

{ it.ready * e.space<1> * e.ispace }
if (c.hasNext()) {

{ it.readyForNext * e.space<1> * e.ispace }
MapEntry x = (MapEntry) it.next();

{ it.readyForRemove<x> * x.ispace *
e.space<1> * e.ispace }

e.getKey(); e.setVal(21);
if (x.getKey() == 0) { it.remove(); }

{ it.ready * x.ispace * e.space<1> * e.ispace }
} { it.ready * e.space<1> * e.ispace }

{ c.space<1> * e.space<1> * e.ispace }

Figure 3. Instances of Protocols 1 and 2

final class MapEntry {

private int key;
private int val;

//@ pred ispace = (ex perm p)(key
p7−→ int);

//@ pred space<perm p> = val
p7−→ int

//@ ens ispace * space<1>;
public MapEntry(int key, int val) {

this.key = key; this.val = val; }

//@ req ispace;
public getKey() { return key; }

//@ <perm p> req space<p>; ens space<p>;
public getVal() { return val; }

//@ req space<1>; ens space<1>;
public setVal(int x) { val = x; }

}

Figure 4. A map entry class

3.2 Protocol 2 — Supporting Shallow Collections
In Protocol 1, access to mutable collection elements is governed by
the collection. This may sometimes be inappropriate. Consider, for
instance, a collection that represents a registry of mutable elements.
Here, a good architecture may let the collection handle the adding
and removing of elements, while leaving the element access rights
with the client who registered the element.

For the sake of discussion, let’s call collections that do not have
access rights to their elements shallow collections, and collections
that govern access to their elements deep collections. It is likely that
most of the time even shallow collections need access to part of the
element state—for instance the key in case of map entries. To safely
share element state between the collection and its client, the shared
state (e.g., the key) has to be immutable. We therefore introduce a
second generic predicate ispace to represent the immutable part
of an object space:
class Object {

//@ pred space<perm p> = true; // mutable part

//@ axiom space<p> *-* (space<p/2> * space<p/2>);
//@ pred ispace = true; // immutable part
//@ axiom ispace -* (ispace * ispace);

}

Figure 4 shows a MapEntry class, where the key-field constitutes
the immutable part and the val-field the mutable part.

In order to have a uniform type for deep and shallow collections,
we parametrize the collection type by a boolean flag:
interface Collection/*@<boolean isdeep>@*/ {

//@ req space<1> * e.ispace * (isdeep -* e.space<1>);
//@ ens space<1>;
void add(Object e);

//@ <perm p> req space<p>; ens result.ready;
Iterator/*@<p,isdeep,this>@*/ iterator();

}

interface
Iterator/*@<perm p, boolean isdeep, Collection<isdeep> iteratee>@*/ {

//@ pred ready;
//@ pred readyForNext;
//@ pred readyForRemove<Object element>;

//@ axiom ready -* iteratee.space<p>;
//@ axiom
//@ readyForRemove<e> * (isdeep -* e.space<p>) -* ready;

//@ req ready; ens ready & (result -* readyForNext);
boolean hasNext();

//@ req readyForNext;
//@ ens readyForRemove<result> * result.ispace
//@ * (isdeep -* result.space<p>);
Object next();

//@ req readyForRemove<Object> * p==1; ens ready;
void remove();

}

When we instantiate the boolean flag isdeep by true, we obtain
a deep collection with a protocol that is essentially equivalent to
Protocol 1. Instantiating isdeep by false results in a shallow col-
lection where the immutable parts of the elements are freely shared
between collection and elements, and access rights to the mutable
element parts remain with the elements. Figure 3 instantiates the
generic collection interface to a shallow collection.

3.3 Protocol 3 — Permission-parametrized Iterator States
A slightly more flexible protocol permission-parametrizes the iter-
ator states instead of the iterator type. With this parametrization,
we can state the following additional iterator axiom:

iteratee.space<1/2> * ready<1/2> -* ready<1>

This axioms allows to convert a read-only iterator to a read-write
iterator when other concurrent read-only iterators have terminated,
see Figure 5. Such a policy is somewhat closer to the policy that
Java’s library implementations of iterators enforce dynamically.
interface Collection {

//@ <perm p> req space<p>; ens result.ready<p>;
Iterator/*@<this>@*/ iterator();

}

interface Iterator/*@<Collection iteratee>@*/ {

//@ pred ready<perm p>;
//@ pred readyForNext<perm p>;
//@ pred readyForRemove<perm p, Object element>;

//@ axiom ready<p> -* iteratee.space<p>;
//@ axiom readyForRemove<p,e> * e.space<p> -* ready<p>;
//@ axiom iteratee.space<1/2> * ready<1/2> -* ready<1>;

//@ <perm p>
//@ req ready<p>;
//@ ens ready<p> & (result -* readyForNext<p>);
boolean hasNext();

//@ <perm p>

Collection c = . . .
{ c.space<1> }
{ c.space<1/2> * c.space<1/2> } (by Object axiom)

Iterator<c> it1 = c.iterator();
{ it1.ready<1/2> * c.space<1/2> }

Iterator<c> it2 = c.iterator();
{ it1.ready<1/2> * it2.ready<1/2> }

if (it1.hasNext() & it2.hasNext()) {
{ it1.readyForNext<1/2> * it2.readyForNext<1/2> }

MutableInteger x1 = (MutableInteger) it.next();
MutableInteger x2 = (MutableInteger) it.next();

{ it1.readyForRemove<1/2,x1> * x1.space<1/2> *
it2.readyForRemove<1/2,x2> * x2.space<1/2> }

x1.get(); x2.get();
{ it1.readyForRemove<1/2,x1> * x1.space<1/2> *

it2.readyForRemove<1/2,x2> * x2.space<1/2> }
{ it1.ready<1/2> * it2.ready<1/2> } (by Iterator axiom)

} { it1.ready<1/2> * it2.ready<1/2> }
{ c.space<1/2> * it2.ready<1/2> } (by Iterator axiom)
{ it2.ready<1> } (by the third Iterator axiom)

if (it2.hasNext()) {
{ it2.readyForNext<1> }

MutableInteger x = (MutableInteger) it2.next();
{ it2.readyForRemove<1,x> * x.space<1> }

x.set(42);
{ it2.readyForRemove<1,x> * x.space<1> }
{ it2.ready<1> } (by Iterator axiom)

} { it2.ready<1> }
{ c.space<1> } (by Iterator axiom)

Figure 5. An Instance of Protocol 3

//@ req readyForNext<p>;
//@ ens readyForRemove<p,result> * result.space<p>;
Object next();

//@ req readyForRemove<1,Object>; ens ready<1>;
void remove();

}

Like in Protocol 2, we could add a boolean flag as a type parameter
in order to support iterators over shallow collections, which we
have omitted for simplicity.

4. Iterator Implementations
We provide linked list implementations for Protocols 1 and 3, and
sketch the proofs that the implementations satisfy their interfaces.
The method implementations are identical in both cases, but the
predicate definitions differ. We omit the implementation of Proto-
col 2, because its proof is not essentially different from the proof
for Protocol 1, but heavier in notation. In contrast to Protocols 1
and 3, the implementation for Protocol 2 has to parametrize the
Node class by a boolean flag isdeep.

Protocols 1 and 3 make use of the following Node class:
final class Node {

/*@ spec public @*/ private Object val;
/*@ spec public @*/ private Node next;

//@ spec public pred space<perm p> =
//@ valspace<p,this> * nextspace<p,this>;

//@ <perm p> req val.space<p> * next.space<p>; ens space<p>;
Node(Object val, Node next) { val = val; next = next; }

//@ req val<1, >; ens val<1, val>;
public void setVal(Object val) { val = val; }

//@ req next<1, >; ens next<1, next>;
public void setNext(Node next) { next = next; }

//@ <perm p, Object x> req val<p,x>; ens val<p,x> * result==x;
public Object getVal() { return val; }

//@ <perm p, Node x> req next<p,x>; ens next<p,x> * result==x;
public Node getNext() { return next; }

}

This class makes use of the spec public modifier for fields and
predicates, which is syntactic sugar:

• Declaring a (possibly private) field f spec public introduces
a predicate f<p,x>, where p is the access permission for this
field and x is the value contained in f :

spec public T f ∆=
T f ;
pred f<perm p,T x>=this. f

p7→ x;
axiom f<p,x> *-* this. f

p7→ x;

• Declaring a predicate spec public exports its definition as an
axiom. For predicate definitions in class C extending D:

spec public pred P<T̄ x̄>=F ∆= pred P<T̄ x̄>=F ;
axiom P@C<x̄> *-* (F * P@D<x̄>)

In the definition of the space-predicate of Node, we use helper
predicates valspace<p,x> and nextspace<p,x>. These predi-
cates are defined in Figure 6, together with other helper predicates.
The figure associates each helper predicate with a picture and a sep-
aration logic formula. The separation logic formula is the official
definition, but is really just a textual representation of the depicted
heap space. The following abbreviation is also handy:

rest(p,x,T) ∆= x.space@T<p> -* x.space<p>

To technically simplify our proofs, we have declared the Node
class final. This is not essential. If Node were not final, we
would have to augment our helper predicates in Figure 6 by ad-
ditional formulas of the shape rest(p,x,Node), in order to represent
the part of x’s heap space that is accounted for in x’s dynamic class,
but not in the Node class (which is a superclass of x’s dynamic
class).

LEMMA 1.

(a) {tail<p,x>}y=x.getNext();{tail1<p,x,y>}
(b) {tail2<p,x,y>}z=y.getNext();{tail3<p,x,y,z>}
(c) {tail3<p,x,y,z>}e=y.getVal();{tail4<p,x,y,z,e> * e.space<p>}
(d) {tail4<1,x,y,z, >}x.setNext(z);{tail1<1,x,z>}

Proof. By Hoare rules. �

LEMMA 2.

(a) tail1<p,x, > -* x.space<p>
(b) tail1<p,x,y> * y!=null -* tail2<p,x,y>
(c) tail4<p,x,y,z,e> * e.space<p> -* tail3<p,x,y,z>

Proof. By natural deduction rules. �

The following predicate represents the difference between y.space<p>
and x.space<p>:

diff<perm p, Object y, Object x> ∆= x.space<p> -* y.space<p>

LEMMA 3. x.space<p> * diff<p,y,x> -* y.space<p>

4.1 Implementing Interface 1
Figure 7 shows an implementation of our iterator interface for
Protocol 1. Note that we have declared the ListIterator class
final. Consequently, predicates of the form v.P@ListIterator<π̄>
are equivalent to v.P<π̄>. Our proofs make use of this prop-
erty when establishing abstract predicates in postconditions. If
ListIterator were not final, we would have to qualify pred-
icates in postconditions by the class ListIterator (unless the
precondition requires the same predicate at method entry).

Figure 8 shows the proof outline for next(). We first translate
the method body to a form where intermediate values are assigned
to read-only variables, because our Hoare rules are formulated for
such a program representation. The proof for next() is straight-
forward given Lemma 1.

class List implements Collection {

/*@ spec public @*/ private Node header;

//@ spec public extends group space<perm p> by
//@ (ex Node x)(header<p,x> * tail<p,x>);

//@ ens space<1>;
public List() { header = new Node(null,null); }

//@ <perm p, Node x> req header<p,x>;
//@ ens header<p,x> * result==x;
Node getHeader() { return header; } // a helper method

//@ <perm p> req space<p>; ens result.ready;
public Iterator/*@<p,this>@*/ iterator() {

return new ListIterator/*@<p,this>@*/(this);
}

}

final class ListIterator/*@<perm p, Collection iteratee>@*/
implements Iterator/*@<p,iteratee>@*/

{

private Node cur, prev, pprev;

//@ pred ready = pprev<1,Node> * (ex Node y,z)(
//@ prev<1,y> * cur<1,z> * tail1<p,y,z> *
//@ diff<p,iteratee,y>);

//@ pred readyForNext = pprev<1,Node> * (ex Node y,z)(
//@ prev<1,y> * cur<1,z> * tail2<p,y,z> *
//@ diff<p,iteratee,y>);

//@ pred readyForRemove<Object e> = (ex Node x,y,z)(
//@ pprev(1,x) * prev(1,y) * prev (1,z) *
//@ tail4<p,x,y,z,e> * diff<p,iteratee,x>);

//@ req iteratee.space<p> * list==iteratee; ens ready<p>;
ListIterator(List list) {

prev = list.getHeader();
cur = prev.getNext();

}

//@ req ready; ens ready & (result -* readyForNext);
public boolean hasNext() {

return cur != null;
}

//@ req readyForNext;
//@ ens readyForRemove<result> * result.space<p>;
public Object next() {

pprev = prev;
prev = cur;
cur = cur.getNext();
return prev.getVal();

}

//@ req readyForRemove<Object> * p==1; ens ready;
public void remove() {

pprev.setNext(cur);
prev = pprev;

}

}

Figure 7. An implementation for Protocol 1

The proofs for hasNext() and remove() are similarly straight-
forward, given Lemmas 1 and 2, and so is the proof of the first
iterator axiom. All of these proofs leave the diff-predicate un-
touched. The diff-predicate has to be “opened” in the proof of
the iterator’s constructor (where the predicate is established), and
in the proof of the axiom that represents the dashed state transition
from readyForRemove back to ready (where the third argument
of diff gets modified). Part (a) of the following lemma is what
is needed to prove the constructor, and part (b) what is needed to
prove the “readyForRemove-to-ready” axiom.

LEMMA 4.

(a) c.header<p,h> * h!=null * rest(p,c,List) -* diff<p,c,h>
(b) (tail3<p,x,y,z> * diff<p,c,x>)

-* (tail1<p,y,z> * diff<p,c,y>)

Legend:

o non-null object o

o possibly-null object o

o
f

field o. f

o o.space

o object reference o

valspace<perm p,Node x> :

x

val
(ex Object o)(x.val<p,o> * o.space<p>)

nextspace<perm p,Node x> :
x
next (ex Node n)(x.next<p,n> * n.space<p>)

tail<perm p,Node x> :

x

x!=null * x.space<p>

tail1<perm p,Node x,Node y> :

yx

x!=null * valspace<p,x>
* x.next<p,y> * y.space<p>

tail2<perm p,Node x,Node y> :

yx

x!=null * valspace<p,x>
* x.next<p,y> * tail<p,y>

tail3<perm p,Node x,Node y,Node z> :

zyx

x!=null * valspace<p,x> * x.next<p,y> * tail1<p,y,z>

tail4<perm p,Node x,Node y,Node z,Object e> :

zyx

r

x!=null * valspace<p,x> * x.next<p,y> * y!=null * y.val<p,e> * y.next<p,z> * z.space<p>

Figure 6. Helper predicates

Expanded method body with pre/postcondition:
{ readyForNext }

i1 =prev;
pprev=i1;
i2 =cur;
prev=i2;
i3 =cur.getNext();
cur=i3;
result=i2.getVal();
{ readyForRemove<result> * result.space<p> }

Proof outline:
{ readyForNext }
{ pprev<1,Node> * prev<1,y> * cur<1,z> * tail2<p,y,z> *

diff<p,iteratee,y> }
i1 =prev;
{ pprev<1,Node> * prev<1,i1> * cur<1,z> * tail2<p,i1,z> *

diff<p,iteratee,i1> }
pprev=i1;
{ pprev<1,i1> * prev<1,i1> * cur<1,z> * tail2<p,i1,z> *

diff<p,iteratee,i1> }
i2 =cur;
{ pprev<1,i1> * prev<1,i1> * cur<1,i2> * tail2<p,i1,i2> *

diff<p,iteratee,i1> }
prev=i2;
{ pprev<1,i1> * prev<1,i2> * cur<1,i2> * tail2<p,i1,i2> *

diff<p,iteratee,i1> }
i3 =cur.getNext(); (by Lemma 1(b))
{ pprev<1,i1> * prev<1,i2> * cur<1,i2> * tail3<p,i1,i2,i3> *

diff<p,iteratee,i1> }
cur=i3;
{ pprev<1,i1> * prev<1,i2> * cur<1,i3> * tail3<p,i1,i2,i3> *

diff<p,iteratee,i1> }
result=i2.getVal(); (Lemma 1(c))
{ pprev<1,i1> * prev<1,i2> * cur<1,i3> *

tail4<p,i1,i2,i3,result> *
diff<p,iteratee,i1> * result.space<p> }

∴ (by definition of readyForRemove@ListIterator<p,result>)
{ result.space<p> * readyForRemove@ListIterator<result> }

∴ (because ListIterator is final)
{ result.space<p> * readyForRemove<p,result> }

Figure 8. Proof outline for next()

Proof. By natural deduction. We provide details for the proof of
part (b): By expanding the definitions of tail3 and space, we
obtain the following implications:

tail3<p,x,y,z> -* (valspace<p,x> * x.next<p,y> * tail1<p,y,z>) (1)

(valspace<p,x> * x.next<p,y> * y.space<p>) -* x.space<p> (2)

The following formulas can be verified by natural deduction:

A * (B -* C) * (A -* A′) * (B′ -* B) -* A′ * (B′ -* C) (3)

A * D * (D * B -* C) -* A * (B -* C) (4)

Now suppose that:

tail3<p,x,y,z> * diff<p,c,x>

Recall that diff<p,c,x> is defined as x.space<p> -* c.space<p>.
Using (1), (2) and (3), it follows that:

valspace<p,x> * x.next<p,y> * tail1<p,y,z>
* (valspace<p,x> * x.next<p,y> * y.space<p> -* c.space<p>)

Applying (4), we then obtain:

tail1<p,y,z> * (y.space<p> -* c.space<p>)

But this is equivalent to tail1<p,y,z> * diff<p,c,y>, by defini-
tion of diff. �

4.2 Implementing Interface 3
Recall that, whereas Protocol 1 permission-parametrizes the iter-
ator interface, Protocol 3 parametrizes the iterator states instead.
The slightly modified parametrization does not break any of our
proofs for the implementation of Protocol 1. However, we need to
refine the predicate definitions in order to be able to prove the the
additional iterator axiom of Protocol 3:

iteratee.space<1/2> * ready<1/2> -* ready<1> (5)

To this end, we define the following auxiliary combinators:

double(P) ∆= P * P

bump(p,c,x) ∆= p!=1 * c.space<p> -* double(tail<p,x> * diff<p,c,x>)
maybump(P, p,c,x) ∆= (P * diff<p,c,x>) & bump(p,c,x)

Intuitively, the maybump-combinator provides the choice to either
keep iterating normally (first factor), or else pay c.space<p> in
order double the permission p associated with the iterator (second
factor). We define the iterator predicates as follows:
final class ListIterator/*@<Collection iteratee>@*/

implements Iterator/*@<iteratee>@*/
{

private Node cur, prev, pprev;

//@ pred ready<perm p> = pprev<1,Node> * (ex Node y,z)(
//@ prev<1,y> * cur<1,z> *
//@ maybump(tail1<p,y,z>, p, iteratee, y));

//@ pred readyForNext<perm p> = pprev<1,Node> * (ex Node y,z)(
//@ prev<1,y> * cur<1,z> *
//@ maybump(tail2<p,y,z>, p, iteratee, y));

//@ pred readyForRemove<perm p, Object e> = (ex Node x,y,z)(
//@ pprev(1,x) * prev(1,y) * prev (1,z) *
//@ maybump(tail4<p,x,y,z,e>, p, iteratee, x));

. . .

}

With these refined predicate definitions, class axiom (5) is readily
proven. It is a consequence of the following lemma:

LEMMA 5. c.space< 1
2> * maybump(tail1< 1

2 ,y,z>, 1
2 , c, y)

-* maybump(tail1<1,y,z>, 1, c, y)

Proof. By natural deduction, using axiom (Ax Share). �

The proofs of next(), hasNext(), remove() and the first iterator
axiom are as for Protocol 1, because these proofs only touch the
parts of the predicate definitions that coincide for both protocols.
In order to prove the constructor and the “readyForRemove-to-
ready” axiom, we have to modify Lemma 4 appropriately:

LEMMA 6.

(a) c.header<p,h> * tail<h,p> * rest(p,c,List) -* bump(p,c,h)
(b) maybump(tail3<p,x,y,z>, p, c, x)

-* maybump(tail1<p,y,z>, p, c, y)

Proof. By natural deduction. We provide details for the proof of
part (b): By Lemma 4(b), it suffices to show the following:

((tail3<p,x,y,z> * diff<p,c,x>) & bump(p,c,x)) -* bump(p,c,y)

So suppose:

(tail3<p,x,y,z> * diff<p,c,x>) & bump(p,c,x)

By expanding bump and then tail, and then using axiom (Ax
Share), we obtain:

p!=1 * c.space<p> -* double(tail1<p,x,y> * y!=null * diff<p,c,x>)

By similar reasoning as in the proof of Lemma 4(b), we then obtain:

p!=1 * c.space<p> -* double(y.space<p> * y!=null * diff<p,c,y>)

But this is the same as bump(p,c,y), by definitions of tail and
bump �

5. Related Work
Recently, iterators have served as a challenging case study for
several verification systems, namely, separation logic (Parkinson
2005), higher-order separation logic (Krishnaswami 2006), a linear
typestate system (Bierhoff 2006; Bierhoff and Aldrich 2007), and
a linear type-and-effect system (Boyland et al. 2007).

Parkinson (Parkinson 2005) uses iterators as an example. He
supports simultaneous read-only iterators through counting permis-
sions, rather than fractional permissions. His iterators are shallow,
and do not give iterator clients access to collection elements that
are retrieved by the iterator.

(Krishnaswami 2006) uses higher-order predicates to specify a
protocol for iterators over linked lists in higher-order separation
logic. His iterators are read-only and shallow. His protocol allows
multiple active iterators over the same collection and enforces that
they are all abandoned once an element is added to the collection.
The protocol uses a single linear token to pass the access right from
iterator A to iterator B (and possibly later back to A via the same
token). In this sense, multiple iterators have to “synchronize”. In
particular, in concurrent programs multiple read-only iterators are
not supported without synchronization, as facilitated by fractional
or counting permissions.

(Bierhoff and Aldrich 2007) present a linear typestate system
based on a fragment of linear logic. The fragment includes mul-
tiplicative conjunction, additive conjunction and additive disjunc-
tion in pre- and postconditions, and uses (as a separator between
pre- and postconditions. In (Bierhoff and Aldrich 2007) and (Bier-
hoff 2006), the authors use iterators as a case study for their type-
state system. Because their system has fractional permissions, they
support concurrent read-only iterators. Their protocols do not not
support deep iterators over mutable collection elements, although
(Bierhoff 2006) supports read-only access to collection elements
that get returned by next(). Our protocol cannot be represented
in their system because their specification language lacks linear
implication (needed to represent the dashed readyForRemove-to-
ready transition). Of course, they could add linear implication to
their language, while still staying in the decidable MALL fragment
of linear logic. They associate our second dashed transition (the
one that terminates an iteration) with the iterator’s finalize()
method, and assume that a checker would employ program anal-
ysis techniques to apply the finalize()-contract without explic-
itly calling finalize(). In practice, this has the same effect as our
first iterator axiom. Neither of their papers presents an iterator im-
plementation, or a mapping of iterator state predicates to concrete
definitions.

Boyland, Retert and Zhao (Boyland et al. 2007) informally ex-
plain how to apply their linear type and effect system (an extension
of (Boyland and Retert 2005) with fractional permissions) to spec-
ify and verify iterator protocols. Their system facilitates concurrent
read-only iterators through fractional permissions. The paper does
not address deep iterators. In contrast to our Iterator interface,

(Boyland et al. 2007)’s interface is not parametrized by the col-
lection. As a result, our methods will sometimes need auxiliary pa-
rameters (in angle brackets), where theirs do not. Like us, (Boyland
et al. 2007) use linear implication to represent the state transition
that finalizes an iterator. They represent this linear implication as an
effect on the iterator() method, whereas we choose to represent
it as a class axiom. Their linear implication operator has a different
semantics than separation logic’s magic wand (which we use).

Compared to the related work discussed above, we believe our
main technical contribution is support for deep iterators. None of
the protocols above allows read/write access to collection elements
that get returned by next(). Our protocols grant read/write access
to these collection elements, and keep access to these elements
under control by requiring that access permissions get abandoned
before the next collection elements can be retrieved.

6. Conclusion
We have discussed several Iterator usage protocols that prevent
concurrent modifications of the underlying collection, and have
formalized them in a variant of separation logic. From the point of
view of iterator clients these protocols are quite similar to recent
protocols expressed in linear typestate systems (Bierhoff 2006;
Bierhoff and Aldrich 2007), but in addition support disciplined use
of iterators over deep collections, by employing linear implications
to represent state transitions that are not associated with method
calls.

Separation logic provides a firm basis for verifying iterator
implementations in addition to iterator clients. Standard soundness
results for separation logic imply that verified programs satisfy
certain global safety properties, notably, that verified multithreaded
programs are datarace-free. In particular, concurrent iterations over
the same collection cannot result in dataraces!

We note that verifying adherence to iterator usage protocols
seems considerably easier than verifying iterator implementations
(as already remarked by (Krishnaswami 2006)). This is not surpris-
ing, because implementing linked data structures is error prone and
certainly much harder than using iterators in a disciplined way. We
note, however, that separation logic proofs for linked data struc-
tures are very concrete and closely related to the kinds of pictures
that we all draw when we write pointer programs.

Acknowledgments
We thank Marieke Huisman and Erik Poll for interesting discus-
sions about this work, and the anonymous reviewers for useful
comments.

References
M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte.

Verification of object-oriented programs with invariants. Journal of
Object Technology, 3(6):27–56, 2004.

K. Bierhoff. Iterator specification with typestates. In Specification and
Verification of Component-Based Systems, pages 79–82, 2006.

K. Bierhoff and J. Aldrich. Modular typestate verification of aliased ob-
jects. In ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications, 2007.

R. Bornat, P. O’Hearn, C. Calcagno, and M. Parkinson. Permission account-
ing in separation logic. In Principles of Programming Languages, pages
259–270, New York, NY, USA, 2005. ACM Press. ISBN 1-58113-830-
X.

J. Boyland. Checking interference with fractional permissions. In
R. Cousot, editor, Static Analysis Symposium, volume 2694 of Lecture
Notes in Computer Science, pages 55–72. Springer-Verlag, 2003.

J. Boyland and W. Retert. Connecting effects and uniqueness with adoption.
In Principles of Programming Languages, 2005.

J. Boyland, W. Retert, and Y. Zhao. Iterators can be independent ”from”
their collections. International Workshop on Aliasing, Confinement and
Ownership in object-oriented programming, 2007.

R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-
level software. In Programming Languages Design and Implementation,
pages 59–69, 2001.

R. DeLine and M. Fähndrich. Typestates for objects. In European Confer-
ence on Object-Oriented Programming, pages 465–490, 2004.

J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
J.-Y. Girard. Linear logic: Its syntax and semantics. In J.-Y. Girard,

Y. Lafont, and L. Regnier, editors, Advances in Linear Logic (Proc. of
the Workshop on Linear Logic, Cornell University, June 1993), number
222. Cambridge University Press, 1995.

C. Haack and C. Hurlin. Separation logic contracts for a Java-like language
with fork/join. Technical Report 6430, INRIA, January 2008a.

C. Haack and C. Hurlin. Separation logic contracts for a Java-like language
with fork/join. In Algebraic Methodology and Software Technology,
number 5140 in Lecture Notes in Computer Science, pages 199–215.
Springer-Verlag, 2008b.

S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data
structures. In Principles of Programming Languages, pages 14–26,
2001.

G. Krishnaswami. Reasoning about iterators with separation logic. In
Specification and Verification of Component-Based Systems, pages 83–
86, 2006.

P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin
of Symbolic Logic, 5(2):215–244, 1999.

M. Parkinson. Local reasoning for Java. Technical Report UCAM-CL-TR-
654, University of Cambridge, 2005.

M. Parkinson and G. Bierman. Separation logic and abstraction. In
Principles of Programming Languages, 2005.

M. Pavlova, G. Barthe, L. Burdy, M. Huisman, and J.-L. Lanet. Enforcing
high-level security properties for applets. In P. Paradinas and J.-J.
Quisquater, editors, CARDIS 2004. Kluwer Academic Publishing, 2004.

J. C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Logic in Computer Science, Copenhagen, Denmark, July 2002. IEEE
Press.

K. Trentelman and M. Huisman. Extending JML specifications with tempo-
ral logic. In Algebraic Methodology and Software Technology, volume
2422 of Lecture Notes in Computer Science, pages 334–348. Springer-
Verlag, 2002.

P. Wadler. A taste of linear logic. In Mathematical Foundations of Computer
Science, pages 185–210, 1993.

A. Verification Rules
Natural Deduction Rules, Γ; F̄ ` G:
(Id)

Γ ` F̄ ,G : �
Γ; F̄ ,G ` G

(Ax)
Γ ` F Γ ` F : �

Γ; ` F

(* Intro)
Γ; F̄ ` H1 Γ; Ḡ ` H2

Γ; F̄ , Ḡ ` H1 * H2

(* Elim)
Γ; F̄ ` G1 * G2 Γ; Ē,G1,G2 ` H

Γ; F̄ , Ē ` H

(-* Intro)
Γ; F̄ ,G1 ` G2

Γ; F̄ ` G1 -*G2

(-* Elim)
Γ; F̄ ` H1 -*H2 Γ; Ḡ ` H1

Γ; F̄ , Ḡ ` H2

(& Intro)
Γ; F̄ ` G1 Γ; F̄ ` G2

Γ; F̄ ` G1 & G2

(& Elim 1)
Γ; F̄ ` G1 & G2

Γ; F̄ ` G1

(& Elim 2)
Γ; F̄ ` G1 & G2

Γ; F̄ ` G2

(Fa Intro)
x 6∈ F̄ Γ,x : T ; F̄ ` G

Γ; F̄ ` (fa T x)(G)

(Fa Elim)
Γ; F̄ ` (fa T x)(G) Γ ` π : T

Γ; F̄ ` G[π/x]

(Ex Intro)
Γ,x : T ` G : � Γ ` π : T Γ; F̄ ` G[π/x]

Γ; F̄ ` (ex T x)(G)

(Ex Elim) x 6∈ F̄ ,H
Γ; Ē ` (ex T x)(G) Γ,x : T ; F̄ ,G ` H

Γ; Ē, F̄ ` H

Java Axioms, Γ ` F:
(Ax True)

Γ ` true

(Ax False)

Γ ` false -*F

(Ax Pure)

Γ ` (e & F) -* (e * F)

(Ax Subst)
Γ ` e,e′ : T Γ,x : T ` F : �

Γ ` (F [e/x] * e == e′) -*F [e′/x]

(Ax Bool)
Γ |= !e1 | !e2 | e′

Γ ` (e1 * e2) -* e′

(Ax Split/Merge)

Γ ` v. f π7→ e *-* (v. f
π/27−→ e * v. f

π/27−→ e)

(Ax Cl) Γ ` π : t<π̄ ′>
axiom(t<π̄ ′>) = F

Γ ` F [π/this]

(Ax Open/Close) Γ ` this : C<π̄ ′>
pbody(P<π̄>,C<π̄ ′>) = F C<π̄ ′> extends D<π̄ ′′>

Γ ` this.P@C<π̄> *-* (F * this.P@D<π̄>)

(Ax Final)
Γ ` v : C<π̄> C is final

Γ `C isclassof v

(Ax Null)

Γ ` null.κ<π̄>

(Ax Sub Cl)
C � D

Γ ` v.P@D<π̄> ispartof v.P@C<π̄>

(Ax Sub Dyn)

Γ ` v.P@C<π̄> ispartof v.P<π̄>

(Ax Dyn)

Γ ` (v.P@C<π̄> * C isclassof v) -* v.P<π̄>

(Ax Share)
the hole in F [] is not to the left of a -*

Γ ` (v. f π7→ e & F [(ex T x)(v. f π ′7→ x * G)]) -* F [v. f π ′7→ e * G[e/x]]

where axiom(t<π̄>) ∆= *-conjunction of all axioms in t<π̄> and its supertypes
pbody(P<π̄>,C<π̄ ′>) ∆= F, if F is P<π̄>’s definition in C<π̄ ′> pbody(P<π̄>,C<π̄ ′>) ∆= true, otherwise

We assume that, prior to verification, commands have been transformed to a form, where all intermediate values are assigned to read-only
variables (ranged over by x):

c ∈ Cmd ::= hc;c | return v
hc ∈ HdCmd ::= T ` | x=` | `=v | x=op(v̄) | x=v. f | v. f =v | x=newC<π̄> | x=v.m(v̄) | if(v){c}else{c′}

Hoare Triples, Γ ` {F}c : T{G} and Γ ` {F}hc{G} a Γ′:
(Seq)

Γ ` {F}hc{H} a Γ′ Γ′ ` {H}c : T{G}
Γ ` {F}hc;c : T{G}

(Return)
Γ ` v : T Γ,result : T ` G : �

Γ ` {G[v/result]}v : T{G}

(Frame)
Γ ` H : � Γ ` {F}hc{G} a Γ′ RdWrVar(H)∩Modifies(hc) = /0

Γ ` {F * H}hc{G * H} a Γ′

(Con)
Γ;F ` F ′ Γ ` {F ′}hc{G′} a Γ′ Γ′;G′ ` G

Γ ` {F}hc{G} a Γ′

(Aux Var)
Γ,x : T ` {F}hc{G} a Γ′,x : T

Γ ` {(ex T x)(F)}hc{(ex T x)(G)} a Γ′

(Var Dcl)
Γ ` T : �

Γ ` {true}T `{` == default(T)} a Γ, ` : T

(Get Var)
Γ ` ` : T

Γ ` {true}x=`{x == `} a Γ,x : T

(Set Var)
Γ ` v : Γ(`)

Γ ` {true}`=v{` == v} a Γ

(Op)
Γ ` op(v̄) : T

Γ ` {true}x=op(v̄){x == op(v̄)} a Γ,x : T

(Get)
Γ;F ` v. f π7→ w Γ ` v : V W f ∈ fld(V)

Γ ` {F}x=v. f{F * x == w} a Γ,x : W [v/this]

(Set)
Γ ` v : V W f ∈ fld(V) Γ ` w : W [w/this]

Γ ` {v. f 17→W}v. f =w{v. f 17→ w} a Γ

(New) C<T̄ ȳ> is declared Γ ` π̄ : T̄ [π̄/ȳ]

init = �T f∈fld(C<π̄>)x. f 17→ default(T)

Γ ` {true}x=newC<π̄>{init * C isclassof x} a Γ,x : C<π̄>

(If)
Γ ` v : boolean Γ ` {F * v}c : void{G} Γ ` {F * !v}c′ : void{G}

Γ ` {F}if(v){c}else{c′}{G} a Γ

(Call)
Γ ` v : V mtype(m,V) = <T̄ z̄>req F ;ens G; U m(W̄ ȳ) Γ ` π̄ : T̄ [σ] Γ ` w̄ : W̄ [σ] σ = (v/this, π̄/z̄, w̄/ȳ)

Γ ` {v!=null * F [σ]}x=v.m(w̄){G[σ ,x/result]} a Γ,x : U [σ]

	Introduction
	A Variant of Separation Logic for Java
	Iterator Protocols
	Protocol 1 --- Permission-parametrized Iterator Type
	Protocol 2 --- Supporting Shallow Collections
	Protocol 3 --- Permission-parametrized Iterator States

	Iterator Implementations
	Implementing Interface 1
	Implementing Interface 3

	Related Work
	Conclusion
	Verification Rules

