
Towards Unifying Immutability and Ownership
(Position Paper)

Paley Li, Alex Potanin
Victoria University of Wellington
{lipale|alex}@mcs.vuw.ac.nz

James Noble, Lindsay Groves
Victoria University of Wellington
{kjx|lindsay}@mcs.vuw.ac.nz

Abstract
Immutability is a highly requested feature missing from the main-
stream object-oriented languages. Boyland [2] argues that im-
mutability cannot be introduced into a language without additional
aliasing-prone mechanisms such as ownership (or fractional per-
missions). Rather than providing support for both of these impor-
tant features independently [8, 6, 1], we explore the possibility of
unifying them into one. We propose three variations starting with
a straight combination of Generic Ownership [12] and Generic
Immutability [13] and finishing with a possibility of a Capabilities-
like system [3]. We hope to explore a pathway to more general,
unified concept.

1. Generic Ownership
Generic Ownership [12, 10] uses generic types supported since
Java 5 to support deep ownership [5, 4] guarantees with no change
to the syntax of the language. Here is an example of a list declared
in an Ownership Generic Java (OGJ) language [9]:

class List <E extends Object ,
O extends World > {...}

One can see how an additional (last) type parameter is an owner
parameter declaring the owner variable for the current list. The
owner of an element is also present implicitly but does not have
to be explicitly declared.

The owners form a small hierarchy with World at the top,
extended by Package, Class, and This used to specify package-
only, class-only, and current instance only ownership.

2. Generic Immutability
Generic Immutability [13] again uses generic types to support both
reference- and object-immutability. Here is an example of a list
declared in Immutability Generic Java (IGJ) language [11]:

class List <I extends ReadOnly ,
E extends Object > {...}

Here immutability parameter comes first and allows list to be
ReadOnly (read-only reference), Mutable (default reference in
Java), and Immutable (reference to an immutable object).

The immutabilities again form a small hierarchy with ReadOnly
at the top, extended by Mutable and Immutable.

This allows a neat way of expressing a method parameter that
only accepts read-only argument without resorting to two method
declarations for the same method (as in C++ when using const):

void foo(Bar <? extends ReadOnly > b) {...}

Here foo will safely accept any type instantiation of Bar, be it
Bar<ReadOnly>, Bar<Mutable>, or Bar<Immutable>.

IGJ also improves on Java by allowing limited variance depend-
ing on the immutability parameter. It is considered unsafe in Java
to allow a list to be variant in its element type parameter. The co-
variance would allow one to have a list of strings to be treated as a
list of objects (potentially trying to add an object instead of string)
and contravariance would allow one to have a list of objects treated
as a list of strings (potentially trying to take out an object as if
though it was a string). Both are bad and Java 5 chose to prohibit
variance in the mean time. However, covariant changes to the other
type parameters are perfectly safe if the immutability parameter is
ReadOnly or Immutable.

3. Why bother combining immutability and
ownership?

Flexible Alias Protection [7] highlighted the problem with “argu-
ment dependence” where a read-only reference can be mutated by
an object elsewhere. Boyland [2] highlights “observational expo-
sure” as a reason enough not to rush into introducing immutability
into the mainstream languages without additional mechanisms such
as ownership or fractional permissions.

Some languages provide support for both in a semi-independent
manner. For example, Joe3 [8] supports ownership annotations on
class declarations together with additional immutability informa-
tion added using + (writable), − (read only), and ∗ (immutable)
symbols. Universes [6] support read only references as a way to re-
fer to objects that one does not have ownership of. Shared objects
in AliasJava [1] are also similar in spirit to read only.

We hope that combining ownership and immutability will be a
safer way of introducing immutability into the mainstream using
a single new concept, rather than two unrelated ones. While at
this stage we cannot provide the most elegant way to unify these
concepts, we hope that our work will bring us closer to one.

4. Variation 1: Straight Combination of Generic
Immutability and Generic Ownership

First variation of combining ownership and immutability would
be to create a language that combines OGJ and IGJ by using
the first type parameter as immutability parameter and the last
type parameter as owner parameter, while the intermediate type
parameters carry the two implicitly. Here is an example using such
language:

class List <I extends ReadOnly ,
E extends Object , O extends World > {...}

No care needs to be taken of combining ownership and immutabil-
ity parameters, but all care needs to be taken to make sure the type
systems behind OGJ and IGJ do not contain conflicts when merged
together. We have performed the exercise of merging the two type



systems this to see the feasibility of having the two features to-
gether. While this is similar in spirit to semi-orthogonal combi-
nations, it does have the advantages of carrying both ownership
and immutability implicitly. For the list example we require only
three parameters instead of five (the ownership and immutability of
the element are implicit inside E just like in Generic Ownership or
Generic Immutability.

The disadvantage of this approach would be that it may not be
expressive enough for the day to day programming tasks. However,
given that both OGJ and IGJ were used to implement Java Collec-
tions, we hope that it is not going to be a problem.

5. Variation 2: Generic Immutability and
Ownership

Second variation would be to combine immutability and owner-
ship parameters into a single hierarchy that can be expressed as im-
mutability parameters parametrised by owners. Here is an example
in such a language:

class List <E extends Object ,
IO extends ReadOnly <?>> {...}

We are currently working on formulating the precise structure of
the immutability-and-ownership parameter hierarchy.

The disadvantage of this approach would be that it is not as
easily understandable by the implementer unless unification is ab-
solutely clearly defined.

6. Variation 3: Generic Access Rights for
Immutability and Ownership

Third and final variation we are proposing for discussion is to use
the ideas in Capabilities for Sharing [3] to outline a small number
of access rights (e.g. Rd for read, Wr for write, Id for a right to
reference, Im for object immutability, XU for external uniqueness).
There can be more basic rights including exclusive versions of the
above or common combinations such as RW for reading and writing.
Here is an example in such a language:

class List <E extends Object ,
O extends Rd <Wr <? extends Package >>> {...}

It is much more tricky to define a relationship hierarchy for these
basic access rights but we are working towards one. Finally, a set
of policies must be defined in terms of such rights to represent deep
or shallow ownership, external and classical uniqueness, object or
reference immutability, and more.

The issues here include whether to wrap the rights around own-
ers as in the example above, or around class instantiations. For ex-
ample, the list above is fixed to have all of its instances readable
and writable and presumably, none of them will be able to be read
only. An alternative that would declare list with the most general
right and allow the types to be instantiated appropriately can look
as follows:

class List <E extends Object ,
O extends Any > {...}

with the instantiation being: List<String<Any>,Rd<This>> for
a list of any strings that is (only) readable by the current instance
only.

An alternative would be to use annotations such as JSR308 or
JML comments while formalising the type system using polymor-
phic types. This may avoid the unnecessary ordering constraints
imposed by type parametrisation.

The disadvantage of this approach can be its excessive com-
plexity, however this may be the most expressive way providing
the most promising start on the path to unification.

7. Towards Unifying Immutability and
Ownership

The ultimate goal of this work is to come up with a new concept
unifying both ownership and immutability to be able to sell im-
mutability for the introduction to a language with generic types as
a single and coherent feature. Just as the Capabilities for Sharing
work attempted originally, this may coincidentally allow a way to
compare the existing varieties of ownership and immutability and
other programming language improvements approaches out there
right now.

We see external uniqueness as essential to our success and we
hope for our resulting language to support it fully. If we allow
exclusive rights where an object gains not just a right to write but to
also not having anyone else writing at the same time, we are delving
into the land of concurrency where we need to make a decision on
how to grant the exclusive right to the requester and in which order.
Thus, this platform may allow bringing together a lot of aspects
of various fields to the ownership-centric programming language
design.

We proposed three variations for unifying immutability and
ownership. There can be more variations that can be discussed
at the workshop. Having both immutability and ownership in the
modern languages would have wide ranging benefits especially in
the presence of concurrency in this age of multi-core programming.

References
[1] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias

Annotations for Program Understanding. In OOPSLA, pages 311–
330, Seattle, WA, USA, November 2002. ACM Press.

[2] John Boyland. Why we should not add readonly to Java (yet). In
(FTfJP), Glasgow, Scotland, July 2005.

[3] John Boyland, James Noble, and William Retert. Capabilities for
Sharing: A Generalization of Uniqueness and Read-Only. In ECOOP.
Springer-Verlag, June 2001.

[4] Dave Clarke. Object Ownership and Containment. PhD thesis,
School of CSE, UNSW, Australia, 2002.

[5] David Clarke, John Potter, and James Noble. Ownership Types for
Flexible Alias Protection. In OOPSLA, pages 48–64, Vancouver,
Canada, October 1998. ACM Press.

[6] P. Müller and A. Poetzsh-Heffter. Programming Languages and
Fundamentals of Programming, chapter Universes: a Type System
for Controlling Representation Exposure. Fernuniversität Hagen,
1999. Poetzsh-Heffter, A. and Meyer, J. (editors).

[7] James Noble, Jan Vitek, and John Potter. Flexible Alias Protection.
In Eric Jul, editor, ECOOP, volume 1445 of (LNCS), pages 158–185.
Springer-Verlag, July 1998.

[8] Johan Östlund, Tobias Wrigstad, Dave Clarke, and Beatrice
Åkerblom. Ownership, uniqueness and immutability. In International
Workshop on Aliasing, Confinement, and Ownership (IWACO’07),
2007. Workshop at ECOOP’07.

[9] Alex Potanin. Ownership Generic Java Download. http:
//www.mcs.vuw.ac.nz/~alex/ogj/, 2005.

[10] Alex Potanin. Generic Ownership. PhD thesis, SMSCS, Victoria
University of Wellington, 2007.

[11] Alex Potanin. Immutability Generic Java Download. http:
//www.mcs.vuw.ac.nz/~alex/igj/, 2007.

[12] Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Generic
ownership. In OOPSLA, 2006.

[13] Yoav Zibin, Alex Potanin, Shay Artzi, Adam Kiezun, and Michael D.
Ernst. Object and reference immutability using Java generics. In
Foundations of Software Engineering, 2007.


