
Pedigree Types

Yu David Liu Scott F. Smith
Department of Computer Science

The Johns Hopkins University
{yliu, scott}@cs.jhu.edu

Abstract
Pedigree Types are an intuitive ownership type system requir-
ing minimal programmer annotations. Reusing the vocabulary
of human genealogy, Pedigree Types programmers can qualify
any object reference with a pedigree – a child, sibling, parent,
grandparent, etc – to indicate what relationship the object being
referred to has with the referant on the standard ownership tree,
following the owners-as-dominators convention. Such a qualifier
serves as a heap shape constraint that must hold at run time and is
enforced statically. Pedigree child captures the intention of encap-
sulation, i.e. ownership: the modified object reference is ensured
not to escape the boundary of its parent. Among existing ownership
type systems, Pedigree Types are closest to Universe Types. The
former can be viewed as extending the latter with a more general
form of pedigree modifiers, so that the relationship between any
pair of objects on the aforementioned ownership tree can be named
and – more importantly – inferred. We use a constraint-based type
system which is proved sound via subject reduction. Other techni-
cal originalities include a polymorphic treatment of pedigrees not
explicitly specified by programmers, and use of linear diophantine
equations in type constraints to enforce the hierarchy.

1. Introduction
In this paper we develop Pedigree Types, a static ownership type
system with a novel vocabulary for declaring how one heap node
is related to another on the ownership tree. The most common rela-
tionships between nodes in a tree are already well-named in human
genealogy: parents, children, uncles, siblings, great grand-uncles,
etc. Our type system borrows this vocabulary and gives an object
the ability to say, “this reference must point to my child” or “that
reference must point to my sibling”. For the entire heap, all invari-
ants associated with all objects are ensured to be consistent glob-
ally, so that a dynamic hierarchy can be statically enforced. From
the view of genealogy, the global consistency of object pedigrees
can be viewed as the case where “no incest exists”: one’s grand-
father cannot also be the grandfather of one’s parent. The standard
property of the ownership tree – aliases to an object cannot be ob-
tained by objects outside the boundary of its parent on the tree – is
also enforced by outlawing encapsulation-breaking pedigrees such
as nephew.

The majority of existing ownership type systems – such as
[NPV98, CPN98, Cla01] – achieve the same goal, but via a very
different approach. They often make use of an explicit form of para-
metric polymorphism by using parameterized classes. For instance,
a Dialog class can be defined as:

class Dialog <t1, t2, t3> {
Data<t2, t3> d;
. . .

}

Here, an ownership type, such as Data<t2, t3>, is formed by
annotating the object type with a sequence of context parameters,
where the first parameter t2 denotes the owner of the object d, and
the rest (t3 here) are parameters to be forwarded down into the im-
plementation of Data, a parameterized class in the same fashion
as Dialog.

Pedigree Types aim to minimize the need for annotation over-
head by programmers. First there is no requirement to conceive and
declare these context parameter lists above and the associated pa-
rameter forwarding. In real-world programs, the number of context
parameters can be quite large, and errors can arise if even a small
mistake is made in this forwarding process; and, the programmer is
distracted from the primary programming task at hand due to her
need to focus on these type system minutae. Furthermore, all pedi-
gree declarations such as child and sibling in Pedigree Types are
optional: programmers only need to declare a pedigree when they
care about the invariant; the other object types are treated as having
polymorphic pedigree, and are inferred and constrained based on
usage. The human pedigree analogy of non-qualified types is “this
person is related to me, but I do not care how, as long as it does
not involve incest.” We believe a principle of minimal declarations
is important to the practical viability of ownership type systems:
if we attempt to go beyond toy programs and deal with programs
containing hundreds or thousands of objects, having inference of
pedigree as the default mode frees the programmer to add declara-
tions only where they really matter.

Pedigree types also make the ownership hierarchy more explic-
itly visible to programmers. Hierarchical decomposition is a fun-
damental principle for controlling software complexity. With ever
larger-scale systems becoming ever more common, the importance
of decomposing systems into well-structured hierarchies to manage
complexity cannot be overstated. There is a long history of pro-
gramming language designs to conquer complexity in a hierarchi-
cal fashion, primarily the development of module systems. While
module systems effectively form a codebase hierarchy, they are less
effective at making hierarchical distinctions in the run-time heap
structure. This hierarchical heap structure nonetheless pervasively
exists: a Main object may intuitively be “composed” of a View
object, a Model object and a Controller object via the MVC
pattern [KP88], and the View object may be composed of several
Dialog objects, and each Dialog object composed of several
Button’s. Intuitively, this compositional structure can be viewed
as a tree reference backbone “overlay” on the general heap refer-
ence graph. Giving programmers the power to explicitly define and
reason about dynamic heap hierarchies helps promote program un-
derstanding: it already exists in their conception of the software,
and bringing it out in the code itself will help refine and clarify
the compositional structure of the heap. For existing ownership
type systems using explicit parametric polymorphism, the struc-
ture of the ownership tree depends on how context parameters are
forwarded, and it is much less visible to programmers when com-

1

pared with Pedigree Types. For instance, we cannot tell from the
code snippet above the relationships between the Dialog object
and the Data object on the tree – that depends on how t1 and t2
are instantiated and forwarded.

With the combination of the two advantages above – minimal
annotation overhead and explicit shaping of hierarchical decom-
position – Pedigree Types have the potential to allow the original
hierarchical decomposition intention of the design, lost during the
Java implementation stage, to be rediscovered. This is possible be-
cause, when all annotations are left out, Pedigree Types de facto are
transformed into an annotation-free inference system for programs
in a Java-like language. We will discuss more about this topic in
Sec. 4.

A major inspiration for Pedigree Types comes from Universe
Types [MPH01]. Two keywords for modifying object references,
peer and rep, are provided to Universe Types programmers, anal-
ogous to what we call a sibling and a child on the pedigree tree.
From this perspective, Pedigree Types aim to extend the philos-
ophy of Universe Types to a more general form for representing
pedigrees beyond peer and rep, so that any pedigree on the tree
can be easily referred to. Additionally we statically infer pedigrees
and thus avoid the run-time overhead of casting some unknown
pedigree to either peer or rep as is done in Universe Types.

In the rest of the paper, Sec. 2 gives an informal description
of the basic ideas of Pedigree Types, which will be formalized in
Sec. 3. Sec. 4 describes a number of extensions and Sec. 5 discusses
related work. We summarize our contributions in Sec. 6.

2. Informal Overview
We now informally introduce the key innovations of our type sys-
tem. Pedigree Types are a general static type system which can be
built on top of any programming language with arbitrary heap ref-
erence structures. This paper describes how they may be built on
top of Java-like languages; see [Liu07] for how they may be built
upon an alternative object model, Classages [LS05].

Fig. 1 gives a code snippet involving a Dialog object with two
Button’s, followed by the UML object diagram for a possible
run-time snapshot. The Dialog logs important actions in two
Logger objects, one of which (publog) is shared with the rest
of the application, logging important actions such as when an OK
button is pressed, while the other (privlog) is only used to log
actions with limited impact during the lifecycle of the Dialog.
A Ctrl object controls the behaviors of the GUI objects. In the
diagram, labels on object associations are pedigree relationships.
Only object associations pertinent to the discussion are shown.

2.1 Hierarchy Shaping with Pedigree Types

The General Form A pedigree type is a regular object type pre-
fixed with a pedigree qualifier, specifying where on the hierarchy an
object should sit relative to the current instance. Informally, when
a field or a variable has a pedigree type whose pedigree qualifier is
X, we also say the field or the variable has pedigree X.

In fact, qualifiers like sibling and child are just sugared syntax
for special cases of a more general form:

w
z }| {

(parent) . . . (parent)

z
z }| {

(child) . . . (child)

where w ∈ {0, 1, 2, . . . } and z ∈ {0, 1}. The invariant such
a qualifier enforces is that, on the hierarchy the qualified object

must be the

w
z }| {

parent’s parent’s . . . parent’s

z
z }| {

child’s . . . child of the
current object. We call w the positive level of the object being
qualified and z the negative level of the object being qualified. We
use the abbreviation (parent)w(child)z for the above definition.

class Main {
void main () {

EventSource es = new sibling EventSource();
Ctrl ctrl = new child Ctrl();
Dialog d = new child Dialog(es, ctrl);
d.init();
...

}
}
class Dialog {

EventSource es; Ctrl ctrl;
sibling Logger publog; child Logger privlog;
Dialog(EventSource es, Ctrl ctrl)

{ this.es = es; this.ctrl = ctrl; }
void init() {

Button ok = new child Button("OK", es, ctrl);
Button cncl = new child Button("NO", es, ctrl);
publog = new Logger("Shared Logger");
privlog = new Logger("Private Logger");
ok.init(publog, this);
cncl.init(privlog, this);

}
void refresh() { ...}

}
class Button {

Logger logger; EventSource es; String name; Ctrl ctrl;
parent Dialog container;
Button(String name, EventSource es, Ctrl ctrl)

{ this.name = name; this.es = es; this.ctrl = ctrl;}
void init(Logger logger, Dialog container)

{this.logger = logger; this.container = container;}
void log() { ...}
void refresh() { ...container.refresh(); }
void oops() { // ctrl = new child Ctrl(); }
void oops2() { // ctrl.oops3(logger); }

}
class Logger { ...}
class EventSource { ...}
class Ctrl { void oops3(Logger log) { ...} ...
}

 : Main

 d : Dialog ctrl : Controller

ok : Button

sibling

child

es : EventSource

publog: Logger

privlog: Loggercancel : Button

child

child child child

sibling

Figure 1. An Example

When the negative level is zero, we can abbreviate the pedigree
as simply (parent)w.

Why This General Form? The general form elegantly covers the
more familiar cases via the following sugar:

child def
= (parent)0(child)1

self def
= (parent)0(child)0

sibling def
= (parent)1(child)1

parent def
= (parent)1(child)0

grandparent def
= (parent)2(child)0

aunt = uncle def
= (parent)2(child)1

Declaring an object to have a child pedigree aligns with the pro-
grammers’ intention that the object is encapsulated. We will elabo-
rate on this case, and why in the general case z ranges over {0, 1}
in Sec. 2.2.

2

Pedigree parent provides a strong enforcement of nesting: the
container field of the Button object is declared to have pedi-
gree parent. Thus, if at any time the Button object’s refresh
method is invoked, which in turn needs to refresh its container
Dialog object (a common practice in GUI programming), our
type system can guarantee that the refreshed Dialog is indeed the
one containing the Button object itself. Observe that a type with
parent pedigree is a singleton type, since each object can only have
one parent. All pedigree types with negative level 0 are singleton
types, such as grandparent. Existing ownership type systems that
we know of do not have the equivalent of singleton pedigrees to
precisely declare a reference pointing to a strict ancestor on the
ownership tree.

Pedigree self provides a precise way to type self-references
(Java’s this). This qualifier is also a singleton type qualifier. The
importance of typing this in a more precise way lies in the conse-
quences of its propagation: when an object passes its this to others
– a common programming idiom – the receiver side has the oppor-
tunity to precisely type the argument with singleton type qualifiers
as well. For instance in the example, the Button object can have
its container field hold a value of parent singleton pedigree: it
is passed by Dialog’s method init, where this is passed. (The
reason that a parent pedigree in the Button object matches the
self pedigree in the Dialog object will be explained shortly.) An-
other pleasant consequence of precisely typing Java’s this is the
call-back constraints of object-oriented programming can be cap-
tured. In Java, programmers typically rely on passing this to an-
other object to implement callbacks. The Java type system however
cannot ensure the value being passed is indeed this so the callback
constraint is not enforceable.

Property of Pedigree Relativization A key property of pedigrees
is that they can be relativized from the perspective of one object
to that of another. Let us revisit the example we brought up to
explain self. The Button object’s init method expects an object
of parent as its third argument dialog, while the object being
passed in is this, which is of pedigree self. These qualifiers are
not the same, but pedigree types are always declared relative to
the current instance, and the Button object is a child of the
Dialog object. From the Dialog object’s perspective, it easily
knows the parent from its child’s perspective is a self from its own
perspective. The line ok.init(publog,this) thus typechecks.

Pedigree Subsumption Intuitively, oneself is a special case of
her parent’s children, i.e. a pedigree (parent)0(child)0 is a special
case of (parent)1(child)1. Similarly, a parent is a special case of a
grandparent’s children.

In the general case, a pedigree (parent)w(child)0 represents a
singleton set of objects which is a subset of those objects repre-
sented by the (parent)w+1(child)1 pedigree. This genealogical fact
is captured by the subsumption relation on pedigrees.

Inter-procedural Pedigree Inference In our calculus, program-
mers only need to declare a pedigree qualifier on an object type
when they care about the pedigree of that object. For all other oc-
currences with no qualifications, our type system can infer them.
The inference algorithm is also able to track pedigree informa-
tion inter-procedurally. Consider the oops method at the end of
the Button class, which if included would be a type error. If we
only look at the code of Button itself, the code is perfectly legal.
However, note that the field ctrl of the Button object is set in
the constructor to be a Ctrl object held by the Dialog object,
which is in turn held by Main. That Ctrl object is a child of the
Main object, so its pedigree from the perspective of Button is
definitely not child – the Ctrl is its uncle.

Our type system is constraint-based. The novel aspect is that
constraints are on (positive and negative) levels, which range over

(a subset of) the natural numbers. Thus, finding whether conflict
exists in the constraint set is reduced to solving a system of linear
diophantine equations over natural numbers, a well-studied prob-
lem [Sch98] with decidable and efficient solutions.

Polymorphic Pedigrees and Parametric Polymorphism Inferred
pedigrees are treated polymorphically, so that the references re-
ferred to in a class can have different pedigrees for different in-
stances of the same class, aligning with the “I don’t care” inten-
tion of programmers. For instance, the ok Button and the cncl
Button can in fact have loggers of different pedigrees. We some-
times call object types without explicit pedigree qualification poly-
morphic pedigree types. The parametric polymorphism used here
does not lie far from well-known type theoretic principles, where
each class is viewed as being defined via a polymorphic let a la
ML and polymorphic type variables are assigned for levels. We also
support cyclic class definitions – the norm of object-oriented pro-
gramming – which is not possible with pure let-polymorphism.

Different objects of the same class can obviously have differ-
ent pedigrees: one Logger is instantiated as the sibling of the
Dialog, and the other as the child of the Dialog. Objects can
also be instantiated with an unspecified pedigree, as is the case for
the instantiation of the two Logger instances, expressing “I don’t
care what pedigree it is instantiated with.” In that case, it is the
object usage which decides whether there is a satisfiable pedigree.

2.2 Alias Protection with Pedigree Types

The general form of pedigree types is consistent with the require-
ment of ownership encapsulation. Intuitively, an object should only
refer to its direct children (w = 0, z = 1), itself (w = 0, z = 0),
direct and indirect ancestors (w > 0, z = 0) or direct children of
its direct and indirect ancestors (w > 0, z = 1). For some concrete
examples, it means siblings can refer to each other freely; an object
can always refer to its ancestors, captured by the notion of all cases
where w > 1, but not vice versa: nephew = (parent)1(child)2 vi-
olates the notion of encapsulation as it it is a reference to the child
of your sibling on the hierarchy of encapsulation. What is referable
by pedigree types is identical to what is commonly believed to be
referable on the standard ownership tree that enforces the property
of owners-as-dominators [NPV98, CPN98].

At first glance, protecting owned objects is as simple as disal-
lowing references with a child pedigree qualifier from being given
out to any object with non-child pedigree. However, such a type
system would not prevent indirect leakage. For instance, consider
the pedigree relationship illustrated in Fig. 1. First of all, there is
nothing wrong with the Dialog object passing its child object
named privlog to its child object named cncl, as is found in the
example when the constructor of the cncl Button is invoked. If
our type system only checked whether child references were passed
out, it would be happy to allow the cncl Button object to pass
the reference to the privlog Logger object – not a child but
a sibling from the perspective of the cncl object – to the Ctrl
object (the one in the ctrl field). This however would violate en-
capsulation, as the privlog object is an internal representation of
the Dialog object and should not be exposed to a sibling of the
Dialog object.

Our type system is able to detect this indirect leakage. The key is
that it always makes sure that both the sender and the receiver only
handle references that can be associated with well-formed pedigree
types. Had the passing of the private Logger object held by the
cncl Button to the Ctrl object been allowed, relativization
would imply the Logger object is the Ctrl object’s sibling’s
child, i.e. (parent)(child)2. This is not a well-formed pedigree
qualifier and would result in a type error.

3

C ::=
−−−−−−−−→
a �→ 〈M ;F〉 classes

M ::=
−−−−−−→
m �→ λx .e methods

F ::=
−→
f fields

e ::= () | x | const | e; e′ | this expressions
| new Ped a
| e.m(e′)
| f | f:=e

x variable
const ∈ {. . . , -1, 0, 1, . . .} integer
a class name
m method name
f field name

C t ::=
−−−−→
a �→ sig class signatures

sig ::= 〈mod; M t;Ft〉 class signature

M t ::=
−−−−−−−−−−−→
m �→ (st → st ′) method signatures

Ft ::=
−−−−→
f �→ st field signatures

mod ::= default | strict modularity mode
st ::= unit | int | Ped a declared types
Ped ::= (parent)w(child)z | ε pedigree qualifier

w ∈ {0, 1, . . .} positive level
z ∈ {0, 1 } negative level

Figure 2. Abstract Syntax

3. The Formal System
3.1 Abstract Syntax

We first define some basic notation. xn denotes a set {x1, . . . , xn}.−−−−−→xn �→ yn is used to denote a mapping sequence (also called a map-
ping) [x1 �→ y1, . . . , xn �→ yn]. Given M = −−−−−→xn �→ yn, Dom(M)
denotes the domain of M , and it is defined as {x1, . . . xn}. We also
write M(x1) = y1, . . . M(xn) = yn. A sequence, denoted −→xn, is
defined as a degenerate form of mapping sequence where all ele-
ments in the domain map to null. When no confusion arises, we
also drop the subscript n for sets and mapping sequences and sim-
ply use x and −−−→x �→ y. Notation ∝ is used to denote containment,
for instance (x2 �→ y2) ∝ M . We write M[x �→ y] as a map-
ping update: M and M[x �→ y] are identical except that M[x �→ y]
maps x to y. Updatable mapping concatenation � is defined as

M1 � M
def
= M1[x1 �→ y1] . . . [xn �→ yn]. We use ∅ to denote

empty set and [] to denote mapping sequences of length zero.
The abstract syntax of our calculus is defined in Fig. 2. Its

presentation is optimized for our formalization, but the coverage
of features is largely similar to Featherweight Java [IPW99]. We
leave out inheritance (but not subtyping) and dynamic casting from
the language core, and briefly cover them in Sec. 4. Other minor
differences include 1) we do not model constructors as they are
orthogonal to Pedigree Types; 2) We only model private field access
and do not model the cross-object one (such as e.f), because the
latter can be encoded as a pair of getter/setter methods accessing
private fields. 3) The arity of method arguments is simplified to be
1.

We have separated class code and class signatures, and have
taken the mapping-based notations for lists. A program is com-
posed of classes (C), with one of them being the bootstrapping
class named Main with a special method main. A class has a
unique name (a), followed by a list of methods (M) and local fields
(F). Object instantiation is modeled by the expression new Ped a,
which is identical to Featherweight Java’s new a expression, except
that programmers can specify the pedigree for the newly created in-
stance. The “I-don’t-care” pedigree is represented as ε. In class sig-

Ψ(
−−−−−−→
an �→ sign)

def
=

−−−−−−−→
an �→ psign

if ∀ i ∈ {1, . . . , n}.

psigi = Ψparam(sigi,
−−−−−−→
an �→ sign, ∅)

Ψparam(sig, C t, Z)
def
= ∀〈α1; β1〉 . . . ∀〈αu; βu〉.Ψsig(sig, C t, Z)
if FP(Ψsig(sig, C t, Z)) =

{〈α1; β1〉, . . . , 〈αu; βu〉}
sig = 〈mod;M t;Ft〉
mod = strict implies u = 0

Ψsig(〈mod;M t;Ft〉, C t, Z)
def
= 〈Ψml(M t, C t, Z); Ψfl(Ft, C t, Z)〉

Ψml(
−−−−−−−−−−−→
m �→ (st → st′), C t, Z)

def
=

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
m �→ (Ψst(st, C t, Z) → Ψst(st

′, Ct, Z))

Ψfl(
−−−−→
f �→ st, C t, Z)

def
=

−−−−−−−−−−−−−→
f �→ Ψst(st, C t, Z)

Ψst(int, C t, Z)
def
= int

Ψst(unit, C t, Z)
def
= unit

Ψst(Ped a, C t, Z)
def
=

µa.M @ρ if a /∈ Z
a@ρ if a ∈ Z

if Ψsig(C t(a), C t, Z ∪ {a}) = 〈M;F〉

ρ =

8<
:

(parent)α(child)β if Ped = ε
α, β fresh

Ped otherwise

C ::=
−−−−−→
a �→ psig parameterized signatures

psig ::= ∀〈α; β〉.〈M;F〉 parameterized signature

M ::=
−−−−−−−−−−−→
m �→ (sτ → sτ ′) processed method signatures

F ::=
−−−−→
f �→ sτ processed field signatures

τ ::= sτ | ⊥ types
sτ ::= unit | int | µa.M @ρ | a@ρ types on signatures

ρ ::= (parent)ν(child)ν′
pedigree expression

ν ::= ν + ν′ | ν − ν′ | α | w level expression
α, β level type variable

Figure 3. Ψ(C t) = C: Computing Parameterized Signatures

natures (C t), the mod modifier gives programmers a choice of how
modular the typechecking process is. This topic will be detailed
in Sec. 3.2.6. User-declared types (st) include primitive types and
pedigree types (Ped a).

3.2 The Type System

As we explained in Sec. 2.1, our type system supports parametric
polymorphism, but in an implicit form – the programmer syntax
in Fig. 2 does not provide explicit parameterization of classes. A
straightforward function called Ψ is used to properly parameterize
the class signature into the more type-theory-friendly form where
all type variables are bound at the beginning. We first introduce the
Ψ function in Sec. 3.2.1, and then introduce the main parts of the
type system in the rest of the section.

3.2.1 Level Parameterization and Recursive Type Unfolding

In the signature of Button in Fig. 1, the logger field is not
qualified with a pedigree. Intuitively, the “I-don’t-care-about-the-
pedigree” intention translates as each instance of Button having
a fresh pair of levels (positive level and negative level). A lengthy
but unsurprising Ψ function is defined in Fig. 3 to help capture this
notion. It simply goes through the structure of each signature (sigi),
and generates a pair of variables for each unqualified occurrence
such as logger (i.e. Ped = ε). These variables are called level
type variables, with metavariable α ranging over positive pedigree
levels, and β ranging over negative pedigree levels. The class sig-
natures produced by Ψ are bound with these variables, with helper
function FP() enumerating all pairs of level type variables occur-
ring free in the signature. The Ψ function processes class signatures
transitively. This means a class not only provides parametric poly-
morphism for the levels of direct object references in the class, but
also allows these parameters to be forwarded to provide polymor-

4

(Sub-Bottom)
Ω
 ⊥ <: τ\∅

(Sub-Int)
Ω
 int <: int\∅

(Sub-Unit)
Ω
 unit <: unit\∅

(Sub-Recursive)
(a1 <: a2) ∈ Ω

Ω
 a1@ρ1 <: a2@ρ2\subPed(ρ1, ρ2)

(Sub-Non-Recursive)
Dom(M2) = {m1, . . . , mn}

a′1, a′2 fresh M′
1 = M1{a′1/a1} M′

2 = M2{a′2/a2}
∀i ∈ {1, . . . , n}. Ω ∪ {a

′
1 <: a

′
2}
m M′

1(mi) <: M′
2(mi)\Σi

Ω
 µa1.M1 @ρ1 <: µa2.M2 @ρ2\(Σ1 ∪ . . . Σn ∪ subPed(ρ1, ρ2))

(Sub-Method)
Ω
 sτ2 <: sτ1\Σ Ω
 sτ ′

1 <: sτ ′
2\Σ′

Ω
m sτ1 �→ sτ ′
1 <: sτ2 �→ sτ ′

2\(Σ ∪ Σ′)

subPed(ρ1, ρ2)
def
= {ν11 − ν12 =s ν21 − ν22, 0 ≤s ν12 ≤s ν22 ≤s 1}
if ρ1 = (parent)ν11(child)ν12

ρ2 = (parent)ν21(child)ν22

Definition for recursion path Ω ::= a <: a′
Definition for constraint set Σ ::= ν =s 0

Figure 4. Subtyping Rules

phism for indirect object references. The computed signature list
(C) is used in most typing rules of the type system. As defined in
the same figure, C is homomorphic to C t in programmer syntax.
We will postpone the discussion of the modularity mode (mod) in
Sec. 3.2.6.

In object-oriented languages, recursive types are the norm. In
the Ψ function, we also unfold recursive types explicitly, using a
variation of the standard µ-type techniques [AC93]. Set Z is used
to keep track of recursion. In the resulting signature computed by
Ψ, each occurrence of user-declared pedigree type is transformed
into either the µa.M @ρ form or the a@ρ form. µa.M @ρ in
principle still follows the general form of the pedigree type – a
combination of pedigree (ρ) and the object type (the rest of it,
with name a and structure information in M). a@ρ is used for the
object type already bound by µ in its enclosing class signature. For
convenience, we sometimes call the two forms of pedigree types
the µ form and the abbreviated form respectively.

3.2.2 Types and Subtyping

As defined in Fig. 3, expression types τ used by the type system are
also similar to the programmer declared types, except that a ⊥ type
is added to typecheck uninitialized fields, and the pedigree types are
now either in the µ form or in the abbreviated form. In the general
case of expression typing, the positive levels and negative levels
of a pedigree type might be linear expressions over level variables.
The general form of ρ thus is a type expression, which we call a
pedigree expression. The linear expressions in this case are called
level expressions. In the abstract syntax, we omit parentheses for
level expressions. They are implicitly added to preserve arithmetic
precedence. For instance if ν1 =s 1 and ν2 =s 1 + 3, then ν1 − ν2

is 1 − (1 + 3). When there is no need to distinguish the positive
level and the negative level, we also use metavariable w to represent
either level constant, and metavariable α to represent either level
variable. To avoid confusion, equality/inequality symbols showing
up in the constraint sets are denoted as =s , ≥s , ≤s respectively.

Subtyping is defined in Fig. 4 with judgments of the form
Ω 	 τ <: τ ′\Σ. This judgment reads “τ is a subtype of τ ′

under pedigree constraints Σ and assumptions Ω”. The main rules
are (Sub-Non-Recursive) and (Sub-Recursive), which show the
object type part of the pedigree type follows standard structural

subtyping. Since types may be recursive, the standard rules for
subtyping over recursive types – commonly known as the Amber
rules – are used [AC93]. Data structure Ω, which is a partial order
with elements of the form a <: a′, is standard for this purpose,
as is the alpha conversion (i.e. M1{a′1/a1} and M2{a′2/a2} in
(Sub-Non-Recursive)).

The interesting part of the subtyping rules is perhaps the sub-
typing of two pedigree expressions, captured by subPed . It cap-
tures the notion of pedigree subsumption (Sec. 2.1); the basic case
of pedigree identity is also included implicitly by this definition.
For instance, subPed(self, sibling) and subPed(sibling, sibling)
are both consistent.

3.2.3 The Typechecking Process

All typing rules are presented in Fig.5.

The Rules The whole program is globally typechecked with (T-
Global). This rule first typechecks each class via 	cls, and then
merges the constraints via 	cons. When there are no conflicting
constraints in the final constraint set Σ, the program typechecks.
This section focuses on per-class typechecking. The discussion
on constraint merging is deferred later in this section. We also
postpone discussion on typechecking the new expression and the
data structure Π in the rules, as they are also closely related to
constraint merging.

Rules (T-Class) and (T-Methods) are straightforward for typ-
ing the respective constructs. Expressions are typed via the judg-
ment Γ, C 	 e : τ\Σ, Π. Typing environment Γ is defined at the
bottom of Fig. 5; it maps variables to types, and maps the special
keyword me to the name of the class enclosing the expression. (T-
Self) types this, which is given a self pedigree. (T-Const), (T-Var),
and (T-Continue) are obvious rules to type integer constants, vari-
ables and continuations. (T-Sub) bridges with the subtyping rules.
(T-Invoke) will be explained shortly.

Pedigree Constraints and Decidable Constraint Solving All
constraints in Σ (defined at the bottom of Fig. 5) are constraining
pedigree levels (positive and negative), which are natural numbers.
The constraint solving task in our type system is to find nonnegative
solutions to a system of linear diophantine equations. For positive
level type variables, this is obvious: they range over {0, 1, . . .},
and finding a satisfiable positive level is equivalent to finding non-
negative solutions to linear equations. Negative level type variables
slightly complicate the matter: they only range over {0, 1} and
not {0, 1, . . .}. Our solution is that when such a variable is used,
one constraint is computed by the twoVals function and merged to

the main constraint set Σ, and twoVals(β)
def
= {0 ≤s β ≤s 1}.

Inequality constraints in the form of ν ≥s 0 and ν ≤s 1 can be
easily rewritten as equality ones: the former is equivalent to ν =s α
for fresh α and the latter is equivalent to 1 − ν ≥s 0. Constraint
ν1 =s ν2 is equivalent to ν1 − ν2 =s 0.

The algorithm for finding whether nonnegative solutions exist to
a system of linear diophantine equations is decidable [Sch98]. As
a result, the judgment 	G C : C t is also decidable since the type
rules are deterministic modulo choice of fresh variables. So, the
question of whether the program C is typeable with program sig-
nature C t is decidable. Efficient ways of solving linear diophantine
equations exist. For instance, the equations can be solved incremen-
tally [CD94] to avoid solving a large set of equations all at once.

3.2.4 Method Invocation and Pedigree Relativization

Method invocation is typechecked by (T-Invoke). As pedigrees are
always relative to the object they are declared in, pedigree rela-
tivization is needed for message passing between two objects. Rel-
ativization is captured by the relativize function, defined in Fig. 6.
relativize(ρ1, ρ2) = ρ3, Σ means a pedigree ρ1 in one object is

5

(T-Global)
Ψ(C t) = C Dom(C) = {a1, . . . , an}

∀i ∈ {1, . . . , n} such that [me �→ ai], C
cls C (ai) : C(ai)\Σi, Πi−−−−−−−−−−−→
an �→ 〈Σn, Πn〉, []
cons 〈main; []; []〉\Σ Σ consistent

G C : C t

(T-Class)
Dom(F) = Dom(F)

Γ, C
m M : M\Σ, Π psig = ∀〈α1; β1〉, . . . ∀〈αn; βn〉.〈M;F〉
Γ, C
cls 〈M ;F〉 : psig\Σ ∪

[
i∈{1,...,n}

twoVals(βi), Π

(T-Methods)
Dom(M) = Dom(M) = {m1, . . . , mn}
∀i ∈ {1, . . . , n} M (mi) = λxi.ei

M(mi) = τi → τ ′
i Γ � (xi �→ τi), C
 ei : τ ′

i\Σi, Πi

Γ, C
m M : M\Σ1 ∪ . . . Σn, Π1 ∪ . . . Πn

(T-Const)
Γ, C
 cst : int\∅, ∅

(T-Unit)
Γ, C
 () : unit\∅, ∅

(T-Var)
Γ, C
 x : Γ(x)\∅, ∅

(T-New)

ρ =

(parent)α(child) if Ped = ε and α fresh
Ped if Ped = (parent)w(child)

C(a) = ∀〈α1; β1〉, . . . , ∀〈αn; βn〉.〈M;F〉
α′

1, . . . , α′
n, β′

1, . . . , β′
n fresh

σ = [〈α1; β1〉 �→ 〈α′
1; β′

1〉, . . . , 〈αn; βn〉 �→ 〈α′
n; β′

n〉]
Σ =

[
i={1,...,n}

twoVals(β′
i)

Γ, C
 new Ped a : (µa.M @ρ)[σ]\Σ, {〈a; ρ; σ〉}

(T-Invoke)
Γ, C
 e : µa.M @(parent)ν1(child)ν2\Σ, Π

M′
= M{a � M} M′

(m) = τ
′′′ → τ

′′

Γ, C
 e′ : τ ′\Σ′, Π′ convert(τ ′, (parent)ν2(child)ν1) = τc1, Σc1

convert(τ ′′, (parent)ν1(child)ν2) = τc2, Σc2

∅
 τc1 <: τ ′′′\Σs1 ∅
 τc2 <: τ\Σs2

Γ, C
 e.m(e′) : τ\Σ ∪ Σ′ ∪ Σs1 ∪ Σs2 ∪ Σc1 ∪ Σc2, Π ∪ Π′

(T-Read)
C(Γ(me)) = ∀〈α; β〉. 〈M;F〉

Γ, C
 f : F(f)\∅, ∅

(T-Write)
C(Γ(me)) = ∀〈α; β〉. 〈M;F〉 Γ, C
 e : F(f)\Σ,Π

Γ, C
 f:=e : F(f)\Σ, Π

(T-Self)
Γ(me) = a C(a) = ∀〈α; β〉. 〈M;F〉

Γ, C
 this : µa.M @self\∅, ∅

(T-Continue)
Γ, C
 e : τ\Σ, Π Γ, C
 e′ : τ ′\Σ′, Π′

Γ, C
 e; e′ : τ ′\Σ ∪ Σ′, Π ∪ Π′

(T-Sub)
Γ, C
 e : τ\Σ, Π ∅
 τ <: τ ′\Σ′

Γ, C
 e : τ ′\(Σ ∪ Σ′), Π

Γ ::=
−−−−−−−−−−−−→
x �→ τ | me �→ a typing environment

Π ::= 〈a;ρ; σ〉 instantiation record set

σ ::=
−−−−−−−−−−−−→〈α; β〉 �→ 〈α′; β′〉 level variable substitution

Figure 5. Typing Rules and Related Definitions

convert(int, ρ)
def
= int, ∅

convert(unit, ρ)
def
= unit, ∅

convert(µa.M @ρ1, ρ2)
def
= µa.M @ρ3, Σ
if relativize(ρ1, ρ2) = ρ3, Σ

relativize(ρ1, ρ2)
def
= (parent)ν21+ν11−ν22(child)ν12 ,

{ν11 − ν22 ≥s 0}
if ρ1 = (parent)ν11 (child)ν12

ρ2 = (parent)ν21 (child)ν22

relativizem(ρ, [])
def
= ρ, ∅

relativizem(ρ, [ρ1, . . . ρn])
def
= ρ′

n, Σ1 ∪ . . . , Σn

if n ≥ 1
relativize(ρ, ρ1) = ρ′

1, Σ1
relativize(ρ′

1, ρ2) = ρ′
2, Σ2

. . .
relativize(ρ′

n−1, ρn) = ρ′
n, Σn

Figure 6. Pedigree Relativization

(T-Merge)
P = [〈a1; ρ1; σ1〉, . . . , 〈am; ρm; σm〉] ∀i ∈ {1, . . . , m}. ai = a

G(a) = 〈Σ; Π〉 Π = {〈a′1; ρ′
1; σ′

1〉, . . . , 〈a′n; ρ′
n; σ′

n〉}
∀j ∈ {1, . . . , n}. G, P � 〈a; ρ; σ〉
 〈a′j; ρ′

j ; σ′
j〉\Σj

G, P
cons 〈a; ρ; σ〉\Σ[σ] ∪ Σ1 ∪ · · · ∪ Σn

(T-Merge-Recursive)
P = [〈a1; ρ1; σ1〉, . . . , 〈am; ρm; σm〉] a = ap, p ∈ {1, . . . , m}

σp = [〈α1; β1〉 �→ 〈α′
1; β′

1〉, . . . , 〈αu; βu〉 �→ 〈α′
u; β′

u〉]
σ = [〈α1; β1〉 �→ 〈α′′

1 ; β
′′
1 〉, . . . , 〈αu; βu〉 �→ 〈α′′

u; β
′′
u〉]

∀i ∈ {1, . . . , u}
ρ′′

i = (parent)α′′
i (child)β′′

i ρ′′′
i = (parent)α′′′

i (child)β′′′
i

relativizem(ρ′′
i , [ρm, ρm−1, . . . , ρp+1]) = ρ′′′

i , Σi

G, P
cons 〈a;ρ; σ〉\
[

i∈{1...,u}
{α′

i =s α′′′
i } ∪ {β′

i =s β′′′
i } ∪ Σi

G ::=
−−−−−−−→
a �→ 〈Σ; Π〉 class summaries

P ::=
−−−−−→〈a; ρ; σ〉 instantiation path

Figure 7. Constraint Merging

pedigree ρ3 in the other object if the first object is the ρ2 of the
second one, with the constraints of Σ. We also define a function
relativizem(ρ, [ρ1, . . . ρn]), which is a composition of the original
relativize function. It relativizes pedigree ρ to an object of pedi-
gree ρ1, and then from there relativizes the resulting pedigree to
an object of its pedigree ρ2, and so on. With function relativize
defined, type relativization – modeled by the convert function –
is pedigree relativization for pedigree types and isomorphic trans-
formation otherwise. To facilitate the soundness proof, type rela-
tivization is always defined in the direction of value passing, i.e.
we consistently convert a type being the contravariant of the in-
voker and covariant of the invokee. The rule also implicitly uses
the intuitive fact that if one object is (parent)ν1(child)ν2 of the
other, the second object is (parent)ν2(child)ν1 of the first.

Definition M{a � M′} in (T-Invoke) unfolds recursive types:
all pedigree type occurrences of the abbreviated form a@ρ within
M are unfolded to the µ form µa.M′ @ρ. This definition is omit-
ted for this short presentation. Unfolding recursive types to equate
the abbreviated form and the µ form is standard.

6

3.2.5 Polymorphic Instantiation and Constraint Merging

(T-New) says that if programmers do not give a pedigree to the
instantiated object, it will freshly generate a positive level for it.
Note that it is not allowed to have a newly instantiated object with
a pedigree of negative level being 0. These pedigrees are singleton
pedigrees, such as parent. The singleton property would not be
preserved if programmers could freely instantiate objects of such
pedigrees.

Since all type variables show up in pairs in our calculus, a
general form of substitution mapping σ is thus of form [〈α1; β1〉 �→
〈α′

1; β
′
1〉, . . . , 〈αn; βn〉 �→ 〈α′

n; β′
n〉]. Substitution of α1 with α′

1,
. . . , αn with α′

n, β1 with β′
1, . . . , βn with β′

n is then denoted −[σ]
for “−” being either a type, a class signature, or a constraint set.

The rest of the rule deals with type variable instantiation. The
related technique – polymorphic type inference for object-oriented
languages – is a well-studied area; relevant approaches include
[EST95, Age96, WS01]. The technique being used here is clos-
est to [EST95], where let-polymorphism is used in combination
with type inference of object types. A perfect alignment with let-
polymorphism would have been drawn, if it were not for the pres-
ence of mutually recursive classes. The latter greatly complicates
the typing rules. Consider the following program:

classA = { ... y = new sibling classB; ... }
classB = { ... x = new child classA; ... }

If standard constraint-based techniques for let-polymorphism were
used, typechecking classA would involve merging the (re-
freshed) constraints associated with classB, say ΣB , which are
not known at that point. Our polymorphic type inference strategy
can be viewed as extending the general idea of let-polymorphism to
recursive programs. Inference of polymorphic recursion has been
extensively studied, see e.g. [Hen93]; we present one particular
approach which works well in the context of mutually recursive
classes.

As we explained earlier in this section, typechecking occurs in
two passes. We now explain the two passes with regard to poly-
morphic instantiations. The first pass is the per-class typechecking
defined by 	cls. When expression new sibling classB is encoun-
tered by (T-New), all level type variables of classB are chosen
fresh as in let-polymorphism, and the program is typechecked in
the analogous way. However, the constraints ΣB are not merged
in since they are not yet known. Our system processes ΣB lazily:
the type rule (T-New) adds an entry to the instantiation record set
(Π in the type rules, defined in Fig. 5). For the example we de-
scribed above, an entry 〈classB; sibling; σB〉 is added into Π,
where σB maps the parameter list of the signature for classB to
the new fresh type variables. After the first pass, each class is type-
checked, with pedigree constraints collected in Σ, and Π indicating
the constraints that need to be merged lazily. The information is
represented by data structure called summaries (G in Fig. 7).

In the second pass, defined by 	cons in Fig. 7 and used by (T-
Global), the typechecker starts from the bootstrapping class Main,
and checks its Π to lazily merge constraints, with substitution
performed. Judgment G, P 	cons 〈a; ρ; σ〉\Σ means Σ is the
merged constraints of per-class constraints of a, together with those
that need to be merged lazily. This process is propagated through
the dependency chain of Π and is defined by the (T-Merge) rule
of Fig. 7. When there is a cycle in the Π dependency chain, the
constraints must be merged via rule (T-Merge-Recursive) in the
figure to avoid infinite looping. Data structure P in the rules is
used to track the path on the dependency chain of Π from that of
Main to the node representing the constraint set to be merged. For
every step that the constraints of a particular class are to be merged,
the rules check whether that class has already shown up in P . If
so, a cyclic Π dependency chain has formed. Rather than further

∆ ::= 〈H ;R〉 configuration

H ::=
−−−−−−−−→
o �→ 〈a;σ; S〉 heap

R ::=
−−−−−−−−−−−−−−−−−−→
〈o1; o2〉 �→ (parent)θ(child) pedigree relation store

θ ::= α | w store positive pedigree

S ::=
−−−→
f �→ v field store

v ::= () | const | o | null value
exd ::= e | v | exception | in(o, exd) extended expression

o ∈ RID object reference

Figure 8. Runtime Data Structure Definitions

merging the constraints, (T-Merge-Recursive) simply makes sure
the fresh type variables generated for typing the recurrent class
instantiation is related to those generated for typing the previous
class instantiation. This is achieved through pedigree relativization
via relativizem .

3.2.6 Modularity and the default/strict Modes

In our calculus, programmers can optionally declare a class to be
strict (as shown by the syntax in Fig. 2), and all other classes are
in the default mode. What the two modes differ is how modular
the type-checking process is for the class they are modifying. The
default mode follows the bulk of our previous discussions, where
programmers can liberally leave out pedigree declarations. In strict
mode however, all pedigree declarations will be present. This is
enforced by the Ψ definition in Fig. 3. There, for a strict class,
its signature can not contain level type variables (hence u = 0 in
Ψparam definition). Intuitively, it says all pedigrees contained by the
signatures must be given by programmers.

What the strict mode guarantees here is the class typechecked
via 	cls will have no pedigree discrepancies arising at constraint
merge time for these classes. On the high level, it guarantees that,
if a class typechecks, no pedigree discrepancy can happen no matter
what other classes are, making their typing completely modular.

Even if all classes are declared to be of the default mode,
our system still retains a degree of modularity. Our system type-
checks each class modularly via the 	cls definition, and collects
constraints on pedigree variables. All type errors excepting inter-
class pedigree discrepancies can be immediately reported. Inter-
class pedigree consistency is guaranteed by merging constraint sets
obtained from each modular class typechecking, via the 	cons defi-
nition. The type system never re-typechecks a class.

These two modes represent a trade-off between modular sys-
tems requiring programmer declarations (the strict mode), and
more flexible inference systems which can significantly improve
programing productivity (the default mode), but which are less
strongly modular. We believe the default mode is the best choice
for most software development environments, allowing users to de-
clare many “I-don’t-care” intentions, but cases where more strictly
modular interfaces are needed may still benefit from the advantages
of pedigree types through the use of the strict mode.

3.3 Operational Semantics

As Pedigree Types are built on a Java-like object model, the dy-
namic semantics of our calculus is standard. The only exception is
we create an auxiliary data structure called pedigree relation store
(R in Fig. 8) to record the pedigree relations between objects. It is
only used for proving the correctness of the type system and hence
does not affect reduction. Every time a new expression is evalu-
ated, the pedigree of the instantiated object relative to the instanti-
ating object is recorded in R. An entry 〈o1; o2〉 �→ ρ in R says o1 is
ρ of o2. Based on R, function rel(R, o1, o2) produces the pedigree

7

of o1 relative to o2. Intuitively, R forms a directed tree where the
nodes are objects (their IDs) and the edges signify how the objects
instantiate one another. Each edge can be imagined as being asso-
ciated with a “weight”, indicating the pedigree of the instantiated
object relative to the instantiating object. Function rel(R, o1, o2)
simply computes the “weighted distance” between tree node o1 and
o2. Readers can find this simple yet formally lengthy definition in
[Liu07].

Other run-time data structures are shown in Fig. 8. Runtime
configuration ∆ records the mutable state of the execution. It is
composed of a standard heap (H), and the aforementioned R. An
entry o �→ 〈a; σ;S〉 in the heap says that an object o is instantiated
from a class named a, and has the mutable states recorded in S .
Auxiliary structure σ is only used by the proof, and it keeps track
of the type variable instantiation for each object.

Values (of set V) are either an object reference (with ID o), the
standard null value, or primitive data. Expressions are extended
to include values, exception, and a closure expression only used
by the reduction system to model method invocation: in(o, exd)
means exd is to be evaluated with regard to object o.

The reduction relation is ∆, exd
C , o−−→ ∆′, exd ′, meaning

exd is one-step reduced to exd′ in object o, the runtime config-
uration changes from ∆ to ∆′, and C , o remain unchanged over

reductions. Multi-step reduction ∆, exd
C , o−−→∗ ∆′, exd ′ is the

transitive closure of one-step reduction. 〈∆; exd〉 ⇑C ,o means the
reduction diverges. The bootstrapping process is modeled by re-
duction C

init−−→ 〈∆; o; exd〉, which prepares the initial values
for these data structures. A configuration 〈∆; o; exd〉 is said to

be attainable from program C , denoted as C
♣−→ 〈∆; o; exd〉 iff

C
init−−→ 〈∆0; o; exd0 〉 and ∆0, exd0

C , o−−→∗ ∆, exd .

3.4 Theoretical Properties

We now establish the main properties of our calculus. These prop-
erties are rigorously proved in [Liu07] based on a somewhat more
refined object model. The two models share the same notion of ob-
ject reference, and so the underlying proof structure is largely the
same.

Theorem 1 (Type Soundness). If 	G C : C t and C
init−−→

〈∆; o; exd〉, then either 〈∆; exd〉 ⇑C ,o , or ∆, exd
C , o−−→∗ ∆′, v

for some ∆′, v ∈ V, or ∆, exd
C , o−−→∗ ∆′, exception.

This theorem states that the execution of statically typed pro-
grams either diverges, computes to a value, or throws exceptions.
In this calculus, exceptions are thrown when an uninitialized field is
accessed. The theorem is established via lemmas of subject reduc-
tion, progress, and the bootstrapping process leads into a well-typed
initial configuration.

We now state several important theorems about how pedigree
types enforce pedigrees at runtime. Theorem 2 states that if a
programmer puts a pedigree qualifier, say sibling, on a field of a
class, then at run time that field will always hold a reference which
is a sibling (or a pedigree subsumed by sibling, i.e. self) of the
current object. Theorem 3 says any object reference on the heap
must refer to some object which can be named by a well-formed
pedigree qualifier. No object can hold a reference to the internal
representation of another object, since that relationship cannot be
expressed by a well-formed pedigree type.

Theorem 2 (Shape Enforcement). If 	G C : C t, for all a ∈
Dom(C t), C t(a) = 〈mod ;M t,F t〉, for all (f �→ t) ∝ F t

t = (parent)w(child)z a′ =⇒
(rel(R,S(f), o) = ρ)∧
(subPed(ρ, (parent)w(child)z) consistent)

for all o ∈ Dom(H), ∆ = 〈H ;R〉, H (o) = 〈a; σ;S〉, and

C
♣−→ 〈∆; o′; exd〉,

Theorem 3 (Alias Protection). If 	G C : C t and C
♣−→

〈∆; o′; exd〉, and ∆ = 〈H ;R〉, then for all o ∈ Dom(H),
H (o) = 〈a; σ;S〉, and for all (f �→ v) ∝ S and v ∈ RID, we
know rel(R, v, o) = ρ and there exists some ν1 and ν2 such that
subPed(ρ, (parent)ν1(child)ν2) ∪ {ν1 ≥s 0} ∪ twoVals(ν2) is
consistent.

The previous property is analogous to the notion of deep own-
ership [Cla01] in ownership type systems.

4. Extensions
We now demonstrate how a number of extensions can be built on
top of the compact core calculus of Pedigree Types. Several of these
are only sketched here, and their fleshing out constitutes interesting
future research.

Selective Exposure The intention of encapsulation sometimes
does not align well with the intention of hierarchical decomposi-
tion. When that happens, there is a need for selectively exposing an
otherwise encapsulated object to objects that normally would not
have gained access. Selective exposure is useful for programming
idioms such as iterators and has generated significant interest for
existing ownership type systems [AC04, LP06].

In the context of Pedigree Types, what selective exposure means
is an object, say X, might occasionally accessed by some object, say
Y, which is its grandparent. (Note that this is not allowed in the
core model since X is Y’s (parent)0(child)2, resulting a negative
level not ranging over {0, 1}). Our model can be extended with
selective exposure by allowing each object to be associated with an
access policy stating which pedigrees higher up on the hierarchy
can access the methods of an object. For instance, a policy could
be [grandparent �→ m1; uncle �→ m1, m2] which states that the
grandparent of the current object can access its method m1, while
its uncle can access m1 and m2. Since grandparent and uncle
otherwise would not be granted access, the strategy here de facto
achieves selective exposure. We are confident that a sound type
system of this fashion can be built based on our previous experience
with a similar system [SS02]. This solution also does not lie far in
spirit from existing selective exposure solutions such as Ownership
Domains [AC04] and Variant Ownership [LP06].

An alternative solution to this problem is to make changes to the
object model itself. We have worked out a full solution along this
direction in [Liu07].

Opt-Out Pedigrees for Large-Scale Hierarchy Inference When
all programmer pedigree annotations are omitted, our type system
is de facto a hierarchy inference system where each constraint so-
lution provides a possible “hierarchy layout” for heap objects. The
high-level meaning of doing this is to rediscover the hierarchical
decomposition intention of programmers.

To make such a technique practical for large-scale software sys-
tems, there is one hurdle to cross: when the application grows large,
the general reference structure is commonly a graph, not a hierar-
chy. Blindly using our type system would lead to untypable pro-
grams when a strict hierarchy cannot be realized by constraint solv-
ing. The solution to this problem is simply to allow programmers to
declare “opt-out” references that do not follow the hierarchy. The
high-level intuition behind this is to allow programmers to count
some references as “back-edges” on top of the hierarchy “back-
bone”. Such an extension does not add any technical difficulties to
the type system itself: for an opt-out reference, we would simply
not constrain the pedigree associated with it.

8

The access policy solution outlined above for selective exposure
is a more precise form of opt-out pedigree: rather than completely
freeing the reference from obeying any hierarchy constraints, it
allows back-edges but constrains to whom an object may have a
back-edge.

Java-Style Inheritance In principle, Java-style inheritance cap-
tures two independent issues of object design: code composition
and subtyping. The issue of code composition is orthogonal to type
system design. For subtyping, Java inheritance enforces a combi-
nation of nominal subtyping (explicitly declared by extends) and a
restricted form of structural subtyping (the subtype can have more
methods but overridden methods must have the same signatures).
Supporting nominal subtyping involves minimal work: the only
change would be add one extra check at (Sub-Recursive) and
(Sub-Non-Recursive), making sure a1 and a2 in the two rules
also conform to the nominal constraints declared by extends. For
structural subtyping, our type system in fact is more flexible than
Java’s as it supports unrestricted width and depth subtyping.

Dynamic Class Loading In Sec. 3.2.6, we explained that whether
a class is declared to be default or strict, the code of each class is
only type-checked once in a modular fashion. This is good news for
dynamic class loading, since we do not need all classes to be avail-
able at the onset of program execution. When a class is declared
default, inter-class consistency checking is performed at constraint
merging time. What this implies in the context of dynamic class
loading is the constraint merging will happen incrementally at run
time. This dynamic constraint merging in fact is already common-
place; for example, the JVM maintains a set of “loader constraints”
on types [LB98] which are dynamically updated and checked at
each class load. The incremental algorithm for solving linear dio-
phantine equations [CD94] is well-suited to incremental constraint
merging.

Top Pedigree The core calculus does not have a “top pedigree”
which subsumes all pedigrees (just as how Java’s Object sub-
sumes all object types). This feature would be useful when one
wanted to create a heterogeneous List with objects each with a
different pedigree. Supporting a top pedigree is simple: the only
change is to add one subtyping rule to indicate all pedigrees are
subsumed by the top pedigree.

Dynamic Casting Dynamic casting of pedigree types involves
two dimensions: casting the pedigrees and casting the underlying
object types. The second part is a standard Java operator with
a standard solution. The non-trivial issue to address here is the
casting of pedigrees.

Compared with Universe Types, Pedigree Types programmers
should encounter very few scenarios where there is a need for cast-
ing pedigrees. In Universe Types, if a reference, say r1, of peer
pedigree is assigned to a reference, say r2, without a pedigree
(sometimes named any pedigree), the pedigree information is lost.
If r2 is then subsequently assigned to another reference, say r3, of
peer pedigree, the second assignment would fail unless dynamic
casting is used (especially when such assignments go beyond ob-
ject boundaries, such as via method parameter passing). In Pedigree
Types, since all variables without a pedigree declaration are treated
with a polymorphic pedigree, assignment r3 = r2 will succeed
without any cast.

One situation where dynamic casting would be useful in Pedi-
gree Types is when an object declared with a top pedigree is down-
cast to a more precise pedigree, e.g. when retrieving elements from
a heterogeneous List. The standard solution for dynamic casting
should also work for Pedigree Types: pedigree information can be
maintained at run time, and some constraint solving also deferred
to run time.

Programmer-Defined Pedigree Constraints Our core calculus
does not allow programmers to express “two references are on the
same (unknown) level of the ownership tree”, a demand that can
be easily supported by existing ownership type systems using ex-
plicit parametric polymorphism. A simple extension however can
achieve this. All that needs to be added is extra syntax allowing pro-
grammers to indicate such an intention. The type system requires
no change: it simply entails the addition of two constraints – one
equating the positive levels of the two pedigrees and one equating
the negative ones – into Σ in (T-Class). Similarly, inequality con-
straints such as “ the two references are on unknown levels, but one
must be higher than the other” and even arithmetic constraints such
as “the two references are on unknown levels but one must be 1
level higher than the other” can be supported without difficulty.

5. Related Work
Explicitly Parametric Ownership Type Systems Numerous own-
ership type systems – such as [NPV98, CPN98, Cla01] and many
later extensions and variations – use explicit parametric polymor-
phism (EPP) to enforce ownership. Pedigree Types also incorporate
parametric polymorphism behind the scenes, and for this reason
the aforecited EPP systems and Pedigree Types are generally on
an equal footing in terms of expressiveness for writing meaningful
programs, excepting some minor differences which we now cover.
For instance, EPP systems allow users to specify that two refer-
ences have the “same owner” on an unknown level, while Pedigree
Types cannot (a similar notion can in fact be easily supported by
a simple extension to Pedigree Types, see the last part of Sec. 4).
On the flip side, Pedigree Types have several expressiveness gains
over EPP systems as well. They can express singleton pedigree
constraints, such as a reference pointing to a parent to indicate
a reference to the directly enclosing object on the ownership tree.
This feature can be useful for identifying containers widely used in
Container-Component-based frameworks such as Enterprise Jav-
abeans. In addition, EPP systems do not have an equivalent for our
self; its positive impact on capturing the call-back constraints of
object-oriented programming was discussed in Sec. 2.1.

The main advantages of Pedigree Types over EPP systems, as
explained in Sec. 1, are 1) minimal annotation overhead and 2) a
natural and intuitive programming interface to explicitly support
the intention of hierarchical decomposition.

EPP system modularity is analogous to our strict mode: each
class is strictly modular at the expense of the need for a large
type annotation overhead. As discussed in Sec. 3.2.6, we prefer the
reverse emphasis via our default mode, but support both modes to
let the programmer make the ultimate decision.

Solutions to reduce annotation overhead in EPP systems are
limited. SafeJava [Boy04] allows intra-procedural inference. A cal-
culus by Wren [Wre03] infers context parameters of EPP systems
based on a notion of Extended Object Graph. AliasJava [AKC02]
describes an inter-procedural algorithm. It is formally undecidable,
but the implementation shows reasonable results in practical situa-
tions. In Uno [MF07], program analysis techniques such as points-
to analysis are used for ownership inference. Some properties in
Uno overlap with our work, including their predicate OWNFIELD
which is analogous to inferring a child pedigree in our system.

Within the past decade, many advanced features have been de-
signed on top of EPP systems, which as of now are not covered by
Pedigree Types. Examples include how to add variant types [LP06],
how to unify Java generics and ownership types [PNCB06], how to
support multiple owners [CDNS07].

Ownership Type Systems Without EPP Universe Types have a
syntax similar to Pedigree Types; we previously explained their
peer and rep modifiers in Sec. 1. All non-peer non-rep ref-

9

erences are treated as any1, which in our terminology is a top
pedigree and not a polymorphic pedigree. Dynamic casting thus
is often needed – see the discussion of this topic in Sec. 4. In
addition, Pedigree Types have a more general form of pedigrees
(parent)w(child)z, whereas in Universe Types no pedigrees can be
given to objects which are neither a peer nor a rep on the own-
ership tree. This is not necessarily a weakness of Universe Types,
because their design is optimized for program verification where
object referential structures generally have shallow hierarchies of
2 or 3 levels. By supporting a general form of pedigree to refer to
arbitrary hierarchy levels and particularly allowing for level infer-
ence, Pedigree Types are a more general solution to the problem
of expressing and rediscovering the decomposition hierarchy. No
equivalents of self and parent exist in Universe Types.

Instead of preserving the owners-as-dominators property, Uni-
verse Types do allow an object to be accessed by objects outside
the owner, as long as the access is read-only (the property is known
as owners-as-modifers). Pedigree Types can adapt to this property
easily: in that case, twoVals constraints (used in various places of
the type system) are only added when they are constraining pedi-
grees of non-read-only references. Recently, a run-time inference
algorithm was designed for Universe Types [DM07]. Ownership
transfer is now supported by Universe Types [MR07] as well, an
interesting topic Pedigree Types do not yet address.

Several other non-EPP systems have a domain target and make
simplifications based on need, such as Confined Types [VB99] for
security, and Scoped Types [ACG+06] for real-time memory man-
agement. These systems achieve their domain goals, illustrating the
value of object encapsulation in these domains.

6. Conclusion
This paper presents an intuitive and powerful type system to shape
the heap into a hierarchy of decomposition and encapsulation. The
main contributions of this paper can be summarized as follows:

• The intuitive nomenclature of human genealogy is applied to
a type system to navigate hierarchies. Familiar genealogical
pedigrees such as parent, child, sibling are unified into one
compact general form. Inherent aspects of human genealogy
trees are captured, including pedigree relativization and pedi-
gree subsumption.

• Implicit parametric polymorphism is introduced to capture the
intuitive notion of an “I don’t care”-kind of polymorphic pedi-
gree. The resulting system retains the expressiveness of many
existing ownership type systems, at the same time presenting a
simple and intuitive programming interface to end users.

• A novel constraint-based type system is constructed to enforce
the consistency of pedigree invariants, where constraints are
linear systems of integer arithmetic equations, and constraint
solving is finding a solution to these linear equations.

• Formal properties of type soundness, pedigree invariant en-
forcement, and alias protection are established.

In conclusion, Pedigree Types put the power of an explicit formal-
ism for defining and constraining the heap hierarchy into the hands
of programmers, and give programmers a greater awareness of, and
thus control of, the heap reference structure.

References
[AC93] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types.

ACM TOPLAS, 15(4):575–631, 1993.

1 In some versions of Universe Types, the omitted pedigrees are peer.

[AC04] Jonathan Aldrich and Craig Chambers. Ownership domains:
Separating aliasing policy from mechanism. In ECOOP’04, pages
1–25, 2004.

[ACG+06] Chris Andreae, Yvonne Coady, Celina Gibbs, James Noble, Jan Vitek,
and Tian Zhao. Scoped types and aspects for real-time Java. In
ECOOP’06, pages 124–147, 2006.

[Age96] Ole Agesen. Concrete type inference: delivering object-oriented
applications. PhD thesis, Stanford University, Stanford, CA, USA,
1996.

[AKC02] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias
annotations for program understanding. In OOPSLA’02, pages 311–
330, 2002.

[Boy04] Chandrasekhar Boyapati. SafeJava: A Unified Type System for Safe
Programming. PhD thesis, MIT, 2004.

[CD94] Evelyne Contejean and Herve Devie. An efficient incremental
algorithm for solving systems of linear diophantine equations.
Information and Computation, 113(1):143–172, 1994.

[CDNS07] Nicholas R. Cameron, Sophia Drossopoulou, James Noble, and
Matthew J. Smith. Multiple ownership. In OOPSLA’07, pages
441–460, 2007.

[Cla01] Dave Clarke. Object Ownership and Containment. PhD thesis,
University of New South Wales, July 2001.

[CPN98] Dave Clarke, John Potter, and James Noble. Ownership types for
flexible alias protection. In OOPSLA’98, pages 48–64, 1998.

[DM07] W. Dietl and P. Müller. Runtime universe type inference. In
IWACO’07, 2007.

[EST95] Jonathan Eifrig, Scott Smith, and Valery Trifonov. Sound polymorphic
type inference for objects. In OOPSLA’95, pages 169–184, 1995.

[Hen93] Fritz Henglein. Type inference with polymorphic recursion. ACM
TOPLAS, 15(2):253–289, 1993.

[IPW99] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. In Loren Meissner,
editor, OOPSLA’99, volume 34(10), pages 132–146, N. Y., 1999.

[KP88] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the
model-view controller user interface paradigm in smalltalk-80. J.
Object Oriented Program., 1(3):26–49, 1988.

[LB98] Sheng Liang and Gilad Bracha. Dynamic class loading in the Java
virtual machine. In OOPSLA’98, pages 36–44, 1998.

[Liu07] Yu David Liu. Interaction-Oriented Programming (online at
http://www.cs.jhu.edu/∼yliu/thesis/). PhD thesis,
Johns Hopkins University, Baltimore, MD, USA, 2007.

[LP06] Yi Lu and John Potter. On ownership and accessibility. In ECOOP’06,
pages 99–123, 2006.

[LS05] Yu David Liu and Scott F. Smith. Interaction-based Programming with
Classages. In OOPSLA’05, pages 191–209, 2005.

[MF07] Kin-Keung Ma and Jeffrey S. Foster. Inferring aliasing and
encapsulation properties for Java. In OOPSLA’07, pages 423–440,
2007.

[MPH01] P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias
and dependency control. Technical Report 279, Fernuniversität Hagen,
2001.

[MR07] Peter Müller and Arsenii Rudich. Ownership transfer in universe
types. In OOPSLA’07, pages 461–478, 2007.

[NPV98] James Noble, John Potter, and Jan Vitek. Flexible alias protection. In
ECOOP’98, Brussels, Belgium, July 1998.

[PNCB06] Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Generic
ownership for generic Java. In OOPSLA’06, pages 311–324, 2006.

[Sch98] Alexander Schrijver. Theory of linear and integer programming.
Wiley, 1998.

[SS02] Christian Skalka and Scott Smith. Static use-based object confinement.
In Proceedings of the Foundations of Computer Security Workshop
(FCS ’02), Copenhagen, Denmark, July 2002.

[VB99] Jan Vitek and Boris Bokowski. Confined types. In OOPSLA’99, pages
82–96, 1999.

[Wre03] Alisdair Wren. Ownership type inference. Master’s thesis, Imperial
College, 2003.

[WS01] Tiejun Wang and Scott F. Smith. Precise constraint-based type
inference for Java. In ECOOP’01, pages 99–117, 2001.

10

