
Thread Safety Through Partitions and Effect Agreements

Nicholas D. Matsakis
ETH Zurich

nicholas.matsakis@inf.ethz.ch

Thomas R. Gross
ETH Zurich

trg@inf.ethz.ch

ABSTRACT
This paper describes a type and effect system for object-
oriented programs which allows programmers to divide their
heap into disjoint partitions at a field-level granularity, an-
alyze the effects of common statements upon these parti-
tions, and then use this information to enforce safety prop-
erties in their programs. Our flow-sensitive effect system
requires methods to disclose which partitions of the heap
they will read or write, and also allows them to specify an
effect agreement which can be used to limit the conditions
in which a method can be called. To show the flexibility
of such a system for enforcing semantic constraints, we de-
scribe a safe multi-threading system with support for many
common threading patterns, including unsynchronized ac-
cess to thread-local and shared read-only data, as well as
limited migration of data between threads.

1. INTRODUCTION
Widespread use of aliases in object-oriented programs can

cause many difficulties for programmers. Aliases create in-
visible links between objects; seemingly innocuous changes
made to an object in one context may affect other objects
in unexpected ways.

Aliasing becomes an even bigger problem when combined
with concurrency. If the synchronization discipline in the
program is not used consistently, then aliases make it possi-
ble for an object to change during the execution of a method
even when (from the point of view of the thread executing
the method) no methods have been invoked on it.

Mainstream programming languages provide no automated
means for preventing or controlling aliasing. Access modi-
fiers like Java’s public and private can be used to control
access to a field, but do nothing to regulate which objects
are placed into the field.

Numerous researchers have devised mechanisms to fill this
gap. One approach is to enforce the notion of encapsulation
directly in the type system. Encapsulation boundaries can
be defined in various ways, ranging from the class [1] or
package level [2] all the way down to individual objects [3,
4, 5, 6]. This stronger notion of encapsulation can also be
used to make much stronger guarantees in the type system,
such as that a program obeys a consistent lock discipline
and is deadlock-free [7]. Another approach is to annotate
references with capabilities [8, 9] which control what can be
done with that reference.

This paper attempts to refine previous approaches by pro-
viding generic mechanisms for aliasing control in a layered
fashion. The contributions of the paper are as follows:

1. We present an abstraction, partitions, which can be
used by programmers to declare possible aliasing in
their programs, and describe a polymorphic type sys-
tem for checking that partitions are respected.

2. We introduce effect agreements, which allow methods
to prohibit specified events from happening either be-
fore or after the method is invoked. Effect agreements
are checked using a flow-sensitive effect system that
operates at a partition granularity.

3. To demonstrate the expressiveness of effect agreements,
we describe how they can be used to ensure that multi-
threaded programs follow safe conventions which guar-
antee the program is free of race conditions.

The paper begins with a brief overview of our approach,
introducing partitions in more detail and also describing our
effect system. After a brief example, we then delve into the
details of our type system and effect checking algorithm.
Finally, we show how to use the effect mechanisms to enforce
thread safety.

2. PARTITIONS AT A GLANCE
A partition is a compile-time abstraction that describes

a portion of the heap at a field-level granularity. In other
words, if we define the heap H(o, f) 7→ o as a mapping from
an (object id, field) pairs to another object id, a partition is
a set of such (object id, field) pairs. Partitions are similar to
memory regions, except that we do not use them for memory
management, but rather for alias tracking.

In our system, class and method definitions are parameter-
ized by a set of partition parameters, similar to generic type
variables. When the class is instantiated or the method is
invoked, each partition parameter will be mapped to a fixed
partition.

As a simple example, consider the following definition of
the IntWrapper class:

class IntWrapper @P {
@P int f i e l d ;
int get () { return f i e l d ; }
void s e t (int i) { f i e l d = i ; }

}

The class has a single partition parameter, named P, which
is indicated by the @P which follows the class name. The
@P preceding the declaration for the field field indicates
that the field is placed into the partition P. In addition to
partition parameters, a partition can be defined by using
standard set operations such as union and intersection to

class Class {
void method () {

new @P;
IntWrapper@P x = new IntWrapper@P () ;
x . s e t (5) ;

}
}

Figure 1: A method which creates a new partition,
and places a new IntWrapper object inside it.

combine partition parameters into a new, anonymous par-
tition. This is referred to as a partition expression, and is
expressed with standard syntax like P∩Q or P∪Q.

The syntax for parameterized method definitions and calls
is similar to Java’s generic syntax:

@P void method (Object@P argument) { . . . }
ob j e c t .method@P(null) ;

The @P that appears before the return type is a partition
parameter in method scope. When a method is invoked, the
values of any partition parameters must be provided after
the method name, as shown on the second line.

As with other parameterized type systems, when a class
is instantiated or a method is invoked, concrete partitions
must be provided for each partition parameter. In general,
the partitions provided as values for each parameter to a
method or class need not be disjoint; however, non-disjoint
parameters may sometimes be rejected by the type checker
if it would violate program safety properties.1

2.1 Extent and Scope of a Partition
Although partitions are purely a compile-time construct,

it is useful to examine how they would behave at runtime.
Partitions are created by a new @P statement, as shown in
Figure 1, but they are never explicitly destroyed.

When a partition is initially created, it contains no data
and is disjoint from all other partitions. Data is added to a
partition by creating new objects that contain fields located
in that partition. In Figure 1, a new IntWrapper is con-
structed with P as its partition parameter. The field field

of this instance will therefore be the first field placed into
partition P, since P was freshly created on the line before.

Although partitions are initially disjoint, they can be made
to intersect by creating data that exists in their intersection.
As an example, consider the following method:

1 @Q void method () {
2 new @P;
3 IntWrapper@ (P∩Q) x =
4 new IntWrapper@ (P∩Q) () ;
5 }

While P and Q were disjoint before, the new expression on
line 4 creates a field that exists in their intersection, and
which therefore belongs to both P and Q.

In general, a partition can be specified either through a
partition parameter, as shown initially, or a partition ex-
pression, as in the previous example. Partition expressions
define a new, anonymous partition; unlike named partitions
which are initially empty, however, this partition’s contents
are determined by the set operations used to define it. Anony-
mous partitions grow as their component partitions grow;

1Potential intersection of partitions is tracked using the ef-
fect system. See Section 4.1 for details.

class IntWrapper @P {
@P int f i e l d ;
!Rd(P) int get () { return f i e l d ; }
!Wr(P) void s e t (int i) { f i e l d = i ; }

}

Figure 2: The class IntWrapper which was shown be-
fore, annotated with effects.

therefore, a partition defined by P∪Q always contains the
contents of both P and Q, even as new items are added into
P.

In addition to creating new data in the intersection, par-
titions partitions can be made to intersect via partition ex-
tension. Partition extension adds data that exists in one
partition into another partition, without removing it from
the old partition. The data simply exists in both partitions.
Of course, this requires conservative assumptions on the part
of the type system, because any data in the two partitions is
now indistinguishable. For this reason, partition extension
is most useful when the data currently exists in a partition
that will shortly be going out of scope.

2.2 Effects
Partitions allow the program’s data to be divided into

distinct logical sections, but the effect system regulates how
those partitions may be used. As in other object-oriented
effect systems [10], programmers annotate methods to de-
scribe which partitions they affect and how.

Figure 2 shows the IntWrapper class defined earlier, but
annotated with effects. Effect declarations precede each
method declaration and are part of the method’s interface.
get() is annotated with !Rd(P), as it reads a field in parti-
tion P, while set() has a corresponding write effect.

The full set of effects we use in this paper are as follows:

1. Rd(w): indicates that data in partition w is read.

2. Wr(w): indicates that data in partition w is written.2

3. ARd(w): indicates that data in partition w is read
within an atomic block (defined in Section 3.1).

4. AWr(w): indicates that data in partition w is written
within an atomic block (defined in Section 3.1).

5. Inter(w1, w2): indicates that the partitions w1 and
w2 were made to intersect.

It is the programmer’s responsibility to declare the ef-
fects that a method may have. The effect checker statically
ensures that the method body cannot affect any partition
parameter in a way that is not declared. Note that it is not
necessary to declare effects for partitions which the method
creates. The method shown in Figure 1, for example, does
not need to declare a write effect for partition P, because
that partition is disjoint from all partition parameters.

2.3 Effect Agreements
While effect declarations allow a programmer to limit the

effects a method may have, it is sometimes useful for a
method to be able to limit the effects of its caller. For ex-
ample, if a particular method is only sound if two partitions

2Unlike OOFX [10], write effects do not imply read effects.

P and Q are disjoint, it would be useful to declare that the
method may only be invoked if no Inter(P,Q) effect has
occurred (i.e., if P and Q have not been made to intersect).

To enable these sort of guarantees, methods may be anno-
tated with effect agreements that constrain what can happen
before the method is called or after it returns. These effects
form a kind of agreement between the caller and the callee.
We use a flow-sensitive effect checker to enforce them stati-
cally.

Agreements are subtly different from Design By Contract [11].
In DBC, methods declare preconditions, which the caller
must guarantee for the callee to function properly, and post-
conditions, which the callee promises to bring about or main-
tain. In this way, contract obligations flow in both direc-
tions.

In contrast, all effect agreements are obligations the callee
imposes on the caller. These obligations always take the
form of effects which are not permitted. Each effect agree-
ment has a time span that determines precisely when the
events are not permitted to occur.

In this paper, we use two different time spans for effect
agreements, pre and par. These two time spans are depicted
graphically in Figure 3, and their meaning is explained here:

• pre agreements, written pre -F(w)3, indicate that the
effect F(w) must not have occurred before this method
is called. In Figure 3a, the pre time span covers all
points in time before the callee is invoked.

• par agreements, written par -F(w), indicate that a
parallel thread has started which requires that effects
F(w) do not occur during its execution. Generally, we
do not know when a thread will finish executing, and
therefore a par agreement would apply for all future
time, as shown in Figure 3a.

In some cases, however, a thread’s lifetime can be
bounded. For example, in Section 5, we describe a
forkjoin keyword that can be attached to a state-
ment block to guarantee that any threads which were
(transitively) started during the statement block will
be joined before the statement block finishes execu-
tion. Using such a forkjoin block enables us to limit
the time that the par agreement applies. This is de-
picted in Figure 3b, where the caller knows that the
thread will finish before or by the end of the forkjoin

region.

To return to our original motivating example, to declare
that its partition parameters P and Q must be disjoint, a
method could use the effect agreement pre -Inter(P,Q).

Effect agreements are considered binding on the current
thread; however, a thread is also responsible for the behavior
of any thread which it (transitively) starts. Therefore, if
a thread T invokes a method which prohibits it from later
writing to a partition, then T may not start another thread
which writes to that same partition.

2.4 Effects and Inheritance
Because effects and effect agreements form part of the in-

terface of a method, it is important to describe how they
interact with inheritance. In accordance with the Liskov

3The reason we use a minus sign - and not a ! before the
effect is to indicate that agreements describe effects which
are forbidden, not permitted.

parpre

time

callee
caller

thread
(a)

parpre

time

callee

caller
fork/join

thread
(b)

Figure 3: A timeline demonstrating the time spans
of pre and par effect agreements in two different sce-
narios.

Substitution Principle [12], it must be safe for any subtype
to be used where a supertype is expected. Therefore, an
overloaded method in a subtype may not (a) have more ef-
fects than the method it overrides; or (b) prohibit an effect
via an effect agreement which its supertype allows. The type
checker verifies these conditions statically.

2.5 Example: Multithreaded Server
One common multithreaded application is a server. Fig-

ure 4 shows a simple server which has one thread listening
for connections on a given port, defined by the class Listen-
erThread. When a connection arrives, the server initializes
an object describing the new connection and creates a Han-

dlerThread to handle it. The handler is given control of
the connection object and started in parallel. From that
point on, the connection object is considered thread-local
data for the handler thread, and should not be used by the
listening thread anymore. In this example, we show how the
effect checker, combined with effect agreements, can be used
to verify that the connection object is safely transferred to
the new thread. In Section 5, we will expand the technique
shown here into a more general solution.

The ListenerThread class does not have any partition
parameters. Instead, within the run() method it creates a
fresh partition, P, which contains the listening Socket in-
stance. The HandlerThread class is parameterized by a sin-
gle partition L for it’s thread-local data. In its accept()

method, the ListenerThread creates a new partition H which
it gives to each new HandlerThread to use for its thread-local
data.

The error we are trying to prevent is that the Listen-

erThread continues to write to the partition H after it has
started the HandlerThread. To prevent this, the HandlerThread
has declared an effect agreement on its start() method
which prohibits its local partition L (H, from the Listen-

erThread’s point of view) from being read or written. This
agreement is given par scope so that it is in effect as long as
the thread may execute.4

4A sharp-eyed reader will note that, because the start()

class ListenerThread extends Thread {
public void run () {

new @P;
Socket@P socket = new Socket@P () ;
while (true)

accept@P (socket) ;
}

!Rd(P) !Wr(P)
@P void accept (Socket@P socket) {

new @H;
Socket@H connect ion =

socket . accept@H () ;
init@H (connect ion) ;
new HandlerThread@H(connect ion) . s t a r t () ;

}

!Wr(H)
@H void i n i t (Socket@H conn) { . . . }

}

class HandlerThread@L extends Thread {
@L Socket@L connect ion ;

HandlerThread (Socket@L c) {
connect ion = c ;

}

!Rd(L) !Wr(L)
par −Rd(L) −Wr(L)
public void s t a r t () { . . . }

!Rd(L) !Wr(L)
public void run () { . . . }

}

Figure 4: The skeleton of a simple server which
spawns a new thread to handle each incoming re-
quest.

To verify that effect agreements are respected, the effect
checker will compute what effects may occur before and af-
ter each statement in the method. In this case, because the
effect agreements in question are restrictions on what can
happen after the HandlerThread’s start method returns, we
are interested in the effects that can occur after each state-
ment.

Figure 5 shows the accept() method of ListenerThread,
annotated at each step with the set of future effects for each
statement. Since we are computing what events are to come,
the analysis is done starting at the end of the method and
working backwards. Therefore, line 12 depicts the initial set
of effects. Because there are no effect agreements declared on
this method concerning P, we must make the conservative
assumption (which happens to be true, in this case) that
data in partition P may be both read and written in the
future.

Note that there no conservative assumptions are needed
for H. This is because it is newly created in this method.
Data in H can only escape the method in two ways. The
first is by intersection with a partition parameter, such as
P: in this case, as we will see later, we would conservatively
assume that any modifications to P may also affect H. The
second is through an unbounded wildcard, which in effect
is a type where some partitions are unspecified. This latter
case does not present a problem because it is not allowed to

method is inherited from Thread, HandlerThread cannot
add effect agreements in this fashion. We resolve this in
Section 5 by modifying the thread class itself.

1 !Rd(L) !Wr(P)
2 @P void accept (Socket@P socket) {
3 // { Rd/Wr(P) }
4 new @H;
5 // { Rd/Wr(P) Rd/Wr(H) }
6 Socket@H connect ion =
7 socket . accept@H () ;
8 // { Rd/Wr(P) Rd/Wr(H) }
9 init@H (connect ion) ;

10 // { Rd/Wr(P) Rd/Wr(H) }
11 new HandlerThread@H(connect ion) . s t a r t () ;
12 // { Rd/Wr(P) }
13 }

Figure 5: The results of a flow-sensitive effect anal-
ysis of the accept() method from Figure 4.

have effects which affect unbounded wildcard partitions.
Line 11 contains the call which starts the HandlerThread.

This is where we must verify the effect agreements for start():
to do so, we compare the set of events to come from line 12
with the forbidden events, and determine that the method
call is permitted. Since start() declares that it reads and
writes HandlerThread’s partition parameter, we determine
that H may be both read and written at this point and add
those effects to the set, yielding line 10.

From line 9 back to line 5, the effect set is unchanged
because it already contains reads and writes. No methods
are invoked which declare an effect agreement, so there is no
need to check for conflicts. Finally, we reach line 4 which
creates the H partition. This kills any effects which affect
only H, leaving only the effects on P in line 3. Since this set
is within the declared bounds of the bound, we decide the
method is effect safe and that the thread will run without
interference.

3. JPART: JAVA WITH PARTITIONS
This section describes the partition type system and effect

checker in more detail. While a full formal treatment is
beyond the scope of this paper, we cover its most interesting
and unique features.

3.1 Support for Concurrency
For the most part, JPart looks and feels like Java. The

primary differences are:

• forkjoin { s } statements replaces Java’s join() method
with a simple, lexically scoped mechanism. forkjoin

executes the statements s and dynamically tracks the
set of threads which they start. Once s have exe-
cuted, the forkjoin statement waits for all threads
started in s, and any threads that they (transitively)
have started, to finish before continuing. forkjoin

statements are simpler than Java’s mechanism join()

methods, but can still express real-world examples of
Fork/Join parallelism [13, 14].

• atomic { s } statements replace locks as a means of
managing concurrency. The semantics of atomic are
that it executes the sub-statements s atomically, mean-
ing that it must appear as though they have not been
interrupted by any other thread. Atomic statements
are discussed in detail in [15].

• Casts can be used for partition extension as well as
their traditional purpose. If a variable of type C@P is

cdecl := class C@P extends t { fdecl mdecl }
fdecl := @w t x

mdecl := @P !f c t m(t x) { mbody }
mbody := new @P; t x; b

c := pre -f | par -f
b := L : s goto L;
s := x = e ; | x.x = e ; | return e ;

| forkjoin { s } | atomic { s }
e := x | x.x | x.m@w (x) | new C@w | (t) x
t := C@q
f := F(w)
q := ? | ? ⊆ w | w
w := P | ∅ | w ∪ w | w ∩ w

Figure 6: The grammar for a JPart class declaration.

cast to the same class type, but with different partition
parameters, such as C@Q, then those fields in the object
that are located in P are added to Q so that they exist
in both.

3.2 Grammar
The type system and effect checker are defined in terms of

the language JPart, which is a simplification of Java similar
in spirit to Featherweight Java [16], but extended with the
partition, effect, and agreement annotations we have seen.

The grammar for a JPart class description is contained
in Figure 6. Like Featherweight Java, we use an overline
to indicate repetition. Terminals are represented in normal
font, nonterminals in italics, and keywords in bold.

Class declarations include a set of formal partition param-
eters P following the class name. Type references, including
the super type declaration, are also extended with a corre-
sponding list of partition expressions.

Fields are declared by specifying a partition expression q,
which indicates the partition in which the field is located, a
type t, and a name x.

Method declarations are prefaced with a set of partition
parameters @P, effects !f , and agreements c. For simplic-
ity, we restrict the new partition declarations (new @P) we
showed earlier to the beginning of a method.

Method bodies are defined as a series of basic blocks which
encode a control flow graph. Each block has a label L and
a set of successors, specified after a goto statement. In be-
tween the block has a series of statements s, which should
be familiar from Java.

There are two nonterminals for partition expressions. The
first, w, allows for the combination of named partitions (P)
with common set operations such as union and intersection.
The partition parameters provided to a type, however, make
use of a second nonterminal, q, which extends w with wild-
cards, written ? ⊆ w. A type which makes use of a wildcard
parameter indicates that the exact partition for that param-
eter is not known; however, the partition provided is known
to be a subset of w.

3.3 Subtyping and Partition Wildcards
The design of JPart’s type system is based on Java; in

particular, our partition wildcards are a simplification of
the wildcards used by Java generics [17]. To simplify the
presentation, JPart omits primitive types such as int and
double and includes only class types.

class ObjectWrapper@P {
@P Object@P f i e l d ;
Object@P get () { return f i e l d ; }
void s e t (Object@P i) { f i e l d = i ; }

}

Figure 7: Definition of ObjectWrapper

JPart is a single-inheritance system. With the exception
of Object, each JPart class must define a supertype. As
JPart includes a parameterized type system, type references
includes not only a class name, but a partition expression
for each partition parameter of the class.

So long as no wildcards are employed, JPart types are non-
variant with respect to their partition parameters, meaning
that two types C@P and C@Q are not subtypes of one another,
even if P ⊆ Q. This allows partition parameters to be ref-
erenced in both co-variant positions, such as the types of
return values, or contra-variant positions, such as the type
of a method parameter.

Use-site variance can be achieved through the use of one or
more partition wildcards. Using a wildcard for a particular
partition parameter indicates that the precise value of that
parameter is unknown; however, the value can be bounded
by some partition which is a superset of the actual value. A
type C@(?⊆P) is a supertype of some type C@(?⊆Q) if P⊆Q.
In addition, C@(?⊆P) is a supertype of C@P.

One final note in the area of subtyping concerns down-
casts. Because partitions are erased at runtime, there is no
way to dynamically verify that a downcast is safe. Therefore,
we require that the partition parameters on the target type
of the cast be unbounded wildcards, unless a more precise
partition can be derived by examining the specific subtype
and supertype involved.

Deriving a partitioning for a subtype C from a supertype
D can be complicated process, particularly in the face of
partition expressions. One simple technique which should
handle the most common cases is to find those partition
expressions in the extends clause of C which consist of only
one partition parameter in C, and do not contain unions or
intersections. The precise value of that partition parameter
can then be derived from the corresponding partition on the
static type of the variable being cast.

3.4 Fields and Methods Calls with Wildcards
Fields and methods of variables whose types contain wild-

card partitions may still be used in co-variant positions. It is
a static error to use a type when a wildcard partition would
appear, after substitution, in a contra-variant position such
as a method parameter or the type of a field being modified.

As an example, consider the class ObjectWrapper shown
in Figure 7. The class takes one partition parameter P which
is used in both a covariant position (get()) and a contravari-
ant position (set()). Both the get() and set() methods be
invoked on a variable of type ObjectWrapper@Q. If, however,
the variable had type ObjectWrapper@(?⊆Q), then it would
be illegal to invoke the set() method, as the parameter P

has a wildcard value but appears in a contravariant position.
The get() method could still be invoked, however, although
it’s result would have type Object@(?⊆Q).

4. EFFECT CHECKER

class Class1@A {
@A Class1@A f i e l d ;
!Rd(P) !Wr(Q)
@P @Q void method (Class1@P p , Class1@Q q) {

q . f i e l d = . . . ;
p . f i e l d = . . . ;

}
}

Figure 8: A simple method with two effects.

The purpose of the effect checker is two-fold. First, it
should verify that the method declares any effects it might
have which can affect a partition parameter in its interface.
Second, it must guarantee that the effect agreements on any
invoked methods are upheld.

4.1 Intersection and Partition Extension
For the most part, the effect checker algorithm does not

take the effect label into account when propagating effects.
A read effect is treated identically to a write effect. However,
in order to properly account for all possible interactions,
the effect checker must know when two partitions have been
made to intersect.

Two partitions can be made to intersect either by creating
data in their intersection or by partition extension from one
partition to the other. As is described in Section 4.5, code
which does either of those two things also generates an effect,
Inter(w1,w2), which indicates that the partitions w1 and
w2 potentially share data.

In the face of an Inter(w1,w2) event, our effect checker
makes worst-case assumptions. This means that it assumes
that any effect which affects w2 potentially affects w1 as
well. This gives rise to an operation closurei(fi, f) which
expands a set of effects f to include any indirect effects that
may be caused by the intersections witnessed by intersection
effects in fi. More precisely, closurei(fi, f) is the small-
est set such that ∃F (w) ∈ f, j.(Inter(wj , w

′) ∈ fi) =⇒
{F (w), F ([wj/w′]w)} ⊆ closurei(fi, f), assuming that In-

ter is commutative.
In general, a method must declare any effect whose af-

fected partition may intersect a partition parameter of the
method or class. However, what about intersections that the
method does not know about? Consider the method method

declared in Figure 8, which has two partition parameters,
P and Q, and copies a field from an object in partition P to
an object in partition Q. Accordingly, it declares a Rd(P) ef-
fect and Wr(Q); but are these effects sufficient? If the actual
partitions provided for the parameters P and Q were inter-
secting, then it may be that the method writes P as well.
The answer is that, in our system, a method is responsible
for declaring indirect effects due to intersections which it
itself caused, but not those due to intersections among its
partition parameters. Instead, the caller is responsible for
applying the closure operation to the effects of the method
once the actual partitions are known. This results in more
precision.

4.2 Iterated Analysis
The effect checker is based around an iterated analysis

which propagates sets of effects around the control flow graph
until it reaches a fixed point. Similar algorithms are com-
monly used for data-flow analysis in compilers [18]. Be-

Algorithm 1 effect-flow

POST ← { ∅ for each block }
POST′ ← { ∅ for each block }
PRE ← { ∅ for each block }
initialize PRE and POST with starting assumptions
while PRE or POST continues to change do

for all blocks b do
ff ′ ← ∪({POST′

b′ for each b′ ∈ predecessors of b}
ff ← ∪({POSTb′ for each b′ ∈ predecessors of b}
fr ← ∪({PREb′ for each b′ ∈ successors of b}
for all statements s in b do

ff ′ ← effects(ff ′ , s)
fx ← effects(ff , s)
ff ← ff ∪ fx

fr ← fr ∪ fx

end for
POSTb ← ff

POSTb′ ← ff ′

PREb ← fr

end for
end while

cause effect agreement can constrain what happens before
a method call as well as what happens afterwards, we have
to actually do two analyses: one propagating events forward
along the dataflow graph, and one in reverse. In both cases,
we use set union as the confluence operator for joining mul-
tiple control flows.

The complete effect flow algorithm is shown as Algorithm
1. It computes three sets of events per block b: POSTb and
POST’b, which indicate those events that will have occurred
after the block finishes executing (but before its successors),
and PREb, which indicates the events that can occur in the fu-
ture, at the point immediately before the block is executed.
The difference between POST and POST’ is that the former
makes conservative assumptions about potential intersec-
tion between partitions, and the latter does not. POST is
used for checking effect agreements, which require the worst-
case analysis, but POST’ is used for determining whether a
method declares all potential effects.

To seed the analysis, it is necessary to begin with con-
servative assumptions. We assume that any effect which is
not specifically forbidden by an effect agreement is possible.
Let fall be the set of all events affecting the partition pa-
rameters, and fpre/fpar be the events forbidden by pre- and
par-agreements respectively. Then we seed the POST set for
the initial block with fall \ fpre, and the PRE set for each
block ending in a return statement with fall \fpar. In addi-
tion, the PRE set contains an intersection event Inter(P,P)

for every partition parameter P.
To process a basic block, we determine the initial set of

events by taking the union of the POST/POST’ and PRE events
from the predecessors and successors of this block, respec-
tively. We then use the function effects(f, s) (defined be-
low) to compute the effect of each statement and add them
to the appropriate event set. Note that computing the ef-
fects is a function not only of the statement, but of the set
of effects f that may have occurred so far: f is needed to
account for possible intersections.

This whole process is repeated until the sets reach a fixed
point. Because there are only a finite number of partitions
and events to be generated, and the various effect sets only

Algorithm 2 check-reverse-stmt(f, s)

if s is a forkjoin statement then
ft = ∅

else
ft = f

end if
if s has substatements then

for all substatements s′ in s do
check-reverse-stmt(ft, s′)
ft ← ft ∪ effects(s′)

end for
end if
check that par-contracts in s do not occur in f

class Class@P@Q {
@(P∩Q) int f i e l d ;

}

Figure 9: A class whose field is declared in the in-
tersection of two partitions.

grow, the algorithm must eventually terminate.

4.3 Checking the Method Interface
The effects POST’ for each block are used to check the

method interface. For every effect F (w) listed in some set
of POST’ where a partition parameter is among the free vari-
ables of w, there must be a declared effect F (w′) where
w ⊆ w′. According to this rule, effects which cannot affect
any partition parameter but only newly-created partitions
do not have to be declared. Intersection events do not need
to be listed if one partition is a newly-created partition.

4.4 Checking Effect Agreements
After Algorithm 1 completes, using the PRE and POST sets

to check effect agreements is straightforward. We check
agreements with pre time span first by walking through
each basic block, examining its statements in order, and
ensuring that the set of events which may have occurred up
to that point is disjoint from the events listed in any pre-
agreements.

Checking par-agreements is similar, but with a slight twist.
The twist occurs because par-agreements actually restrict
events that can happen concurrently, but what we have com-
puted so far is the set of events that can happen at any point
in the future. If a forkjoin statement is encountered, we
know statically that any threads started within will be joined
before it finishes. Therefore, when we process the substate-
ments of the forkjoin, we start with an empty set of “future
events”. The effects of any statements within the forkjoin

itself are still significant, however. Algorithm 2 displays a
recursive method check-reverse-stmt(f,s) which, when
invoked with a statement s and a set f of events that can
occur afterwards, checks that any par-agreements are satis-
fied.

4.5 Effects of Statements and Expressions
This section describes the effects(f, s) function used

by Algorithm 1 to compute the effects caused by a given
statement. There are five statements which cause effects in
JPart to consider:

1. Reading and writing fields: Directly accessing a field
causes an appropriate read or write event to be gen-
erated for the partition which contains the field. The
partition is determined by consulting the formal dec-
laration for the field and substituting the appropri-
ate partitions for the class partition parameters. The
events generated are either Rd and Wr or ARd and AWr

depending on whether this is a substatement of an
atomic block.

2. Creating new instances: Creating new objects can po-
tentially cause intersection events if any of the fields
of the new object are located in the intersection of two
partitions. This can happen in two ways: either an
expression like P∩Q is given as a partition parameter,
or the class contains a field that is declared in the in-
tersection of two partitions, as shown in Figure 9.

3. Partition extension: When an existing object is cast
from one set of partition parameters to another, the
new partitions are extended to include the existing ob-
ject, causing intersection events to be generated. For
example, casting an object from type IntWrapper@P to
IntWrapper@Q would cause an Inter(P,Q) event.

4. Method calls: The effects of a method are determined
by consulting the effects listed in its declaration and
substituting appropriate values for the formal partition
parameters. If the method call takes place within an
atomic statement, then any Rd and Wr effects must be
translated into ARd and AWr effects.

If any effect is generated which affects a partition de-
scribed by a wildcard, the effect is ”promoted” so as to affect
the bound of the wildcard. For example, if an effect Rd(?⊆Q)
occurs, then the effect is considered to be a read on the en-
tire partition Q. It is a static error for there to be an effect
on an unbounded wildcard such as Rd(?).

Once the base effects fb are generated, the closure(f, fb)
operation is used to take into account any partitions that
may have intersected before this statement occurred.

5. ENFORCING THREAD-SAFETY
We can use effect agreements to ensure that a partition

is never accessed by multiple threads in an incompatible
fashion. The core idea is to use the type of the Thread

object, from which all threads must derive, to guarantee that
threads only use partitions in one of several pre-approved
ways.

We guarantee that any partition the thread may access
falls into one of the following categories:

1. Thread-Local: Thread-local partitions are read and
written by the thread outside of atomic sections. Such
a partition may not be simultaneously used in any way
by any other thread.

2. Read-Only: Read-only partitions are never written by
the thread and are read outside of atomic sections.
Such partitions may not be written by other threads.

3. Shared: Shared partitions are actively modified by
multiple threads simultaneously. Any access to such
a partition, read or write, must take place within an
atomic section.

1 abstract class Thread@S@R@L {
2
3 !ARd(S ∪ R ∪ L)
4 !AWr(S ∪ L)
5 !Rd(R ∪ L)
6 !Wr(L)
7 abstract void run () ;
8
9 !ARd(S ∪ R ∪ L)

10 !AWr(S ∪ L)
11 !Rd(R ∪ L)
12 !Wr(L)
13 pre −I n t e r (S ,R) −I n t e r (S ,L) −I n t e r (R,L)
14 par −Wr(S ∪ R ∪ L)
15 par −Rd(S ∪ L)
16 par −AWr(R ∪ L)
17 par −ARd(L)
18 abstract void s t a r t () ;
19
20 }

Figure 10: The definition of legal effects for a Thread.
Using these effects guarantees that all partitions
modified by a thread are used in a safe fashion.

We assume that threads are started by invoking the method
start() defined in the Thread class. The actions of a thread
are defined by its run() method; invoking run() directly,
however, does not start the thread, but is merely a normal
method call that runs in the current thread.

Therefore, we can use the declared interface on the start()
and run() methods to control what threads are permitted
to do. The desired interface for class Thread is shown in
Figure 10. The idea is to parameterize the thread by three
partitions, S, R, and L, which contain the shared, read-only,
and thread-local data that this thread may access. As we
will see, the definition of the run() and start() methods
do not permit data in these partitions to be used in any
way other than those outlined above. Furthermore, because
a method must list all of its effects in its interface, we can
be sure that this thread will not affect any partitions other
than S, R, or L.

To get a better understanding of the definition in Figure
10, let us examine it line by line:

• Line 1 declares the partition parameters, S, R, and L.

• Lines 3–7 define the run() method. The effect declara-
tions on lines 3–6 describe how the thread is allowed to
access S, R, and L. Line 3, for example, indicates that
any partition may be atomically read, whereas line 4
restricts atomic writes to shared (S) and thread-local
(L) data. Line 5 allows read-only (R) and thread-local
(L) data to be read non-atomically, but only L may be
modified in a non-atomic fashion, as indicated on line
6.

• Lines 9–12 indicate that the start() method has the
same effects as the run() method.

• Lines 13–17 define the effect agreement for the start()
method. These agreements highlight the important
difference between start() and run(): invoking run()
does not actually start a second thread. start(), how-
ever, performs its actions in parallel with the current
thread, and therefore it has to place constraints on
the current thread. Note the use of the par time span
for these effect agreements, which guarantees that the

class Main {
@A !Rd(A)
public void mapreduce (List@A ob j e c t s) {

new @O;
List@O r e s u l t s = new List@O () ;
forkjoin {

for (Object@A ob j e c t : ob j e c t s) {
new @L;
MapThread@O@A@L mt =

new MapThread@O@A@L() ;
mt . ob j e c t = ob j e c t ;
mt . r e s u l t s = r e s u l t s ;
mt . s t a r t () ;

}
}
// reduce re su l t s , without atomic

}
}

class MapThread@S@A@L extends Thread@S@A@L {
@L Object@A ob j e c t ;
@L List@S r e s u l t s ;

!Rd(L) !Wr(L) !Rd(A) !ARd(S) !AWr(S)
public void run () {

new @R;
Object@R r = map@R(ob j e c t) ;
Object@S r2 = (Object@S) r ; // part . extension
atomic { r e s u l t s . add (r2) ; }

}

@R !Rd(A) !Rd(R) !Wr(R)
public Object@R map(Object@A o) { . . . }

}

Figure 11: Map-reduce example

forbidden events will not occur in parallel with this
thread, though they may occur after the thread is
known to have terminated.

• Line 13 guarantees that the partitions for shared, read-
only, and thread-local data are all mutually disjoint.

• Line 14 guarantees that the parent thread does not
write non-atomically to any partition that the child
thread has access to.

• Line 15 guarantees that the parent thread does not
try to read non-atomically from any partition which
the child thread will be writing to.

• Line 16 guarantees that the parent thread will not
make atomic writes to the R or L partitions.

• Line 17 guarantees that the thread-local data is not
atomically read by the parent thread.

At first, it might seem stringent to require that every
Thread class describe their data in exactly three partitions.
However, due to the possibility of using partition expressions
as parameters, this is not a real limitation. For example, to
define a thread which has a shared partition S, no read-only
partition, and two local partitions, L1 and L2, one can ex-
tend Thread@S@∅@(L1∪L2).

5.1 Example: Map Reduce
Figure 11 shows a more involved example following the

well-known map reduce pattern [19]. The example contains
two classes, Main and MapThread. The method Main.mapreduce()

takes as an argument a list of objects in some partition A (we
assume for now that both the list and the objects contained

in it are in the same partition), which it promises only to
read. It then iterates over the array and creates and initial-
izes a new MapThread for each object in the array. A new
partition is created for the thread-local data of MapThread,
and the input object (object) and output array (results)
are also given to it before the thread is started.

The MapThread’s run() method begins by invoking its
method map() with the object it was given. The map()

method reads the object from the partition A and constructs
a mapped version in the partition R. These reads and writes
occur without locks or synchronization of any kind. This is
safe because the run() method declares !Rd(A), indicating
that it reads partition A without synchronization, and be-
cause the partition R was created within the run() method
and is not accessible to other threads.

The cast to Object@S which follows the call to map is very
important, because it is in fact a partition extension. This
cast has the effect of adding the data stored in the R partition
to S. In effect, this makes what was previously thread-local
data into shared data which can then by added to the shared
results array. Because results is shared, this add happens
within an atomic statement. Once all threads have finished,
however, the results array can be read and written freely
by the Main class without violating the MapThread’s effect
agreement due to the forkjoin region.

6. RELATED WORK
The work in this paper is in many ways a synthesis of

several existing techniques, and therefore touches on many
different bodies of work.

6.1 Capability-Based Alias Control
Capability-based alias control uses capabilities that are as-

sociated with references to limit how that reference can be
used [8, 20, 9, 21]. Generally these annotations are used to
prevent writes and enforce uniqueness, but they could also
be used more generally. Our work has no notion of capabili-
ties; instead we rely on effects to describe what is permitted.
Effects cannot be tracked on a per-reference basis, however,
so it might be useful to integrate capabilities as well.

6.2 Ownership
Universe Types [4] are a form of ownership types used as

part of a larger system for program verification. The sys-
tem has recently been extended to support ownership trans-
fer [22], which is similar to partition extension, but much
more descriptive. It ensures that only one external alias to
a cluster of objects exists by requiring that potentially inval-
idated fields be reassigned after method calls. Our partition
extension system is much simpler, and mainly intended for
allowing data to be transferred from a short-lived partition
into a shared, persistent one.

Multiple Ownership [23] by Cameron et al. describes a
generalization of a single ownership system that allows an
object to have multiple owners simultaneously. Like us, they
rely on the effect system to moderate what objects are per-
mitted to be modified. Our system differs primarily in its
use of a flow-sensitive effect system and effect agreements.

SafeJava [7] and SafeJavaML [24] use ownership to enforce
many safety properties, including multi-threaded program-
ming. They require an object’s top-level owner be locked
before it can be accessed, thus ensuring a consistent locking
discipline. One downside of this approach is that it entan-

gles encapsulation and threading, which may require that
one or the other be compromised. Fine-grained locking, for
example, requires promoting representation objects to top-
level owners so that they have their own lock. In contrast,
our approach strives to separate the partitioning structure
of the program from the thread safety check.

6.3 Regions and Effect Systems
The polymorphic effect system introduced by Lucassen

and Gifford [25] combined first-class memory regions with an
effect system to enable safe parallelism in a dataflow setting.
It also allowed effects to be masked if they concerned only
private regions, similar to how methods may create new,
local partitions which are unobservable to their caller.

OOFX [10], along with Data Groups [26], later brought
these ideas into an object-oriented context. To account for
subtyping, both systems allow the fields of an object to be
divided into regions or groups, similar to partitions, which
can be extended by a subtype, and allow methods to declare
which of these sets of fields are affected. Unlike partitions,
OOFX and Data Groups defined regions per-instance, which
means that a single region cannot contain state from multi-
ple objects, although OOFX was later extended as described
below.

Greenhouse and Scherlis [27] introduced annotations to
OOFX which allow programmers to associate locks with mu-
table state. In addition to program verification, these anno-
tations can be used to do systematic program refactoring.
This paper also added parameterized regions which are sim-
ilar in power to partition parameters, as they allow a single
region to encompass state from multiple objects.

In the paper Ownership, Encapsulation and the Disjoint-
ness of Type and Effect [28], Clarke and Drossopoulou present
an expressive combination of ownership and effects where
each effect affects a region of the object graph called a shape.
Shapes are a natural consequence of the ownership tree in
their system.

Contextual Effect Systems [29] uses a flow-sensitive ef-
fect system to detect potential data races. They rely on a
standard alias analysis to map pointers to abstract objects,
rather than partitions defined by the programmer. Like us,
they detect data races by contrasting the effects of a thread
when it is started with the effects of the current thread from
that point forward, though they lack a mechanism such as
effect agreements that allows the user or library author to
describe conflicts. Potential conflicts are used as inputs to
the Locksmith tool [30], so as to help reduce false error re-
ports.

6.4 Thread Analysis
Tools for determining whether multi-threaded programs

are sound have been around almost as long as threads them-
selves, and therefore there exists a large body of work which
we cannot even begin to do justice to. We will focus here on
approaches that are based on type and effect systems.

Flanagan, et al. developed a type system to check atomic-
ity [31] of method implementations rather than merely race
freedom. Their work detects many subtle programming er-
rors that can occur despite a correct lock discipline. Our
work, in contrast, deals with a transactional memory sys-
tem which already guarantees atomic execution.

Guava [32] is a dialect of Java that does not permit data
races by construction. Guava divides classes into three cat-

egories: monitors, values, and objects. Only monitors are
accessible to multiple threads. Values may not be referenced,
and are instead passed by value. Objects act like traditional
Java objects, except that they are local to a single thread.
These categories closely resemble the shared, read-only, and
local partition parameters we defined on the Thread class.
In our case, however, a single object may transition between
those categories during the flow of the graph. Furthermore,
different instances of the same class may be used as values
in some places, or objects in others. In Guava, on the other
hand, these decisions apply to all instances of a given class.

7. CONCLUSION
In this paper, we have presented partitions, an abstraction

for exposing the alias structure of a program, along with an
accompanying flow-sensitive effect system with effect agree-
ments. We also detailed one application of our effect system,
which was checking that a multi-threaded program uses safe
patterns for its synchronization.

Our long-term goal is to give programmers a simple and
expressive way to check semantic properties of their own
design. Rather than encoding a specific notion of correctness
into the type system, we aim to develop generic mechanisms,
such as partitions and effect agreements, that can be reused
for a variety of purposes.

8. REFERENCES
[1] Almeida, P.S.: Balloon types: Controlling sharing of

state in data types. In: ECOOP ’97. Volume 1241 of
LNCS., Springer-Verlag (1997) 32–59

[2] Vitek, J., Bokowski, B.: Confined types. In:
OOPSLA, ACM (1999) 82–96

[3] Hogg, J.: Islands: aliasing protection in
object-oriented languages. SIGPLAN Not. 26 (1991)
271–285

[4] Dietl, W., Drossopoulou, S., Müller, P.: Generic
Universe Types. In Ernst, E., ed.: ECOOP. Volume
4609 of Lecture Notes in Computer Science.,
Springer-Verlag (2007) 28–53

[5] Aldrich, J., Chambers, C.: Ownership domains:
Separating aliasing policy from mechanism. In:
ECOOP. (2004) 1–25

[6] Potanin, A., Noble, J., Clarke, D., Biddle, R.: Generic
ownership for generic Java. In: OOPSLA, ACM
(2006) 311–324

[7] Boyapati, C.: Safejava: a unified type system for safe
programming. PhD thesis, Massachusetts Institute of
Technology (2004) Supervisor-Martin C. Rinard.

[8] Aldrich, J., Kostadinov, V., Chambers, C.: Alias
annotations for program understanding. In: OOPSLA,
ACM (2002) 311–330

[9] Noble, J., Vitek, J., Potter, J.: Flexible Alias
Protection. In: ECOOP, Springer-Verlag (1998)
158–185

[10] Greenhouse, A., Boyland, J.: An Object-Oriented
Effects System. In: ECOOP, Springer-Verlag (1999)
205–229

[11] Meyer, B.: Object-Oriented Software Construction.
Prentice Hall PTR (2000)

[12] Liskov, B.H., Wing, J.M.: Behavioural subtyping
using invariants and constraints. In: Formal methods

for distributed processing: a survey of object-oriented
approaches, Cambridge University Press (2001)
254–280

[13] Bull, J.M., Kambites, M.E.: JOMP–an OpenMP-like
interface for Java. In: JAVA, ACM (2000) 44–53

[14] Lea, D.: A Java fork/join framework. In: JAVA, ACM
(2000) 36–43

[15] Harris, T., Fraser, K.: Language support for
lightweight transactions. SIGPLAN Not. 38 (2003)
388–402

[16] Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight
Java: a minimal core calculus for Java and GJ. ACM
Trans. Program. Lang. Syst. 23 (2001) 396–450

[17] Torgersen, M., Hansen, C.P., Ernst, E., von der Ahé,
P., Bracha, G., Gafter, N.: Adding wildcards to the
Java programming language. In: SAC, ACM (2004)
1289–1296

[18] Aho, A.V., Ullman, J.D.: Principles of Compiler
Design. Addison-Wesley Longman Publishing Co., Inc.
(1977)

[19] Dean, J., Ghemawat, S.: MapReduce: simplified data
processing on large clusters. In: OSDI, USENIX
Association (2004)

[20] Boyland, J., Noble, J., Retert, W.: Capabilities for
Sharing: A Generalisation of Uniqueness and
Read-Only. In: ECOOP, Springer-Verlag (2001) 2–27

[21] Boyland, J.: Alias burying: unique variables without
destructive reads. Softw. Pract. Exper. 31 (2001)
533–553

[22] Müller, P., Rudich, A.: Ownership transfer in universe
types. In: OOPSLA, ACM (2007) 461–478

[23] Cameron, N.R., Drossopoulou, S., Noble, J., Smith,
M.J.: Multiple ownership. In: OOPSLA, ACM (2007)
441–460

[24] Permandla, P., Roberson, M., Boyapati, C.: A type
system for preventing data races and deadlocks in the
java virtual machine language: 1. In: LCTES, ACM
(2007) 10

[25] Lucassen, J.M., Gifford, D.K.: Polymorphic effect
systems. In: POPL ’88, ACM (1988) 47–57

[26] Rustan, K., Leino, M.: Data groups: specifying the
modification of extended state. In: OOPSLA, ACM
(1998) 144–153

[27] Greenhouse, A., Scherlis, W.L.: Assuring and evolving
concurrent programs: annotations and policy. In:
ICSE ’02, ACM (2002) 453–463

[28] Clarke, D., Drossopoulou, S.: Ownership,
encapsulation and the disjointness of type and effect.
In: OOPSLA, ACM (2002) 292–310

[29] Neamtiu, I., Hicks, M., Foster, J.S., Pratikakis, P.:
Contextual effects for version-consistent dynamic
software updatingalland safe concurrent programming.
SIGPLAN Not. 43 (2008) 37–49

[30] Pratikakis, P., Foster, J.S., Hicks, M.: Locksmith:
context-sensitive correlation analysis for race
detection. In: PLDI ’06, ACM (2006) 320–331

[31] Flanagan, C., Qadeer, S.: A type and effect system for
atomicity. SIGPLAN Not. 38 (2003) 338–349

[32] Bacon, D.F., Strom, R.E., Tarafdar, A.: Guava: a
dialect of Java without data races. In: OOPSLA,
ACM (2000) 382–400

