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Abstract
The Universe type system is an ownership type system which en-
forces the owners-as-modifiers model. In this paper, we present
a static analysis for inference of Universe types. We have imple-
mented the analysis and performed preliminary experiments. Our
results are promising.

1. Introduction
It is well-known that reasoning about ownership and enforcing
ownership has important software engineering benefits. There
are many ownership type systems in the literature; however, a
disadvantage of these systems is their annotation requirement—
developers would need to spend significant effort annotating new
and existing software systems in order to realize the benefits of
enforcing ownership.

Ownership inference can help alleviate this disadvantage. We
believe that inference is important, because it may help bridge the
gap between the theory of ownership types and software engineer-
ing practice. Therefore, it is important to develop new approaches
for ownership inference.

In this paper, we present a static analysis for inference of Uni-
verse type modifiers1. The Universe type system [9, 8] has three
type modifiers:rep, which denotes that the current objectthis is
the owner of the referenced object,peer which denotes that the
current objectthis and the referenced object are peers (i.e., they
appear in the same context and have the same owner), andany
which does not give any information. The Universe type system en-
forces the owners-as-modifiers model by forbidding modifications
throughany references (i.e., allowing modifications only through
rep andpeer references).

Our analysis is a lightweight static analysis built as a client of
a points-to analysis; it extends our previous work on ownership
inference according to the owners-as-dominators model [18]. We
have implemented the analysis and present empirical results which
we believe are promising.

Note that inference of Universe types has been done before—
Dietl and Müller [10] present a dynamic analysis for this purpose.
We argue that static analysis has some inherent advantages over dy-
namic analysis, and therefore our work may be useful as well. First,
static analysis is conservative and produces results valid over all
program executions, while dynamic analysis reasons only over cur-
rent executions and produces unsound results. Second, static anal-
ysis may be more practical as dynamic analysis requires multiple
runs and each run incurs (often significant) instrumentation over-
head. Type inference is traditionally static; we believe that static
ownership inference is a useful and relatively unexplored direction.

This paper has two possible contributions:

• Broadly, we advocate the usefulness of lightweight static anal-
ysis for ownership inference.

1 For the rest of the paper we refer to type modifiers as types.

• Concretely, we present a novel static analysis for inference of
Universe types. We implement the analysis and show promising
preliminary results.

Outline. Section 2 presents an overview of our analysis in the
context of two running examples. Section 3 presents the details of
the analysis. Section 4 presents our experiments. Section 5 presents
related work. Section 6 discusses the limitations of our analysis and
outlines directions for future work. Section 7 concludes the paper.

2. Analysis Overview
Our static analysis follows the steps outlined in [10]. The general
idea is to approximate ownership using the owners-as-dominators
model hoping for a deep ownership structure. However, the owners-
as-dominators model allows arbitrary modifications which must be
handled when inferring Universe types.

The four steps, following [10], are the following:

1. Construct the static object graph.

2. Compute the dominance boundary of each object.

3. Assign types to object graph edges.

4. Assign types to fields and variables.

2.1 Example 1

Figure 1 presents our running example. This is a simplified example
of a container (classContainer) and its iterator (classIterator).
There are two contexts of usage of the container. ClassY creates
a container without creating an iterator, while classX creates a
container and an iterator over the container.

The code presents one possible assignment of Universe types.
Referencecy in methodY.my is rep — that is, theY object is the
owner of the container it creates. Formal parameterzy is of type
any which forbids theY object from modifying theZ object passed
as its argument. Similarly, referencescx anditx in methodX.mx
arerep — that is, the creating objectX is the owner of the container
and its iterator. Consequently the container and the iterator are
peers as specified by the type assignments at lines 12 and 13. Note
that fielddata in Container is assigned typepeer which means
that the data array has the same owner as its creating container. This
is an acceptable assignment since it allows the container object to
modify its data array. However, it may not be the most precise or
most intuitive assignment (in fact, in Universes, one would have
expected typerep). Our choice of typepeer results from our
interpretation ofrep — intuitively, rep implies dominance and in
this case we do not have dominance because of the access path
through the external iterator. Our current analysis infers exactly the
types specified in Figure 1. The assignment of typerep to field
Container.data is essentially a limitation of our analysis; we
plan to correct this limitation in future work.

The first step in our analysis is to construct an object graph
Ag . Ag is a static approximation of all run-time object graphs. The



class Main {
public static void main(String[] args) {

1 X x = new X(); //ox

2 Z z1 = new Z(); x.mx(z1); //oz1

3 Y y = new Y(); //oy

4 Z z2 = new Z(); y.my(z2); //oz2

}}
class Y {

void my(any Z zy) {
rep Container cy;

5 cy = new rep Container(10); //ocy

6 cy.put(zy,0);

...

}
}
class X {

void mx(any Z zx) {
rep Container cx;

rep Iterator itx;

7 cx = new rep Container(10); //ocx

8 cx.put(zx,0);

9 itx = cx.getIt();

}
}
class Container {

peer any Object[] data;

Container(int size) {
10 data = new peer Object[size]; //od

}
void put(any Object o, index i) {

11 data[i] = o;

}
Iterator getIt() {

12 return new peer Iterator(this); //oi

}
}
class Iterator {

peer any Object[] data;

Iterator(peer Container c) {
13 data = c.data;

}
Object getNext(int i) {

14 return data[i];

}
}

Figure 1. Example 1.
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Figure 2. Object graph for Example 1.

object graph for the example in Figure 1 is shown in Figure 2. The
nodes inAg are the object nameso — there is an object name for
each allocation site in the code. The edgeso → o′ represent access
relationships. Informally, there are two types of edges: (1) when
a field f of o refers too′, and (2) when a methodm invoked on
receivero has a local variable that refers too′ (i.e.,o has access to
o′). Furthermore, some edgeso → o′ are annotated withMOD ,
which denotes thato modifieso′ while accessing it. The details on
the object graph construction are given in Section 3.1.

The second step in the analysis is to compute dominance bound-
aries,Boundary(o), for each object nameo. Boundary(o) is a
subgraph ofAg rooted ato. In our running example,Boundary(ox)
consists of nodesox,ocx,od and oi, and the edges between
them.2 Intuitively, the boundary contains paths that are domi-
nated byo. More formally, we conjecture that for every run-time
pathor → ... → o′r whose representativeo → ... → o′ is in
Boundary(o), we have thator dominateso′r.3 The details on the
computation of the dominance boundaries are given in Section 3.2.

The third step in the analysis is to assign types to object graph
edges. The analysis examines eachMOD edge. Initially, it identi-
fiesMOD edges that could be assignedrep type: these are edges
o → o′ such thato′ ∈ Boundary(o) — i.e., o dominateso′ and
thuso ownso′. In our example, edgesox → ocx, oy → ocy and
ocy → od are assignedrep type. Edgesocx → od andocx → oi

are not assignedrep type becauseocx does not dominateod or
oi (there are access paths not throughocx to bothoi andod). The
remainingMOD edges (i.e., the ones not assignedrep type) are as-
signedpeer type. For each such edge the analysis finds the minimal
boundaries containing the edge (there might be more than one); in-
tuitively, the minimal boundary gives the closest object which could
be the owner of both objects in thepeer edge. Then it propagates
thepeer type up within each boundary until the owner of the peer
objects is reached. In our running example, edgeocx → od is iden-
tified aspeer. There is one minimal boundary containing this edge,
Boundary(ox). The analysis propagates thepeer type up in the
boundary; it assigns typepeer to edgesocx → oi andoi → ocx,
and identifiesox as the owner of these peers. The type assignment
to object graph edges is explained in detail in Section 3.3.

The fourth step in the analysis is to assign types to fields and
variables, resolving conflicting edge types. A field, or a local vari-
able may correspond to edges in different contexts; these edges may
have different types. For example, edgesocy → od andocx → od

which correspond to fielddata in Container, have respectively

2 For the rest of the paper we use bold font (e.g.,ox,od,oi) to denote
the objects from our running examples. The bold font distinguishes these
objects from the generic objects (e.g.,o, oi, oj ) used to for the presentation
of the algorithms in Sections 3.1 and 3.2 and throughout the paper.
3 Although we have good intuition that this statement is true, we have not
attempted a formal proof at this point.



class Demo {
public static void main(any any String[] args) {

1 new peer Demo().testA(args.length > 0); //odemo

}
public void testA(boolean b) {

rep A a;

2 a = new rep A(b); //oa

}
}
class A {

boolean mod;

peer B b;

A(boolean m) {
3 mod = m;

4 b = new peer B(this); //ob

}
void off() {

5 mod = false;

}
}
class B {

peer C c;

rep D d;

B(peer A a) {
6 c = new peer C(a); //oc

7 d = new rep D(); //od

}
}
class C {

peer A a;

C(peer A na) {
8 a = na

9 if (a.mod) { a.off(); }
}

}
class D {

int i;

D() {
10 i = 0;

}
}

Figure 3. Example 2.

rep andpeer types. In this case, therep type is changed topeer
propagating the newpeer type to find the owner of the peers. The
type resolution is explained in Section 3.4.

2.2 Example 2

As another example, consider the code in Figure 3; it is taken
from [10] with only one minor modification. The corresponding
object graph which is constructed from the code during the first
step of the analysis, is given in Figure 4.

During the second step, the analysis computes the dominance
boundaries:Boundary(odemo) contains all objects,Boundary(oa)
equals {oa,ob,oc,od}, Boundary(ob) equals {ob,oc,od},
Boundary(oc) equals{oc} andBoundary(od) equals{od}.

During the third step, the analysis computes types for object
graph edges. Initially, it assignsrep types to allMOD edges but
oc → oa (this edge represents modification of an object from an
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Figure 4. Object graph for Example 2.

enclosing dominance boundary); edgeoc → oa is identified as
peer. The analysis then processespeer edgeoc → oa. There is
one minimal boundary that contains this edge,Boundary(odemo).
The analysis propagates thepeer edge up within this boundary and
identifies edgesob → oc, oa → ob, andob → oa aspeer, and
edgeodemo → oa asrep.

There are no conflicting edges and the analysis infers the fol-
lowing types (also shown in Figure 3). Local variablea in method
testA is of typerep, field b in classA is of typepeer, field c in
classB is of typepeer and fielda in classC is of typepeer. Finally,
field d in classB is of typerep.

3. Analysis Description
Next, we present the details of our static analysis.

3.1 Object Graph Construction

The object graph construction uses the results of a points-to anal-
ysis; specifically, it uses the points-to graphPt , and the set of
methodsPtReach identified as reachable by the points-to analy-
sis. Points-to analysis is a well-known static analysis: it computes
the set of objects that a reference variable or a reference object
field may point to. There are many points-to analyses in the litera-
ture. In this work, we use the well-known Andersen’s analysis for
Java [29, 15].

The analysis constructsAg , an approximation of all run-time
object graphs: if there is a run-time access edgeor

1 → or
2 for some

execution, then there is an edge inAg from the representative ofor
1

to the representative ofor
2. The nodes inAg are taken from the set

of analysis objects (there is an object name per allocation site), and
the edges represent the access relationships.

Figure 5 outlines the construction ofAg . As mentioned earlier,
it takes as inputPt and the set of reachable methodsPtReach. Fig-
ure 5 assumes that the program consists of the following kinds of
statements:l = new C(r1) (constructor calls),l = r.n(r1) (vir-
tual calls),l.f = r (instance field writes),l = r.f (instance field
reads) andl = r (direct assignments).4 NotationRCm stands for
the receivers of methodm; setsRCm are computed as follows. If
m is an instance method,RCm equals to the points-to set of the
implicit parameterthis of m. If m is a static method,RCm in-
cludes the points-to sets of all implicit parametersthis of instance
methodsn reachable backwards fromm on a chain of static calls;
if main is reachable backwards fromm on a chain of static calls,
RCm includes the noderoot.

Lines 1-2 process statements that account for flow due to object
creation. New edges are added toAg from each receiver of the en-
closing methodm (i.e., o ∈ RCm), to the analysis nameoi that
represents the newly created object. Intuitively, at object allocation

4 Assumptions that the program consists of these kinds of statements are of-
ten made in program analysis literature in order to simplify the presentation.
If necessary, temporary variables may be introduced to achieve this restric-
tion on statements (e.g.,l = r.m().n() is transformed into the sequence
r1 = r.m(); l = r1.n()).



input ReachPt , Pt
output Ag
[1] foreach statements in methodm ∈ ReachPt of kind

si : l = new C(...)
[2] add{o → oi | o∈RCm} to Ag

// flow into the receiver ofm due to object creation
[3] foreach statements in methodm ∈ ReachPt of kind

s : l = r.n(...) s.t.r 6= this,
s : l = r.f s.t.r 6= this

[4] add{o → oj | o∈RCm ∧ oj ∈Pt(l)} to Ag
// flow from callees into the receiver ofm

[5] foreach statements in methodm ∈ ReachPt of kind
s : l = new C(r),
s : l.n(r) s.t.l 6= this,
s : l.f = r s.t.l 6= this

[6] add{oi → oj | oi∈Pt(l) ∧ oj ∈Pt(r)} to Ag
// flow into the receiver of the callee fromm

[7] foreach statements in methodm ∈ ReachPt of kind
s : l = this,
s : r.n(this),
s : r.f = this

[8] add{oi → oi | oi∈Pt(this)} to Ag
// self-access through a leak ofthis

Figure 5. Construction ofAg . Pt(l) denotes the points-to set ofl.

sites (i.e., constructor calls), the newly created object becomes ac-
cessible to the receiver of the callerm. Lines 3-4 process statements
that account for flow from other objects to the receiver ofm. For
example, at an instance call not throughthis, new edges are added
from each receiver ofm (i.e.,o ∈ RCm) to each returned objectoj .
Intuitively, the returned object becomes accessible to the receiver
of m. Lines 5-6 process statements that account for flow fromm
into other objects. For example, at an instance calll.n(r), edges are
added from each objectoi in the points-to set ofl, to each objectoj

in the points-to set of reference argumentr. Intuitively, the object
passed as actual argument becomes accessible to the receiver of the
call. Finally, lines 7-8 take into account that an object may become
accessible to itself by accessing implicit parameterthis.

Next, the analysis infersMOD annotations on object graph
edges (i.e., the analysis does not rely on user-provided purity in-
formation; it infers this information automatically). OurMOD an-
notations reflectdirect modifications. That is, an object graph edge
oi → oj is marked asMOD when one of the following is true: (1)
a methodm called on receiveroi contains a field write statement
l.f = r, l 6= this, wherel refers tooj , and (2) a methodm called
on receiveroi invokes a methodn on receiveroj andn writesoj

directly through a field write statementthis.f = r. Therefore, the
analysis examines the following statements:

(1) non-this writesl.f = r, and
(2) this writesthis.f = r.
In case (1), the analysis marks asMOD every edgeoi → oj ∈

Ag such thatoi ∈ RCm andoj ∈ Pt(l). In case (2), the analysis
first finds all methodsm enclosing a calll.n(), l 6= this, where
l.n() leads to the write statementthis.f = r on a sequence of
calls throughthis. Then for each pairm and l.n(), the analysis
marks asMOD every edgeoi → oj such thatoi ∈ RCm and
oj ∈ Pt(l).

3.1.1 Example 1.

Consider the code in Figure 1 and its corresponding object graph
in Figure 2. Object graph edgesroot → ox, root → oz1,
root → oy, root → oz2 are due to the object creations at
statements 1-4 (lines 1-2 in the algorithm). Edgesox → oz1 and
oy → oz2 are due to code lines 2 and 4 respectively (lines 5-6
in the algorithm). Edgeox → oi is due to statement 9 (lines 3-4

in the algorithm). Edgesocx → ocx, ocx → oi andoi → ocx

are all due to code line 12. The self-loop edgeocx → ocx is due
to thethis access (lines 7-8 in the algorithm), edgeocx → oi is
due to the creation of the iterator (lines 1-2 in the algorithm), and
edgeoi → ocx is due to the parameter passing (lines 5-6 in the
algorithm). The rest of the edges are created analogously. Note that
statement 14 does not result in any edges because methodgetNext
is unreachable frommain.

Consider the inference ofMOD annotations. The analysis in-
fers MOD annotations from program statements 10, 11, and 13.
Statement 10 is athis.f = r write (case (2)). There are two meth-
ods that lead to this write statement: methodmy which contains the
constructor call at statement 5, and methodmx which contains the
constructor call at statement 7. Thus, the analysis of the write at
statement 10 results inMOD annotations on edgesoy → ocy and
ox → ocx. Statement 11 is a non-this write (case (1)). The analysis
of this statement leads toMOD annotations on edgesocx → od

andocy → od. Finally, statement 13 is athis.f = r write (case
(2)). It leads to aMOD annotation on edgeocx → oi. All inferred
MOD annotations are shown in Figure 2.

3.1.2 Example 2.

Consider the code in Figure 3 and its corresponding object graph
in Figure 4. The object creation at statements 2, 4, 6 and 7 result
respectively in edgesodemo → oa, oa → ob, ob → oc, and
ob → od (lines 1-2 in the algorithm in Figure 5). Statement 4
results in two additional edges: edgeob → oa due to the parameter
passing (lines 5-6 in the algorithm), and self-edgeoa → oa due to
thethis access (lines 7-8 in the algorithm). Statement 6 results in
edgeoc → oa (lines 5-6 in the algorithm).

Statements 3 and 4, 5, 6 and 7, 8, and finally 10 are field write
statements that lead toMOD annotations. Statements 3 and 4 are
this.f = r writes. There is one method that leads to these writes,
methodtestA which contains the constructor call at line 2. These
statements result in aMOD annotation on edgeodemo → oa.
Statement 5 is athis.f = r write as well. The constructorC.C
leads to this statement through the call at line 9. Thus, statement
5 results in aMOD annotation on edgeoc → oa. Statements 6
and 7 arethis.f = r writes as well. There is one method that
leads to these writes, the constructorA.A through the constructor
call at line 4. Statements 6 and 7 result in aMOD annotation on
edgeoa → ob. Statements 8 and 10 result inMOD annotations
respectively on edgesob → oc andob → od.

3.2 Dominance Boundary Computation

Next, we use the object graph to compute dominance boundaries.
ProcedurefindBoundary in Figure 6 computesBoundary(oi).

It makes use of an auxiliary procedurecomputeClosure, which de-
cides whether a new nodeoj is added to the boundary; in addition,
computeClosure computes theclosure of oj given the current
boundary ofoi — essentially, the closure is the set of nodes where
oj could flow to within the boundary ofoi.

ProcedurefindBoundary examines cut edgesok → oj (i.e.,
edges whereok ∈ Boundary(oi) andoj /∈ Boundary(oi)) —
that is,oj is a node connected to the boundary ofoi, but not yet
in the boundary ofoi. While there is such a nodeoj , which is
not examined yet,findBoundary calls computeClosure on oj ;
if the result returned bycomputeClosure is true, the computed
closure ofoj , namelyClosure(oj , oi), is added to the boundary of
oi; otherwise, nothing is added to the boundary ofoi. At the end
of procedurefindBoundary , pruneBoundary removes certain
infeasible nodes fromBoundary(oi).

The main idea of our analysis is to track the flow of an object
o throughedge tripleso1 → o, o2 → o, o1 → o2 (also denoted
by the ordered set of nodeso1, o, o2). Intuitively, o can flow from



procedurecomputeClosure
input Ag , oj , oi, Boundary(oi)
output Closure(oj , oi), result: boolean
[1] if isOutside(oi → oj) return false
[2] Closure={oj}, W ={ok | ok → oj ∧ ok ∈ Boundary(oi)}
[3] while W not empty
[4] takeok from W
[5] foreachok → om ∈ Closure ∪ Boundary(oi)
[6] foreach valid tripleok, om, on, s.t.on is new toW
[7] if isOutside(oi → on) return false
[8] else addon to Closure and toW
[9] foreachom → ok ∈ Closure ∪ Boundary(oi)
[10] foreach valid tripleom, ok, on, s.t.on is new toW
[11] if isOutside(oi → on) return false
[12] else addon to Closure and toW
[13] Closure(oj , oi) = Closure;
[14] return true

procedurefindBoundary
input Ag , oi

output Boundary(oi)
[1] Boundary(oi) = {oi}
[2] while there is newoj s.t. there is a cut edgeok → oj

[3] if computeClosure(oj , oi) == true
[4] addClosure(oj , oi) to Boundary(oi)
[5] pruneBoundary(Boundary(oi))

Figure 6. Boundary computation.computeClosure computes the
closure ofoj given the boundary ofoi, andfindBoundary com-
putes the boundary ofoi.

objecto1 to objecto2 only if o1 has access edge too2 (or symmet-
rically o can flow fromo2 to o1 only if o1 had access edge too2).
Hence, the analysis examines the specified edge triple. In our run-
ning example in Figure 2, tripleox → oz1,ocx → oz1,ox → ocx

denotes thatoz1 flows fromox to ocx. Essentially, the tracking of
triples compensates for the imprecision of the underlying points-to
analysis which often uses the same object name for distinct run-
time objects. In our first example nameod denotes two distinct
data arrays (one in containerocx and the other in containerocy).
A naive inference analysis may conclude thatod flows fromocx

to ocy and therefore the dominator ofod is root. Our analysis
concludes that there is no valid ”triple path” fromocx → od to
ocy → od; it infers the precise dominators.

Not all triples in the object graph are triples that represent valid
flow. For example, consider tripleox,ocx,oi. It implies that either
(1) ocx flows fromox into oi, or (2)ocx flows fromoi into ocx.
It is easy to see that neither is true, and therefore tripleox,ocx,oi

is not a valid triple. On the other hand, tripleocx,ocx,oi is valid:
it implies thatocx flows from itself (through thethis-reference
actually) tooi, which is true. ProcedurecomputeClosure makes
use of a predicate (lines 6 and 10) which is able to filter out some
of the invalid triples; this is explained in [18].

Consider procedurecomputeClosure. It makes use of a predi-
cateisOutside(oi → oj) (lines 1, 7 and 11) — an edgeoi → oj

is an outside edgeif there exists a valid tripleok, oj , oi. Intu-
itively, isOutside conservatively captures the situation when some
oj flows from (or into) an ”outside” objectok and therefore there
may be an access path tooj that does not pass throughoi. In Fig-
ure 2, edgeocx → oz1 is an outside edge. Clearly, theZ object
oz1 is passed from theX object to theContainer objectocx, and
ocx does not dominateoz1. When a new potential nodeoj is ex-
amined,computeClosure first examines edgeoi → oj ; if it is not
an outside edge, it proceeds to compute theClosure of oj given
oi and its current boundary.computeClosure finds the paths from
oi to oj . It examines each edgeo1 → o2 on such a path, which
is in the union of the current closure and the boundary ofoi (i.e.,

Closure ∪ Boundary(oi)). Then it discovers nodeso3, such that
there is a valid tripleo1 → o2, o1 → o3 ando3 → o2, and addso3

to Closure. If o2 is added to the union beforeo1, o3 is discovered
through lines 5-8; otherwise it is discovered through lines 9-12. If
computeClosure detects a path that originates in an outside edge
from oi, it returns false (lines 7 and 11).

Finally, procedurepruneBoundary removes certain nodes
from the boundary ofoi — these nodes are added as a result of
imprecision in the points-to analysis and contribute only infeasi-
ble access paths. The pruning is based on the following obser-
vation: an object can be in a boundaryonly if it is created in
that boundary. Therefore,pruneBoundary examines each node
oj ∈ Boundary(oi), oj 6= oi; then it examines all incoming edge
ok → oj ∈ Boundary(oi) — if none of these edges is due to
object creation (i.e., due to lines 1-2 in the object graph construc-
tion algorithm in Figure 5), nodeoj and all incoming and outgoing
edges are removed from the boundary.

We conjecture that if the representative of a run-time object
graph pathor → ... → o′r is in the boundary ofo (the represen-
tative ofor), then we have thator dominateso′r; however, we do
not have a proof of this statement. We do not discuss static fields;
however, the implementation handles this case.

3.2.1 Example 1.

Let us compute the boundary ofox in Figure 2.
Let oj beoz1 in the first iteration of the loop infindBoundary .

In this case,computeBoundary determines that edgeox → oz1

is an outside edge and immediately returns false.
Let oj be ocx in the second iteration of the loop. At line 2,

computeBoundary initializesClosure = {ocx} andW = {ox}.
At line 4, it takesox off the worklist. At line 5, it examines edge
ox → ocx and triplesox,ocx, on. The first triple isox,ocx,oi,
but this is not a valid triple and it is discarded without addingoi

to the closure and worklist. The next triple isox,ocx,ocx, which
is a valid triple andocx is added to the worklist. No nodes are
added at lines 9-12 as no parents ofox are in the current union of
Closure andBoundary(ox). Next,ocx is taken off the worklist.
At line 5, the procedure examines self-edgeocx → ocx and valid
triple ocx,ocx,oi subsequently addingoi to Closure andW . No
new nodes are added forocx computingClosure(ocx,ox) =
{ocx,oi}, and adding this set toBoundary(ox).

Let oj beod in the third iteration of the loop infindBoundary .
computeClosure returns true and addsClosure(od,ox) = {od}
to Boundary(ox). The boundary so far is{ox,ocx,oi,od}.

There is only one node connected to the boundary that has not
been examined, namely nodeoz2. The final iteration examinesoz2

and addsClosure(oz2,ox) = {oz2} to Boundary(ox). The re-
sulting Boundary(ox) is {ox,ocx,oi,od,oz2}. Note however
that the addition ofoz2 is infeasible — it is easy to see that there
is no run-time access path fromox to oz2. The culprit is the im-
precision of the underlying points-to analysis which represents the
two data arrays with a single analysis object,od. The dominance
boundary computation adds nodeoz2 to the boundary ofox be-
cause it cannot distinguish that connecting edgeod → oz2 is not
valid in the context ofox (it is valid in the context ofoy).

Finally, pruneBoundary examines each node (other thanox)
in the final boundary. There are creation edges for nodesocx, oi

and od (respectivelyox → ocx, ocx → oi and ocx → od.
There are no creation edges for nodeoz2 and this node is removed
from the boundary. The final boundary,Boundary(ox) equals
{ox,ocx,od,oi}.
3.2.2 Example 2.

As another example, consider the object graph in Figure 4, and
let us compute the boundary ofoa. The first iteration of the



procedurepropagatePeer
input oi → oj , all boundaries
[1] minimal = compute set of minimal boundaries foroi → oj

[2] foreach boundaryBoundary(ok) ∈ minimal
[3] W = {oi → oj}
[4] while W not empty
[5] takeo1 → o2 from W
[6] if o1 → o2 is a self-edge continue
[7] else ifo1 == ok marko1 → o2 asrep
[8] else
[9] marko1 → o2 aspeer
[10] foreacho3 → o1 ∈ Boundary(ok ), s.t.o3 → o1 new toW
[11] addo3 → o1 to W

Figure 7. Propagation of a peer edge.

while loop in findBoundary examinesob andcomputeClosure
adds{ob,oc} to Boundary(oa). The next iteration examinesod

andcomputeClosure adds{od}, resulting inBoundary(oa) =
{oa,ob,oc,od}. Nothing can be pruned away.

3.3 Type Assignment to Edges

The type assignment proceeds as follows. If an edge with aMOD
annotation is contained in the boundary of its source (i.e., in the
boundary of the object that does the direct modification), the edge
is identified asrep. However, there might be modifications deeper
in the boundary (e.g.,MOD edgeocx → od in Figure 2) and
modifications to objects that belong to an enclosing boundary (e.g.,
MOD edgeoc → oa in Figure 4); theseMOD edges require
that the source and the target are peers and the analysis identi-
fies them aspeer. Subsequently, the analysis invokes procedure
propagatePeer(oi → oj) which propagates thepeer type upward
looking for the common owner ofoi andoj .

Figure 7 outlines procedurepropagatePeer(oi → oj). Line 1
identifies the set of minimal boundaries containingoi → oj . A
minimal boundary is a boundaryBoundary(ok) whereok 6= oj

and ok 6= oi and there is no subset boundary,Boundary(ok′),
containing the edge. Intuitively, the minimal boundary is the deep-
est boundary containing the modification that forces thepeer type,
andok is the closest possible owner of bothoi andoj . Note that
an edge may appear in different contexts, which would result in
different minimal boundaries. For example, suppose that the iter-
ator in Figure 1 modifies the data array andoi → od is aMOD
edge; suppose also that the iterator is instantiated in the context
of oy as well. Then edgeoi → od would need to be exam-
ined in the boundaries of bothox andoy (i.e., minimal would
equal to{Boundary(ox),Boundary(oy)}. Lines 4-11 propagate
thepeer type within each minimal boundaryBoundary(ok). The
propagation starts at edgeoi → oj and proceeds backwards to find
all paths took. Lines 6-9 identify each visited edge aspeer, ex-
cept for self-edges (skipped at line 6) and the first edge on a path
(line 7). The first edge is identified asrep (therefore identifying the
owner of the peers). Note that during this step an edge previously
identified asrep could be changed topeer.

An edge can have one of three possible types:rep, peer, orany
(if no type has been assigned or propagated to an edge, we assign
the defaultany type to it).

3.3.1 Example 1.

Recall the object graph in Figure 2. First, the analysis identifies
MOD edgesox → ocx, oy → ocy andocy → od asrep (these

edges are contained in the boundary of their source).MOD edges
ocx → od andocx → oi are identified aspeer.

ConsiderMOD edgeocx → od. It is identified aspeer and
propagatePeer is called on it. There is one minimal boundary that
contains this edge, namelyBoundary(ox). propagatePeer visits
edgesocx → od, oi → ocx andocx → oi, likely in this order,
and assigns typepeer to them. It also visits edgesox → ocx and
ox → oi and assigns typerep to them.

The complete type assignment to the edges of the object graph
in Figure 2 is the following. Edgesroot → oz1, root → oz2,
root → ox androot → oy receive typeany. Edgesox → oz1,
ocx → oz1 andod → oz1 receive typeany. Edgesoy → oz2,
ocy → oz2 and od → oz2 receive typeany as well. Edges
ox → ocx and ox → oi receive typerep. Edgeoy → ocy

receives typerep as well. Edgesocx → oi, oi → ocx and
ocx → od receive typepeer. Edgeocy → od receives typerep.
Finally, edgeoi → od receives typeany.

3.3.2 Example 2.

Recall the object graph in Figure 4. Initially, the analysis assigns
rep type to MOD edgesodemo → oa, oa → ob, ob → oc

andob → od (these edges are contained in the boundary of their
source). Edgeoc → oa is identified aspeer andpropagatePeer is
called on it.propagatePeer identifies the only minimal boundary
of oc → oa, namelyBoundary(odemo). It visits edgesoc → oa,
ob → oc, oa → ob andob → oa and identifies these edges as
peer. It also visitsodemo → oa and identifies this edge asrep.

3.4 Type Assignment to Fields and Variables

The mapping of edge types to field and variable types proceeds as
follows. First, the analysis identifies a set of object graph edges that
correspond to a given fieldf , or a local variablel. The set of edges
for f , Edges(f) is computed as follows:Edges(f)={oi → oj ∈
Ag | oi

f→ oj ∈ Pt} (i.e., it includes every edge in the object
graph which is anf -labeled field edge in the points-to graph). The
set of edges for local variablel in instance methodm is computed
as follows:Edges(l) = {oi → oj ∈ Ag | oi ∈ Pt(thism)∧oj ∈
Pt(l)}. For example, the edges for fielddata in classContainer
areocx → od andocx → od. The edges for formal parametero in
methodput areocx → oz1 andocy → oz2 (o points tooz1 when
put is invoked on receiverocx, and tooz2 whenput is invoked on
receiverocy).

Next, the analysis resolves conflicts. There are three potential
cases: (1)any andrep, (2) any andpeer, and (3)rep andpeer.

Consider case (1) and let the two conflicting cases beoi
any→ oj

and oi′
rep→ oj′ : if oj ∈ Boundary(oi) (i.e., case (1.1)) the

analysis assigns typerep to both; otherwise (i.e., case (1.2)), it
assigns typepeer to both oi → oj and oi′ → oj′ , and calls
propagatePeer on both. Cases (2) and (3) are treated analogously
to case (1.2): the two edges are assigned typepeer and the newly
foundpeer edge is propagated usingpropagatePeer . We expect
that with additional experiments we would improve our insight into
the problem of conflict resolution, and would likely develop a more
precise procedure for handling of conflicts.

3.4.1 Example 1.

Consider the inferred types for fieldContainer.data and vari-
able put.o in Figure 1. We haveEdges(Container.data) =

{ocx
peer→ od,ocy

rep→ od}; therefore the inferred type for

Container.data is peer. Also, Edges(put.o) = {ocx
any→

oz1,ocy
any→ oz2}; therefore the inferred type forput.o is any.



(1)Component (2)Functionality (3)#Classes/ (4)#Methods (5)Points-to (6)Inference
#Functionality time[sec] time[sec]

gzip GZIP IO streams 199/6 3481 82 32
zip ZIP IO streams 194/6 3506 84 41
checked IO streams and checksums 189/4 3428 82 22
collator text collation 203/15 3535 83 82
breaks text breaks 193/13 3487 82 30
number number formatting 198/10 3541 85 62

Table 1. Information on Java components.

3.4.2 Example 2.

There are no conflicts in our second example.Edges(testA.a) =

{odemo

rep→ oa} and therefore variabletestA.a receives type

rep. Edges(A.b) = {oa
peer→ ob} and therefore fieldA.b

receives typepeer. Edges(B.c) = {ob
peer→ oc} and field

B.c receives typepeer; also,Edges(B.a) = {ob
peer→ oa} and

formal parametera in constructorB.B receives typepeer as well.

Edges(B.d) = {ob

rep→ od} and fieldB.d receives typerep.

Finally, Edges(C.a) = Edges(C.na) = {oc
peer→ oa} and both

field C.a and formal parameterna in constructorC.C receive type
peer.

4. Experiments
We implemented our analysis and performed limited experiments.

4.1 Infrastructure and Benchmarks

The static analysis is implemented in Java using the Soot 2.2.3 [31]
and Spark [15] frameworks. It uses the Andersen-style points-to
analysis provided by Spark. We performed the analysis with the
Sun JDK 1.4.1 libraries. All experiments were done on a 900MHz
Sun Fire 380R machine with 4GB of RAM.

We evaluated the analysis on several Java components from the
packagesjava.util.zip and java.text. We have used these
components in previous work [20, 17].5 Each component contains
a set of classes that provide certain functionality (i.e., these are the
functionality classes); arbitrary clients utilizing this functionality
can be written on top of the component. Information on these
components is shown in the first 4 columns in Table 1; column 3
shows the number of reachable classes (including library classes)
and the number of functionality classes, and column 4 shows the
number of reachable methods (including library methods).

Clearly, the components are incomplete programs and the
points-to and object graph construction analyses, which require
whole programs, cannot be applied directly. We address this issue
by making use of a technique called fragment analysis [30]—the
fragment analysis completes the component by attaching a conser-
vative artificialmain method to the set of component classes, thus
allowing whole program analysis. Our analysis is performed on the
completed component and the inferred types are valid across all
possible clients of the component.

4.2 Results

We applied the inference analyses on reference fields in function-
ality classes, a total of 46 fields.6 The last two columns in Table 1

5 The current set of components does not includedate, one of the compo-
nents used in previous work. This is due to the fact that we were unable to
rundate through the points-to analysis from our current Soot-based infras-
tructure.
6 We exclude fields of typeString andStringBuffer.

Component #Fields #rep #peer #any #root
gzip 7 3 1 3 0
zip 10 5 3 2 0
checked 2 0 2 0 0
collator 17 8 2 5 2
breaks 7 0 2 5 0
number 3 1 2 0 0

Table 2. Inferred field types.

show the running time of the points-to analysis and the running
time of the inference analysis (which includes object graph con-
struction, boundary inference, edge type inference and resolution of
field types). These results are preliminary and the implementation
is far from optimal. Still, we believe that the results are promising
and the analysis would scale well to larger programs.

Table 2 shows the inferred types for these fields. In the imple-
mentation we do not propagate upwardpeer edges whose enclos-
ing boundary isroot; these edges automatically receive typeroot.
Theroot type is designed to capture edges that represent access to
static fields (e.g., one may assign a static field to an instance field of
an object as innew A(staticField); the object may later modify
the instance field). Hence, table 2 includes 4 types:rep, peer, any
androot.

We examined manually the fields in componentszip and
collator, 27 in total. In all but 3 cases, the analysis inferred
the most precise type. All cases of imprecision were in class
MergeCollation in componentcollator: fieldssaveEntry and
lastEntry were reported to have typeroot instead ofrep, and
field patterns was reported to have typepeer instead ofrep.
We have traced the first two cases, and found that the impreci-
sion originated in imprecision in the underlying context-insensitive
points-to analysis. In our future work we will investigate more
precise points-to analyses [21, 16] for the purposes of ownership
inference.

Although preliminary and limited, we believe that these results
are promising: relatively simple, lightweight static analysis could
be useful for the purpose of inference of ownership types.

5. Related Work
There is a large body of work on ownership type systems [25,
6, 3, 5, 4, 14, 9, 23, 2, 27]. Unlike our work it focuses on type-
theoretic approaches and requires type annotations provided by the
programmer. Generally, these approaches require extensions of the
language, compiler and run-time environment and therefore, it may
be difficult to adopt in software engineering practice. Our approach
uses automatic inference and works directly on Java code; we
believe that such automatic inference may help advance reasoning
about ownership in practice.

Somewhat surprisingly, less has been done on ownership infer-
ence. Most inference analyses are dynamic [1, 22, 10, 28], although
static analysis has the important advantage of safety. Work on static
inference of ownership-related properties includes the confinement



analyses in [12] and [7], the memory leak analysis in [13], and the
analysis for inference of AliasJava types in [3]. Poetzsch-Heffter
et al. [26] present a new ownership type system with low annota-
tion overhead, and a corresponding inference analysis. Ma and Fos-
ter [19] infer ownership and combine reasoning about ownership
with reasoning about uniqueness. Our work presents conceptually
different analysis from previous work and focuses on inference of
Universe types.

The Master’s theses in [24] and [11] present analyses and tools
specifically for the inference of Universe types; the first presents
a static analysis and a tool based on an SAT-solver, and the latter
extends the SAT-based static analysis by combining it with a dy-
namic analysis. This approach is different from ours. It reduces the
inference problem to a MAX-SAT problem, while our approach
uses an analysis based on points-to information. The advantage
of this approach is that it may produce more precise results than
ours; also it may benefit from new and efficient SAT solvers. On
the other hand, the SAT-based analysis is exponential in the worst
case, while our analysis is polynomial (its worst-case complexity is
O(n5), although in practice it seems comparable to the Andersen-
style points-to analysis). We note however, that all of these anal-
yses are preliminary. The work in [24] and [11] focuses more on
the building of the inference tools and less on the evaluation of the
underlying analysis. Our work is preliminary as well; we have not
built a usable tool, and while we focus more on the analysis, our
evaluation on 6 small Java components is clearly limited. Overall,
we believe that ownership inference is still a relatively unexplored
direction.

Finally, we contrast this paper with our previous work presented
in [18]. The general idea is the same as here—we use lightweight
static analysis to reason about the ownership structure of a pro-
gram. However, the work in [18] focuses on ownership inference
according to the owners-as-dominators model and does not attempt
to map inference results to types. Our current work focuses on in-
ference of Universe types which requires significant extension of
the boundary computation from [18]; also, it attempts to map infer-
ence results to Universe types.

6. Discussion of Future Work
We note that this work is preliminary and there are many open
questions and opportunities for improvement. Below we discuss
some of these issues.

The first issue is the correctness of the boundary computation
in Section 3.2 as well as correctness in general; we have intuition
that the analysis is correct and the empirical results reinforce this
intuition; however, formal reasoning is necessary.

The second issue is that currently, the types of static methods
are not handled. However, we believe that the analysis could be
easily extended to handle static methods.

The third issue is our choice ofMOD (recall that our analysis
marks an edgeo → o′ asMOD only if o directly modifieso′—
that is, a method called on receivero calls a methodm on receiver
o′ andm writes this). There are several ways to define whether
a methodm is MOD-free. The most conservative definition, (1),
would require thatm never writes an object (i.e., it never reaches a
field write statementp.f = ...). The least conservative definition,
(2), would require thatm does not writethis (i.e., there is no direct
modification of the receiver ofm, but modifications to objects
transitively reachable from the receiver are allowed). Yet another
definition, (3), in between these two, would require thatm does not
write the visible state (i.e.,m could write temporary objects in its
scope, but these objects could not be returned to the caller ofm).

Although our choice ofMOD was originally motivated by ease
of implementation, we now believe that it might be a good choice.
Choice (1) is overly conservative—it would propagate modifica-

tions up in many dominance boundaries and may lead to impre-
cise assignment of types. Choice (3) is conservative as well—
modifications again would be propagated up in boundaries, far up
from the actual modification. In contrast, our choice, choice (2),
confines modifications as deep in a boundary as possible, and may
lead to more meaningful assignment of types. This is a question
that we plan to investigate in the future.

The fourth issue is the precision of the assigned types. Consider
edgeocx → od in Figure 2. Our analysis assigns typepeer to
this edge due to the access path tood throughoi—the analysis
concludes thatocx does not dominateod and the owner ofocx

andod appears up in an enclosing boundary. Note however that
the path throughoi does not modifyod and the analysis could
have done better and assigned typerep to edgeocx → od and
consequently to fieldContainer.data. This is another problem
that we will investigate in future work.

The final, and most important issue is analysis scalability. Cur-
rently, we have a whole program analysis which in addition to user-
defined classes and methods processes hundreds of library classes
and thousands of library methods, most of them irrelevant. For ex-
ample, an unsafe version of the inference analysis which does not
process libraries, completes in 2 seconds oncollator; in contrast,
the safe version which processes reachable libraries completes in
82 seconds. In our future work, we would like to safely and effi-
ciently separate relevant library code from irrelevant library code;
this may lead to improvements in analysis scalability.

7. Conclusions
This paper presented a static analysis for inference of Universe
types. First, the analysis constructs a static object graph, second,
it computes dominance boundaries for each object, third, it infers
types for object graph edges, and fourth, it infers types for fields and
variables. We implemented the analysis and our preliminary results
are promising. Finally, we outlined directions for future work.
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