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Abstract e Concretely, we present a novel static analysis for inference of
Universe types. We implement the analysis and show promising

The Universe type system is an ownership type system which en- e
ype sy P YPe Sy preliminary results.

forces the owners-as-modifiers model. In this paper, we present

a static analysis for inference of Universe types. We have imple-  oytline. Section 2 presents an overview of our analysis in the
mented the analysis and performed preliminary experiments. Our context of two running examples. Section 3 presents the details of
results are promising. the analysis. Section 4 presents our experiments. Section 5 presents

. related work. Section 6 discusses the limitations of our analysis and
1. Introduction outlines directions for future work. Section 7 concludes the paper.

It is well-known that reasoning about ownership and enforcing ) ]
ownership has important software engineering benefits. There2. Analysis Overview

areé many ownership type systems in the Iltere}ture; ho_wever, a Our static analysis follows the steps outlined in [10]. The general
disadvantage of these systems is their annotation requirement—

devel Id dt 4 significant effort tati idea is to approximate ownership using the owners-as-dominators
evelopers would need 1o spend significant erort annotating New ., ,qa| hoping for a deep ownership structure. However, the owners-
and existing software systems in order to realize the benefits of

. ; as-dominators model allows arbitrary modifications which must be
enforcing ownership.

L . - handled when inferring Universe types.

Ownership inference can help alleviate this disadvantage. We ; P
believe that inference is important, because it may help bridge the The four steps, following [10], are the following:
gap between the theory of ownership types and software engineer- 1, Construct the static object graph.
ing practice. Therefore, it is important to develop new approaches
for ownership inference.

In this paper, we present a static analysis for inference of Uni- 3. Assign types to object graph edges.
verse type modifiefs The Universe type system [9, 8] has three 4. Assign types to fields and variables.
type modifiersrep, which denotes that the current objettis is
the owner of the referenced objegker which denotes that the 2.1 Example 1
current objecthis and the referenced object are peers (i.e., they
appear in the same context and have the same owner)amnd
which does not give any information. The Universe type system en-
forces the owners-as-modifiers model by forbidding modifications
throughany references (i.e., allowing modifications only through
rep andpeer references).

Our analysis is a lightweight static analysis built as a client of
a points-to analysis; it extends our previous work on ownership
inference according to the owners-as-dominators model [18]. We
have implemented the analysis and present empirical results which
we believe are promising.

Note that inference of Universe types has been done before—
Dietl and Muller [10] present a dynamic analysis for this purpose.
We argue that static analysis has some inherent advantages over d
namic analysis, and therefore our work may be useful as well. First,
static analysis is conservative and produces results valid over all
program executions, while dynamic analysis reasons only over cur-
rent executions and produces unsound results. Second, static anal-
ysis may be more practical as dynamic analysis requires multiple
runs and each run incurs (often significant) instrumentation over-
head. Type inference is traditionally static; we believe that static
ownership inference is a useful and relatively unexplored direction.

This paper has two possible contributions:

2. Compute the dominance boundary of each object.

Figure 1 presents our running example. This is a simplified example
of a container (clasSontainer) and its iterator (clasterator).
There are two contexts of usage of the container. Claseates

a container without creating an iterator, while classreates a
container and an iterator over the container.

The code presents one possible assignment of Universe types.
Referencecy in methodY .my is rep — that is, theY object is the
owner of the container it creates. Formal parameteis of type
any which forbids they object from modifying the object passed
as its argument. Similarly, references anditx in methodX.mx
arerep — that s, the creating objeitis the owner of the container
and its iterator. Consequently the container and the iterator are
Speers as specified by the type assignments at lines 12 and 13. Note
that fielddata in Container is assigned typgeer which means
that the data array has the same owner as its creating container. This
is an acceptable assignment since it allows the container object to
odify its data array. However, it may not be the most precise or
ost intuitive assignment (in fact, in Universes, one would have
expected typerep). Our choice of typepeer results from our
interpretation ofrep — intuitively, rep implies dominance and in
this case we do not have dominance because of the access path
through the external iterator. Our current analysis infers exactly the
types specified in Figure 1. The assignment of type to field
« Broadly, we advocate the usefulness of lightweight static anal- Container.data is essentially a limitation of our analysis; we

ysis for ownership inference. plan to correct this limitation in future work.
The first step in our analysis is to construct an object graph
1For the rest of the paper we refer to type modifiers as types. Ag. Ag is a static approximation of all run-time object graphs. The




class Main {

public static void main(String[] args) {
X x = new X(O); //0x
Z z1 = new Z2(); x.mx(z1);
Y y = new YO; //oy
Z z2 = new 20); y.my(z2);

B W N

b}

class Y {
void my(any Z zy) {
rep Container cy;
5 cy = new rep Container(10);
6 cy.put(zy,0);

}
}

class X {
void mx(any Z zx) {
rep Container cx;
rep Iterator itx;
7  c¢x = new rep Container(10);
8  cx.put(zx,0);
9  itx = cx.getIt();

//Ocy

//0cx

class Container {
peer any Object[] data;
Container(int size) {
10 data = new peer Object[size]; //04
}
void put(any Object o, index i) {
11  datali] = o;
}
Iterator getIt() {
12 return new peer Iterator(this); //0;

}
}

class Iterator {
peer any Object[] data;
Iterator(peer Container c) {
13 data = c.data;
}
Object getNext(int i) {
14 return datalil;
}
}

Figure 1. Example 1.
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Figure 2. Object graph for Example 1.

object graph for the example in Figure 1 is shown in Figure 2. The
nodes inAg are the object names— there is an object name for
each allocation site in the code. The edges o’ represent access
relationships. Informally, there are two types of edges: (1) when
a field f of o refers too’, and (2) when a methodh invoked on
receivero has a local variable that refers4b(i.e., o has access to
0'). Furthermore, some edges— o' are annotated witd/OD,
which denotes that modifieso’ while accessing it. The details on
the object graph construction are given in Section 3.1.

The second step in the analysis is to compute dominance bound-
aries, Boundary(o), for each object name. Boundary(o) is a
subgraph ofdg rooted ab. In our running exampleoundary(ox)
consists of node®x,0cx,04 and o;, and the edges between
them? Intuitively, the boundary contains paths that are domi-
nated byo. More formally, we conjecture that for every run-time
patho” — ... — o'” whose representative — ... — o isin
Boundary(o), we have thab” dominates’”.® The details on the
computation of the dominance boundaries are given in Section 3.2.

The third step in the analysis is to assign types to object graph
edges. The analysis examines ed¢tvD edge. Initially, it identi-
fies MOD edges that could be assigneep type: these are edges
o — o such thatt’ € Boundary(o) — i.e., o dominateso’ and
thuso ownso’. In our example, edges, — 0cx, 0y — 0cy and
0Ocy — 04 are assignedep type. Edge®cx — 04 andocx — 05
are not assignedlep type because.x does not dominateq or
o; (there are access paths not through to botho; andog). The
remainingM OD edges (i.e., the ones not assigireg type) are as-
signedpeer type. For each such edge the analysis finds the minimal
boundaries containing the edge (there might be more than one); in-
tuitively, the minimal boundary gives the closest object which could
be the owner of both objects in tipeer edge. Then it propagates
thepeer type up within each boundary until the owner of the peer
objects is reached. In our running example, edge — o4 is iden-
tified aspeer. There is one minimal boundary containing this edge,
Boundary(ox). The analysis propagates theer type up in the
boundary; it assigns typgeer to edge®cx — 0; ando; — Ocx,
and identifiesox as the owner of these peers. The type assignment
to object graph edges is explained in detail in Section 3.3.

The fourth step in the analysis is to assign types to fields and
variables, resolving conflicting edge types. A field, or a local vari-
able may correspond to edges in different contexts; these edges may
have different types. For example, edges — o4 andocx — 04
which correspond to fieldata in Container, have respectively

2For the rest of the paper we use bold font (e, o4, 0;) to denote

the objects from our running examples. The bold font distinguishes these
objects from the generic objects (e.@.p;, 0;) used to for the presentation

of the algorithms in Sections 3.1 and 3.2 and throughout the paper.

3 Although we have good intuition that this statement is true, we have not
attempted a formal proof at this point.



class Demo {
public static void main(any any String[] args) {
1 new peer Demo().testA(args.length > 0); //Odemo

public void testA(boolean b) {
rep A a;
2 a = new rep A(b);
}
}

class A {
boolean mod;
peer B b;
A(boolean m) {
3 mod = m;
4 b = new peer B(this);
}
void off () {
5 mod = false;

}
}

class B {
peer C c;
rep D d;
B(peer A a) {
6 c = new peer C(a);
7 d = new rep D();
}
}

class C {
peer A a;
C(peer A na) {

8 a = na

9 if (a.mod) { a.off(); }
}

}

class D {
int i;
DO {

10 1 =
}

}

//0a

//on

//0c
//04

0;

Figure 3. Example 2.

rep andpeer types. In this case, theep type is changed tpeer
propagating the neweer type to find the owner of the peers. The
type resolution is explained in Section 3.4.

2.2 Example 2

As another example, consider the code in Figure 3; it is taken
from [10] with only one minor modification. The corresponding
object graph which is constructed from the code during the first
step of the analysis, is given in Figure 4.

Odemo
oD
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o)

O¢ “op~ OP mop™ O

D

Figure 4. Object graph for Example 2.

enclosing dominance boundary); edge — o, is identified as
peer. The analysis then processeser edgeo. — 0a. There is
one minimal boundary that contains this ed§eundary(0demo)-
The analysis propagates theer edge up within this boundary and
identifies edge®y, — 0Oc, 0a — Ob, ando, — 0, aspeer, and
edgeojemo — 0a aSTeEp.

There are no conflicting edges and the analysis infers the fol-
lowing types (also shown in Figure 3). Local variablén method
testA is of typerep, field b in classA is of typepeer, field c in
classB is of typepeer and fielda in classC is of typepeer. Finally,
field d in classB is of typerep.

3. Analysis Description
Next, we present the details of our static analysis.

3.1 Object Graph Construction

The object graph construction uses the results of a points-to anal-
ysis; specifically, it uses the points-to grapgh, and the set of
methodsPtReach identified as reachable by the points-to analy-
sis. Points-to analysis is a well-known static analysis: it computes
the set of objects that a reference variable or a reference object
field may point to. There are many points-to analyses in the litera-
ture. In this work, we use the well-known Andersen’s analysis for
Java [29, 15].

The analysis constructdg, an approximation of all run-time
object graphs: if there is a run-time access edge- o5 for some
execution, then there is an edgedp from the representative of
to the representative @f,. The nodes irdg are taken from the set
of analysis objects (there is an object name per allocation site), and
the edges represent the access relationships.

Figure 5 outlines the construction dfy. As mentioned earlier,
it takes as inpuPt and the set of reachable methdéiReach. Fig-
ure 5 assumes that the program consists of the following kinds of
statementst = new C(r1) (constructor calls)] = r.n(ry) (vir-
tual calls),l.f = r (instance field writes), = r. f (instance field
reads) and = r (direct assignment$)NotationRC,,, stands for
the receivers of methoth; setsRC,, are computed as follows. If
m is an instance methodyC., equals to the points-to set of the
implicit parameterthis of m. If m is a static methodRC., in-
cludes the points-to sets of all implicit parametelis s of instance
methodsn reachable backwards from on a chain of static calls;
if main is reachable backwards from on a chain of static calls,
RC., includes the nodeoot.

Lines 1-2 process statements that account for flow due to object
creation. New edges are added4g from each receiver of the en-
closing methodn (i.e.,o € RC,,), to the analysis name; that

During the second step, the analysis computes the dominancerepresents the newly created object. Intuitively, at object allocation

boundariesBoundary(04emo.) contains all objectsBoundary(oa)
equals {0a, 0b,0c, 04}, Boundary(op) equals {op,0c,0a},
Boundary(oc) equals{oc } and Boundary(oq) equals{oq}.

During the third step, the analysis computes types for object
graph edges. Initially, it assigns:p types to allM/OD edges but
o. — 04 (this edge represents modification of an object from an

4 Assumptions that the program consists of these kinds of statements are of-
ten made in program analysis literature in order to simplify the presentation.
If necessary, temporary variables may be introduced to achieve this restric-
tion on statements (e.d.,= r.m().n() is transformed into the sequence

r1 =r.m();l =ri.n()).



input  ReachPt, Pt
output Ag
[1] foreach statementin methodm € ReachPt of kind
si: l =new C(...)
[2] add{o— 0;|0€RC:H}t0 Ag
// flow into the receiver ofn due to object creation
[3] foreach statemertin methodm € ReachPt of kind
s:l=rm(...)s.t.r # this,
s: L =r.fs.t.r # this
[4] add{o — 0j|0€RCm N o; € Pt(l)} to Ag
/I flow from callees into the receiver of
[5] foreach statementin methodm € ReachPt of kind
s:l=new C(r),
s:l.n(r) s.t.l # this,
s:l.f =rs.tl# this
[6] add{o; — o;|o;€ Pt(l) Ao;j€ Pt(r)} to Ag
/I flow into the receiver of the callee from
[7] foreach statementin methodm € ReachPt of kind
s: [ = this,
s: r.n(this),
s:r.f = this
[8] add{o; — o;]|0; € Pt(this)} to Ag
I/ self-access through a leak tiis

Figure 5. Construction ofdg. Pt(l) denotes the points-to set bf

in the algorithm). Edge®cx — Ocx, Ocx — 0i ando; — Ocx

are all due to code line 12. The self-loop edgse — ocx is due

to thethis access (lines 7-8 in the algorithm), edgg. — o; is

due to the creation of the iterator (lines 1-2 in the algorithm), and
edgeo; — ocx is due to the parameter passing (lines 5-6 in the
algorithm). The rest of the edges are created analogously. Note that
statement 14 does not result in any edges because mgthvdxt

is unreachable fromain.

Consider the inference df/OD annotations. The analysis in-
fers MOD annotations from program statements 10, 11, and 13.
Statement 10 is ghis. f = r write (case (2)). There are two meth-
ods that lead to this write statement: methgdwvhich contains the
constructor call at statement 5, and methadwvhich contains the
constructor call at statement 7. Thus, the analysis of the write at
statement 10 results i OD annotations on edges, — ocy, and
0x — Ocx. Statement 11 is a non-this write (case (1)). The analysis
of this statement leads t&/OD annotations on edges.x — 04
andocy — og. Finally, statement 13 is ehis.f = r write (case
(2)). It leads to aV/OD annotation on edgecx — o;. All inferred
MOD annotations are shown in Figure 2.

3.1.2 Example 2.

Consider the code in Figure 3 and its corresponding object graph
in Figure 4. The object creation at statements 2, 4, 6 and 7 result
respectively in edge®4emo — 0Oa, 0a — Ob, Ob — Oc, and

sites (i.e., constructor calls), the newly created object becomes ac-ob — o4 (lines 1-2 in the algorithm in Figure 5). Statement 4

cessible to the receiver of the caller Lines 3-4 process statements
that account for flow from other objects to the receivemnafFor
example, at an instance call not througtis, new edges are added
from each receiver oh: (i.e.,o € RC,) to each returned objea}.

Intuitively, the returned object becomes accessible to the receiver

of m. Lines 5-6 process statements that account for flow fram
into other objects. For example, at an instancelcallr), edges are
added from each objeot in the points-to set of, to each object;

in the points-to set of reference argumentntuitively, the object

results in two additional edges: edge — o0, due to the parameter
passing (lines 5-6 in the algorithm), and self-edge— o, due to
thethis access (lines 7-8 in the algorithm). Statement 6 results in
edgeo. — 0, (lines 5-6 in the algorithm).

Statements 3 and 4, 5, 6 and 7, 8, and finally 10 are field write
statements that lead t#fOD annotations. Statements 3 and 4 are
this.f = r writes. There is one method that leads to these writes,
methodtestA which contains the constructor call at line 2. These
statements result in 0D annotation on edg®gcmo — Oa.

passed as actual argument becomes accessible to the receiver of thgtatement 5 is ahis.f = r write as well. The constructa.C

call. Finally, lines 7-8 take into account that an object may become
accessible to itself by accessing implicit parameteis.

Next, the analysis inferd/OD annotations on object graph
edges (i.e., the analysis does not rely on user-provided purity in-
formation; it infers this information automatically). OMOD an-
notations reflectlirect modifications. That is, an object graph edge
0, — o, is marked as\/OD when one of the following is true: (1)
a methodm called on receiven; contains a field write statement
l.f =r, 1 # this, wherel refers too;, and (2) a methodh called
on receivero; invokes a methoa on receivero; andn writes o;
directly through a field write statemetiiis. f = r. Therefore, the
analysis examines the following statements:

(1) nonthis writes!.f = r, and

(2) this writesthis.f = r.

In case (1), the analysis marks 880D every edge; — o; €
Ag such thab; € RC,, ando; € Pt(l). In case (2), the analysis
first finds all methodsn enclosing a call.n(), [ # this, where
I.n() leads to the write statemenhis.f = r on a sequence of
calls throughthis. Then for each paifn andl.n(), the analysis
marks asMOD every edgeo; — o; such thato; € RC,, and
0; € Pt(l).

3.1.1 Example 1.

leads to this statement through the call at line 9. Thus, statement
5 results in aMOD annotation on edge. — o0a,. Statements 6
and 7 arethis.f = r writes as well. There is one method that
leads to these writes, the constructor through the constructor
call at line 4. Statements 6 and 7 result id80D annotation on
edgeo, — op. Statements 8 and 10 result MOD annotations
respectively on edgas, — o andop, — 04.-

3.2 Dominance Boundary Computation

Next, we use the object graph to compute dominance boundaries.

ProcedurgindBoundary in Figure 6 computeBoundary(o; ).

It makes use of an auxiliary procedut@npute Closure, which de-
cides whether a new nodg is added to the boundary; in addition,
computeClosure computes theclosure of o; given the current
boundary ofo; — essentially, the closure is the set of nodes where
o; could flow to within the boundary af;.

ProcedurefindBoundary examines cut edges, — o; (i.e.,
edges where;,, € Boundary(o;) ando; ¢ Boundary(o;)) —
that is,o; is a node connected to the boundaryogf but not yet
in the boundary of;. While there is such a node;, which is
not examined yetfindBoundary calls computeClosure on oy;
if the result returned byomputeClosure is true, the computed
closure ofo;, namelyClosure(o;, 0;), is added to the boundary of

Consider the code in Figure 1 and its corresponding object graph o,; otherwise, nothing is added to the boundarygafAt the end

in Figure 2. Object graph edgasot — o0x, root — 031,
root — o0y, root — 0,2 are due to the object creations at
statements 1-4 (lines 1-2 in the algorithm). Edges— o.1 and

0y, — 052 are due to code lines 2 and 4 respectively (lines 5-6
in the algorithm). Edgex — o; is due to statement 9 (lines 3-4

of procedurefindBoundary, pruneBoundary removes certain
infeasible nodes fronBoundary(o;).

The main idea of our analysis is to track the flow of an object
o throughedge tripleso; — 0,02 — 0,01 — 02 (also denoted
by the ordered set of nodes, o, 02). Intuitively, o can flow from



procedurecomputeClosure Closure U Boundary(o;)). Then it discovers nodess, such that

input  Ag, oj, o0i, Boundary(o;) there is a valid triple; — 02, 01 — 03 andoz — o2, and add®3
output Closure(oj,0;), result: boolean to Closure. If 02 is added to the union befor, o is discovered

[1] if isOutside(o; — o;) return false through lines 5-8; otherwise it is discovered through lines 9-12. If
[2] Closure={o;}, W={ox | o — 0j A ox € Boundary(o;)} computeClosure detects a path that originates in an outside edge
[3] while W not empty from o;, it returns false (lines 7 and 11).

[4] takeoy from W Finally, procedurepruneBoundary removes certain nodes
[5] foreachor — om € Closure U Boundary(o;) from the boundary ob; — these nodes are added as a result of
[6]  foreach valid tripleos, 0m, o, S.t.o, is Nnew tolW imprecision in the points-to analysis and contribute only infeasi-
[7] if isOutside(o; — oy) return false ble access paths. The pruning is based on the following obser-
[8] else ad,, to Closure and to W vation: an object can be in a boundaoyly if it is createdin

[9] foreacho,, — ox € Closure U Boundary(o;) that boundary. ThereforegruneBoundary examines each node
[10] foreach valid tripleom, ok, on, S.t.0n is Nnew toW 0j € Boundary(o;), 0o; # o;; then it examines all incoming edge
[11] if isOutside(o; — on) return false or — 0; € Boundary(o;) — if none of these edges is due to
[12] else add,, to Closure and to W object creation (i.e., due to lines 1-2 in the object graph construc-
[13] Closure(o;, 0:) = Closure; tion algorithm in Figure 5), node; and all incoming and outgoing
[14] return true edges are removed from the boundary.

We conjecture that if the representative of a run-time object
procedurgindBoundary graph pathv” — ... — o'" is in the boundary ob (the represen-
input Ag, o; tative ofo”), then we have thai” dominates’”; however, we do
output Boundary(o;) not have a proof of this statement. We do not discuss static fields;
[1] Boundary(o;) = {o:} however, the implementation handles this case.

[2] while there is new; s.t. there is a cut edgs, — o,
[3] if computeClosure(o;,0;) == true 3.2.1 Example 1.

[4] add Closure(oj, 0;) to Boundary(o;)

[5] pruneBoundary( Boundary(o;)) Let us compute the boundary of. in Figure 2.

Leto; beo,1 in the firstiteration of the loop ifind Boundary.

Figure 6. Boundary computatiorcompute Closure computes the In this casecomputeBoundary determines that edgs, — 0,1
closure ofo; given the boundary ob;, and find Boundary com- is an outside edge and immediately returns false.

putes the boundary af;. Let o; be ocx in the second iteration of the loop. At line 2,
objecto; to objecto, only if o, has access edge @ (or symmet- computeBoundary initializes Closure = {0cx} andW = {ox}.
rically o can flow fromos to o only if o, had access edge te). At line 4, it takeS(_)x off the worklist. At _Ilne 5 it examines edge
Hence, the analysis examines the specified edge triple. In our run-0x — Ocx and triplesox, ocx, 0, The first triple iSox, 0cx, 01,
ning example in Figure 2, tripl@x — 071, 0cx — 0z1,0x — Ocx but this is not a valid triple and it is discarded without adding

denotes thab,1 flows fromox t0 ocx. Essentially, the tracking of {0 the closure and worklist. The next tripleds, ocx, 0cx, which
triples compensates for the imprecision of the underlying points-to IS @ Valid triple andocx is added to the worklist. No nodes are
analysis which often uses the same object name for distinct run- 2dded at lines 9-12 as no parentsogfare in the current union of
time objects. In our first example naneg denotes two distinct ~ Closure and Boundary(ox). Next, ocx is taken off the worklist.

data arrays (one in containegx and the other in containerey ). Atline 5, the procedure examines self-edgg — ocx and valid
A naive inference analysis may conclude tbatflows from ocx triple ocx, 0cx, 01 subsequently adding; to Closure andWW. No
to 0.y and therefore the dominator of; is root. Our analysis new nodes are added farcx computing Closure(ocx,0x) =
concludes that there is no valid "triple path” fromx — o4 t0 {ocx, 01}, and adding this set tBoundary(ox).

0ey — 04, itinfers the precise dominators. Leto; beog in the third iteration of the loop ifindBoundary.

Not all triples in the object graph are triples that represent valid computeClosure returns true and addSlosure(0d, 0x) = {oa}
flow. For example, consider triptg,, ocx, 0;. It implies that either to Boundary(ox). The boundary so far ifox, 0cx; 01, 0a }-

(1) 0ex flows from o into o;, or (2) ocx flows fromo; iNt0 Ocx. There is only one node connected to the boundary that has not

It is easy to see that neither is true, and therefore topleocx, 01 been examined, namely nodg.. The final iteration examinas,2

is not a valid triple. On the other hand, tripiey, ocx, 0; is valid: and addsClosure(0z2,0x) = {022} t0 Boundary(ox). The re-

it implies thatocx flows from itself (through thechis-reference sulting Boundary(0x) is {0x, Ocx, 0i,0a,0.2}. Note however

actually) too;, which is true. ProcedureomputeClosure makes f[hat the addmon ob,. is infeasible — it is easy to see that.there

use of a predicate (lines 6 and 10) which is able to filter out some S NO run-time access path from. to o,2. The culprit is the im-

of the invalid triples; this is explained in [18]. precision of the underlying points-to analysis which represents the
Consider procedureomputeClosure. It makes use of a predi- W0 data arrays with a single analysis objesi, The dominance

cateisOutside(o; — o;) (lines 1, 7 and 11) — an edge — o, boundary computation adds node to the boundary ob, be-

is an outside edgéf there exists a valid tripleoy, 0;, 0;. Intu- cause it cannot distinguish that connecting edge— o2 is not

itively, isOutside conservatively captures the situation when some Valid in the context ob. (it is valid in the context oby).

o, flows from (or into) an “outside” objeat;, and therefore there _ Finally, pruneBoundary examines each node (other thag)

may be an access pathdg that does not pass through. In Fig- in the final boundary. There are creation edges for nadgs o;

ure 2, edgep.x — 0,1 is an outside edge. Clearly, ttieobject andoa (respectivelyox — Ocx, Ocx — 0i aNd Ocx — ©Od.

0,1 is passed from th& object to theContainer objectocy, and There are no creation edggs for naglg and this node is removed

0cx does not dominate,;. When a new potential nods is ex- from the boundary. The final boundaroundary(ox) equals

amined,computeClosure first examines edge; — o,; if it is not {ox, 0cx, 04, 01}

an outside edge, it proceeds to compute @iesure of o; given
0: and its current boundaryomputeClosure finds the paths from ~ 3-2-2  Example 2.

0; t0 0;. It examines each edge — o2 on such a path, which  As another example, consider the object graph in Figure 4, and
is in the union of the current closure and the boundary;di.e., let us compute the boundary af,. The first iteration of the



procedurepropagatePeer
input o0; — o;, all boundaries
[1] minimal = compute set of minimal boundaries far— o;

[2] foreach boundanBoundary(ox) € minimal
[B] W ={oi— o5}
while W not empty
takeo; — o2 from W
if o1 — o2 is a self-edge continue
else if01 Ok markol — 02 asrep
else
marko; — o2 aspeer
foreachos — 01 € Boundary(og), S.t.o3 — 01 newto W
addos — o1 to W

[10]
[11]

Figure 7. Propagation of a peer edge.

while loop in findBoundary examinesoy, and computeClosure
adds{op, oc } t0 Boundary(oa). The next iteration examines;
and computeClosure adds{oq}, resulting in Boundary(oa)
{04, 0b, Oc, 04 }. Nothing can be pruned away.

3.3 Type Assignment to Edges

The type assignment proceeds as follows. If an edge withGaD
annotation is contained in the boundary of its source (i.e., in the
boundary of the object that does the direct modification), the edge
is identified axrep. However, there might be modifications deeper
in the boundary (e.g.MOD edgeocx — o4 in Figure 2) and
modifications to objects that belong to an enclosing boundary (e.g.,
MOD edgeo. — o0 in Figure 4); theseM OD edges require
that the source and the target are peers and the analysis identi
fies them agpeer. Subsequently, the analysis invokes procedure
propagatePeer(o; — o;) which propagates theeer type upward
looking for the common owner af; ando;.

Figure 7 outlines procedungropagatePeer(o; — o;). Line 1
identifies the set of minimal boundaries containimg— o;. A
minimal boundary is a boundaBoundary(ox) whereo, # o;
ando, # o; and there is no subset boundaBpundary(ox),
containing the edge. Intuitively, the minimal boundary is the deep-
est boundary containing the modification that forcespier type,
andoy, is the closest possible owner of bathando;. Note that
an edge may appear in different contexts, which would result in
different minimal boundaries. For example, suppose that the iter-
ator in Figure 1 modifies the data array amd— oq is a MOD

edge; suppose also that the iterator is instantiated in the context

of o, as well. Then edg®; — o4 would need to be exam-
ined in the boundaries of bot. andoy (i.e., minimal would
equal to{ Boundary(ox ), Boundary(oy)}. Lines 4-11 propagate
thepeer type within each minimal boundaBoundary(ox). The
propagation starts at edge — o; and proceeds backwards to find
all paths tooy. Lines 6-9 identify each visited edge pser, ex-
cept for self-edges (skipped at line 6) and the first edge on a path
(line 7). The first edge is identified asp (therefore identifying the
owner of the peers). Note that during this step an edge previously
identified asrep could be changed tpeer.

An edge can have one of three possible types; peer, orany

edges are contained in the boundary of their sou&).D edges
Ocx — 04 andocx — 0; are identified apeer.

ConsiderMOD edgeocx — o4. It is identified aspeer and
propagatePeer is called on it. There is one minimal boundary that
contains this edge, nameRoundary(ox). propagatePeer visits
edgesocx — 0d, 0; — Ocx andoex — 04, likely in this order,
and assigns typgeer to them. It also visits edgasc — ocx and
0ox — 0; and assigns typeep to them.

The complete type assignment to the edges of the object graph
in Figure 2 is the following. Edgesoot — 041, root — 0.2,
root — 0x androot — oy receive typeany. Edgesox — 0s1,
Ocx — 0z1 andog — 0,1 receive typeany. Edgeso, — 052,
Ocy — Oz2 andog — 0,2 receive typeany as well. Edges
0x — Ocx andox — o; receive typerep. Edgeoy — ocy
receives typerep as well. Edgeex — 05, 01 — 0cx and
Ocx — 0d receive typepeer. Edgeoc, — 04g receives typeep.
Finally, edgeo; — og4 receives typeny.

3.3.2 Example 2.

Recall the object graph in Figure 4. Initially, the analysis assigns
rep type to MOD edgesoiemo — Oa; Oa — Ob, Ob — Oc
ando, — o4 (these edges are contained in the boundary of their
source). Edge. — o, is identified apeer andpropagatePeer is
called on it.propagatePeer identifies the only minimal boundary
of 0c — 0a, NamelyBoundary(04emo ). It Visits edge. — 0a,

opb — O, 0a — Op andop — 0, and identifies these edges as
peer. It also visitso4.mo — 0a and identifies this edge asp.

3.4 Type Assignment to Fields and Variables

The mapping of edge types to field and variable types proceeds as
follows. First, the analysis identifies a set of object graph edges that
correspond to a given fielf, or a local variablé. The set of edges

for f, Edges(f) is computed as followsEdges(f)={o; — o; €

Ag | o 4, o; € Pt} (i.e., it includes every edge in the object
graph which is ary-labeled field edge in the points-to graph). The
set of edges for local variabldan instance methoeh is computed
as follows:Edges(l) = {0; — o; € Ag | 0; € Pt(this,)Ao; €
Pt(l)}. For example, the edges for fieddta in classContainer
areocx — 04 andocx — 04. The edges for formal parametein
methodput areocx — 0z1 andocy — 052 (0 poiNts too,1 when
put is invoked on receives.x, and too,2 whenput is invoked on
receiverocy ).

Next, the analysis resolves conflicts. There are three potential
cases: (1pny andrep, (2) any andpeer, and (3)rep andpeer.

Consider case (1) and let the two conflicting casess:ibeay 0;

and o,/ =P oj. if 0o; € Boundary(o;) (i.e., case (1.1)) the
analysis assigns typeep to both; otherwise (i.e., case (1.2)), it
assigns typepeer to botho; — o; ando,; — o;/, and calls
propagatePeer on both. Cases (2) and (3) are treated analogously
to case (1.2): the two edges are assigned pgear and the newly
found peer edge is propagated usingopagatePeer. \We expect
that with additional experiments we would improve our insight into
the problem of conflict resolution, and would likely develop a more
precise procedure for handling of conflicts.

3.4.1 Example 1.

(if no type has been assigned or propagated to an edge, we assigitonsider the inferred types for fieltbntainer.data and vari-

the defaultany type to it).

3.3.1 Example 1.

Recall the object graph in Figure 2. First, the analysis identifies
MOD edgesox — Ocx, Oy — Ocy andocy — 04q asrep (these

ableput.o in Figure 1. We haveFdges(Container.data) =

eer re _
{0ex P 04, Ocy P oa}; therefore the inferred type for
Container.data is peer. Also, Edges(put.o) = {0cx '

021, Ocy ay 0,2 }; therefore the inferred type f@ut . o is any.



(1)Component (2)Functionality (3)#Classes/| (4)#Methods || (5)Points-to | (6)Inference

#Functionality time[sec] time[sec]
gzip GZIP 10 streams 199/6 3481 82 32
zip ZIP 10 streams 194/6 3506 84 41
checked 10 streams and checksuns 189/4 3428 82 22
collator text collation 203/15 3535 83 82
breaks text breaks 193/13 3487 82 30
number number formatting 198/10 3541 85 62

Table 1. Information on Java components.

3.4.2 Example 2. Component| #Fields | #rep | #peer | #any | #root
L gzip 7 3 1 3 0
There arreego conflicts in our second examléges(testh.a) = Zip 10 £ 3 5 0
{0demo — 0a} and therefore variableestA.a receives type checked 2 0 2 0 0
peer . collator 17 8 2 5 2
rep. Edges(A.b) = {0a — Ob} an(i)etgsrefore fieldh.b broaks 7 5 5 = 0
receives typepeer. Edges(B.c) = {o, ~— o} and field number 3 1 2 0 0
. . peer
B.c receives typegeer; also, Edges(B.a) = {op — o0a} and Table 2. Inferred field types.

formal parametes in constructoB. B receives typeeer as well.
rep . .

Edges(B.d) = and fieldB.d receives typerep. . . . . .

. ges(B.d) loo = oa} peer yperep show the running time of the points-to analysis and the running

Finally, Edges(C.a) = Edges(C.na) = {oc ~— o0a} and both time of the inference analysis (which includes object graph con-

field C.a and formal parametera in constructorC. C receive type  struction, boundary inference, edge type inference and resolution of

peer. field types). These results are preliminary and the implementation
is far from optimal. Still, we believe that the results are promising
4. Experiments and the analysis would scale well to larger programs.

Table 2 shows the inferred types for these fields. In the imple-
mentation we do not propagate upwakebr edges whose enclos-
4.1 Infrastructure and Benchmarks ing boundary isoot; these edges automatically receive typet.
Theroot type is designed to capture edges that represent access to
static fields (e.g., one may assign a static field to an instance field of
anobjectasimew A(staticField);the object may later modify

We implemented our analysis and performed limited experiments.

The static analysis is implemented in Java using the Soot 2.2.3 [31]
and Spark [15] frameworks. It uses the Andersen-style points-to

analysis provided by Spark. We performed the analysis with the 1q instance field). Hence. table 2 includes 4 t .
Sun JDK 1.4.1 libraries. All experiments were done on a 900MHz andlroot. teld). ' et YRes; peer, any

Sun Fire 380R machine with 4GB of RAM. We examined manually the fields in componeatsp and

We evaluated the analysis on several Java components from the. 11 ,¢6r, 27 in total. In all but 3 cases, the analysis inferred
packagesjava.util.zip and java.text. We have used these e most precise type. All cases of imprecision were in class
components in previous \_Nork [20', l?EaC_h compqnent contains MergeCollation in componentollator: fieldssaveEntry and
a set of classes that provide certain functionality (i.e., these are thel‘.istEntry were reported to have typsoot instead ofrep, and
functionality classes); arbitrary clients utilizing this functionality  a|g patterns was reported to have typseer instead ofrep.
can be written on top of the component. Information on these \yg have traced the first two cases, and found that the impreci-
components is shown in the first 4 columns in Table 1; column 3 gjon originated in imprecision in the underlying context-insensitive
shows the number of regchal_ale classes (including library C|asses)points-to analysis. In our future work we will investigate more
and the number of functlonallty class.es, gnd column 4 shows the precise points-to analyses [21, 16] for the purposes of ownership
number of reachable methods (including library methods). inference.

Clearly, the components are incomplete programs and the — ajthough preliminary and limited, we believe that these results
points-to and object graph construction analyses, which require gre promising: relatively simple, lightweight static analysis could

whole programs, cannot b.e applied directly. We addre;s this issuepe yseful for the purpose of inference of ownership types.
by making use of a technique called fragment analysis [30]—the

fragment analysis completes the component by attaching a conser:

vative artificialmain method to the set of component classes, thus 5. Related Work

allowing whole program analysis. Our analysis is performed on the There is a large body of work on ownership type systems [25,
completed component and the inferred types are valid across all6, 3, 5, 4, 14, 9, 23, 2, 27]. Unlike our work it focuses on type-

possible clients of the component. theoretic approaches and requires type annotations provided by the
programmer. Generally, these approaches require extensions of the
4.2 Results language, compiler and run-time environment and therefore, it may

We applied the inference analyses on reference fields in function- be difficult to adopt in software engineering practice. Our approach
ality classes, a total of 46 fieldsThe last two columns in Table 1~ uses automatic inference and works directly on Java code; we
believe that such automatic inference may help advance reasoning
5The current set of components does not inclastee, one of the compo- about ownership in practice.
nents used in previous work. This is due to the fact that we were unableto ~ Somewhat surprisingly, less has been done on ownership infer-
rundate through the points-to analysis from our current Soot-based infras- ence. Most inference analyses are dynamic [1, 22, 10, 28], although
tructure. static analysis has the important advantage of safety. Work on static
6We exclude fields of typString andStringBuffer. inference of ownership-related properties includes the confinement




analyses in [12] and [7], the memory leak analysis in [13], and the tions up in many dominance boundaries and may lead to impre-

analysis for inference of AliasJava types in [3]. Poetzsch-Heffter cise assignment of types. Choice (3) is conservative as well—

et al. [26] present a new ownership type system with low annota- modifications again would be propagated up in boundaries, far up

tion overhead, and a corresponding inference analysis. Ma and Fosfrom the actual modification. In contrast, our choice, choice (2),

ter [19] infer ownership and combine reasoning about ownership confines modifications as deep in a boundary as possible, and may

with reasoning about uniqueness. Our work presents conceptuallylead to more meaningful assignment of types. This is a question

different analysis from previous work and focuses on inference of that we plan to investigate in the future.

Universe types. The fourth issue is the precision of the assigned types. Consider
The Master’s theses in [24] and [11] present analyses and toolsedgeoc.x — o4 in Figure 2. Our analysis assigns typeer to

specifically for the inference of Universe types; the first presents this edge due to the access pathotp through o;—the analysis

a static analysis and a tool based on an SAT-solver, and the latterconcludes thab.x does not dominate4q and the owner 0bcx

extends the SAT-based static analysis by combining it with a dy- andog appears up in an enclosing boundary. Note however that

namic analysis. This approach is different from ours. It reduces the the path througho; does not modifyoq and the analysis could

inference problem to a MAX-SAT problem, while our approach have done better and assigned tye® to edgeocx — o4 and

uses an analysis based on points-to information. The advantageconsequently to fiel€ontainer.data. This is another problem

of this approach is that it may produce more precise results thanthat we will investigate in future work.

ours; also it may benefit from new and efficient SAT solvers. On The final, and most important issue is analysis scalability. Cur-

the other hand, the SAT-based analysis is exponential in the worstrently, we have a whole program analysis which in addition to user-

case, while our analysis is polynomial (its worst-case complexity is defined classes and methods processes hundreds of library classes

O(n®), although in practice it seems comparable to the Andersen- and thousands of library methods, most of them irrelevant. For ex-

style points-to analysis). We note however, that all of these anal- ample, an unsafe version of the inference analysis which does not

yses are preliminary. The work in [24] and [11] focuses more on process libraries, completes in 2 secondselilator; in contrast,

the building of the inference tools and less on the evaluation of the the safe version which processes reachable libraries completes in

underlying analysis. Our work is preliminary as well; we have not 82 seconds. In our future work, we would like to safely and effi-

built a usable tool, and while we focus more on the analysis, our ciently separate relevant library code from irrelevant library code;

evaluation on 6 small Java components is clearly limited. Overall, this may lead to improvements in analysis scalability.

we believe that ownership inference is still a relatively unexplored

direction. ;
Finally, we contrast this paper with our previous work presented 7. Conclusions

in [18]. The general idea is the same as here—we use lightweight This paper presented a static analysis for inference of Universe

static analysis to reason about the ownership structure of a pro-types. First, the analysis constructs a static object graph, second,

gram. However, the work in [18] focuses on ownership inference it computes dominance boundaries for each object, third, it infers

according to the owners-as-dominators model and does not attemptypes for object graph edges, and fourth, itinfers types for fields and

to map inference results to types. Our current work focuses on in- variables. We implemented the analysis and our preliminary results

ference of Universe types which requires significant extension of are promising. Finally, we outlined directions for future work.

the boundary computation from [18]; also, it attempts to map infer-

ence results to Universe types. References
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