
Improving relocation
performance in ZGC by
identifying the size of small
objects

JINYU YU

Master’s Programme, Embedded Systems, 120 credits
Date: May 23, 2022

Supervisors: Tobias Wrigstad, Per Lidén, Erik Österlund,
Thilanka Thilakasiri
Examiner: Matthias Becker
School of Electrical Engineering and Computer Science

Host company: Oracle
Swedish title: Förbättrad omplaceringsprestanda i ZGC genom
att identifiera storleken på små objekt

© 2022 Jinyu Yu

Abstract | i

Abstract
Modern Garbage Collectors provide performance improvements by
increasing program locality to utilize the faster CPU cache. A common
approach is to move objects together according to the mutators’
access order, which brings more relocations during GC. In most
cases, more relocations would not impact performance when using
concurrent Garbage Collectors such as ZGC. However, in constrained
environments with fewer CPU cores or less memory, bad relocation
performance will cause overall performance degradation. In this
thesis, we investigated why larger objects do not benefit from better
program locality, then proposed a new design to reduce the number
of relocations by efficiently identifying and ignoring larger objects. As
a result, the relocation performance can be improved. In constrained
environments, this can lead to an increase in overall throughput.

In the newdesign, we introduce an extra page type, the tiny page. If
an object is considerably small that it could benefit from relocation, it
will be placed on the tiny page when allocating. As a result, we could
replace the time‐consuming size check of objects with a faster page
type check. Memory fragmentation also canbe reducedby this design.

To evaluate this design, we add the size identification procedure
into a locality improvement implementation named HCSGC. The
results of benchmarks show a slight improvement in constrained
environments. In the JGraphT benchmark, we see a 3‐5% speedup in
different configurationswithmemory limitations. In the SPECjbb2015
benchmark, we see a ~1% increase in performance on average, but
with overlapping confidence intervals. In the DaCapo benchmark
suite, we see a 1% improvement in the sunflow benchmark with
CPU constraint. For other benchmarks in DaCapo, no significant
difference is discovered. The results suggest that the proposed new
design is a feasible way of filtering out larger objects, and doing so can
further improve the relocation and overall performance.

Keywords
Garbage Collector, Java, Data locality

ii | Abstract

Sammanfattning| iii

Sammanfattning
Modern Garbage Collector ger prestandaförbättringar genom att öka
programplatsen för att använda den snabbare CPU‐cachen. En vanlig
metod är att flytta fler objekt baserat på mutators åtkomstorder. I
de flesta fall skulle fler omplaceringar inte påverka prestanda vid
användning av samtidiga Garbage Collector som ZGC. Men i begrän‐
sademiljöer med färre CPU‐kärnor eller mindreminne kommer dålig
flyttningsprestanda att leda till övergripande prestandaförsämring.
I denna avhandling undersökte vi varför större objekt inte gynnas
av bättre programplats, och föreslog sedan en ny design för att
minska antalet flyttningar genom att effektivt identifiera och ignorera
större objekt. Som ett resultat kan flyttningsprestandan förbättras.
I begränsade miljöer kan detta leda till en ökning av den totala
genomströmningen.

I den nya designen introducerade vi en extra sidtyp, den lilla sidan.
Om ett objekt är avsevärt litet som kan ha nytta av omplacering,
kommer det att placeras på den lilla sidan vid allokeringen. Som ett
resultat kan vi ersätta den tidskrävande storlekskontrollen av objekt
med en snabbare sidtypskontroll. Minnesfragmentering kan också
reduceras med denna design.

För att utvärdera denna design lägger vi till storleksidentifie‐
ringsproceduren i en implementering av lokaliseringsförbättring som
heter HCSGC. Resultaten av riktmärken visar en liten förbättring i
begränsade miljöer. I JGraphT‐riktmärket ser vi en hastighet på 3‐
5% i olika konfigurationer med minnesbegränsningar. I riktmärket
SPECjbb2015 ser vi i genomsnitt en ~1% prestationsökning, men med
överlappande konfidensintervall. I DaCapo ‐riktmärket ser vi en för‐
bättring på 1% i solflödesriktmärketmed CPU‐begränsning. För andra
riktmärken i DaCapo upptäcks ingen signifikant skillnad. Resultaten
tyder på att den föreslagna nya designen är ett genomförbart sätt att
filtrera bort större objekt, och det kan ytterligare förbättra flytten och
den övergripande prestandan.

Nyckelord
Garbage Collector, Java, Datalokalitet

iv | Sammanfattning

Acknowledgments | v

Acknowledgments
I would dedicate my thesis to everyone who has helped or supported
me during the writing.

First of all, I would like to thank Oracle and Uppsala University for
providingme a great opportunity to involving in the OpenJDK project.
A special thanks to Oracle for maintaining such a comprehensive
open‐source project that benefits billions of people. It is an honor for
me to contribute to the brilliant project.

I would like to express my gratitude to Prof. Tobias Wrigstad for
all his help. Without his valuable guidance, there is no way to start
working on such a complicated project. I could not thank him enough
for all the thoughts and suggestions he provided.

I would like to thank my company supervisors Erik Österlund and
Per Lidén for their willingness to help and professional instructions
during the meetings.

I would like to thank Albert Yang for his great work on HCSGC,
which makes it possible for me to implement my optimization and
write this thesis.

I would like to thank my examiner Prof. Matthias Becker and KTH
supervisor Thilanka Thilakasiri, for all the feedback they provided.
Without their feedback, theoutcomeof this thesiswouldnothavebeen
at this level.

Finally, I am thankful to my family and friends for their constant
love and encouragement.

Stockholm, May 2022
Jinyu Yu

vi | Acknowledgments

CONTENTS| vii

Contents

1 Introduction 1
1.1 Problem and Purpose 3
1.2 Goals . 4
1.3 Scope . 4
1.4 Ethics and Sustainability 5
1.5 Structure of the thesis 5

2 Background 7
2.1 OpenJDK . 7

2.1.1 The Interpreter and JIT Compiler in OpenJDK . 7
2.1.2 Different Garbage Collectors in OpenJDK 8

2.2 Garbage Collection and Object Allocation 10
2.2.1 Generational Heap Space 10
2.2.2 Thread Local Allocation Buffer 11

2.3 The Z Garbage Collector 14
2.4 The HCSGC . 16
2.5 Related works . 17

3 Design and Implementation of Object Size Identification 19
3.1 Object Size and Locality 20

3.1.1 Locality inside one object 20
3.1.2 Locality between objects 21
3.1.3 Moving objects to improve locality 22
3.1.4 Relocation in ZGC and HCSGC 25

3.2 Relocation Performance Improvement 26
3.2.1 Reduce the memory fragmentation 26
3.2.2 Reduce the relocation amount 27
3.2.3 The Tiny pages 30

3.3 Adding a Page Size Class 30

viii | Contents

3.4 The Implementation of Allocation 32
3.4.1 Java Interpreter 33
3.4.2 C1 Compiler . 35
3.4.3 C2 Compiler . 38

3.5 The Implementation of Relocation 42

4 EvaluationMethodology 45
4.1 Measuring Method . 47

4.1.1 Record GC status 47
4.1.2 Measure overall throughput 49
4.1.3 Common configurations 50

4.2 Tiny page threshold . 51
4.3 Benchmark software 52

4.3.1 Synthetic benchmark 52
4.3.2 DaCapo Suite 53
4.3.3 JGraphT . 54
4.3.4 SPECjbb2015 . 55

4.4 Machines to Collect Data 56
4.5 Evaluation Design . 56

5 Results and Discussion 59
5.1 Comparison of size identifying methods 59
5.2 The overhead of tiny pages 65
5.3 Overall throughput benchmarks 67

5.3.1 JGraphT . 67
5.3.2 DaCapo Suite 71
5.3.3 SPECjbb2015 . 73
5.3.4 Analysis . 74

5.4 The relocation performance 75

6 Conclusions and Future work 79

References 81

A Extra results 85
A.1 JGraphT . 85
A.2 DaCapo . 85
A.3 SPECjbb2015 . 85

LIST OF FIGURES| ix

List of Figures

2.1 The heap space of a generational GC 11
2.2 TLAB Allocation Flowchart 13
2.3 Colored pointer in ZGC 14
2.4 ZGC cycle with three STW pauses 15
2.5 Deferring relocation phase 16

3.1 Simple pointer‐based objects 21
3.2 Access pattern of the demo object 21
3.3 Locality for very small objects 22
3.4 Locality for larger objects 24
3.5 Different size checks 28
3.6 Modified Frontend C1 Allocation 36

4.1 The benchmark flow 49
4.2 The SPECjbb2015 run progress 56

5.1 Comparing size identifying methods in DaCapo H2 . . . 62
5.2 Comparing size identifying methods in connected_‐

components . 63
5.3 Comparing size identifying methods in maximal_clique 64
5.4 Overhead of tiny pages 66
5.5 Benchmark results of connected_components 69
5.5 Benchmark results of connected_components 70
5.6 Benchmark results of maximal_clique 70
5.7 Benchmark results of H2_huge 72

A.1 Cache miss rate in connected_components 86
A.2 Cache miss rate in connected_components 87
A.3 Cache miss rate of H2_huge 88
A.4 Benchmark results of avrora_large 89

x | LIST OF FIGURES

A.5 Benchmark results of fop_default 90
A.6 Benchmark results of luindex_default 91
A.7 Benchmark results of lusearch_large 93
A.8 Benchmark results of sunflow_large 95
A.9 Benchmark results of xalan_large 97
A.10 Benchmark results of SPECjbb2015 98

LIST OF TABLES| xi

List of Tables

1.1 Tiny Page Size Class . 3

2.1 ZGC Page Size Classes 14

4.1 Configuration used in benchmarking 51
4.2 Brief description of selected benchmarks in DaCapo . . 54
4.3 Machines to Collect Data 57

5.1 Benchmark configuration for comparison of size iden‐
tifying methods . 60

5.2 Comparison of size identifying methods in DaCapo H2 . 61
5.3 Comparing size identifying methods in connected_‐

components . 63
5.4 Comparing size identifying methods in maximal_clique 64
5.5 Overhead of tiny pages 65
5.6 Benchmark results of connected_components 68
5.7 Benchmark results of maximal_clique 68
5.7 Benchmark results of maximal_clique 69
5.8 Benchmark results of H2_huge 72
5.9 Benchmark results of SPECjbb2015 73
5.10 GC status for JGraphT 77

A.1 Cache miss rate in connected_components 86
A.2 Cache miss rate in maximal_clique 87
A.3 Cache miss rate of H2_huge 88
A.4 Benchmark results of avrora_large 89
A.5 Benchmark results of fop_default 90
A.6 Benchmark results of luindex_default 91
A.7 Benchmark results of lusearch_large 92
A.8 Benchmark results of sunflow_large 94

xii | LIST OF TABLES

A.9 Benchmark results of xalan_large 96

LISTINGS| xiii

Listings

2.1 TLAB Allocation Code 12
3.1 Two simple loops . 20
3.2 Get page type from object address 29
3.3 Get object size from address 29
3.4 Set tiny page size . 31
3.5 Add tiny object limit parameter 31
3.6 Eden allocation . 33
3.7 TLAB Allocation in Interpreter 34
3.8 Use Tiny TLAB Cache in MemAllocator 34
3.9 Original Frontend C1 Allocation 35
3.10 Modified Frontend C1 Allocation 36
3.11 Tiny TLAB Allocation in C1 (pseudo code) 37
3.12 Get Allocation Pointers in C2 38
3.13 Structure of Modified C2 Allocation code 39
3.14 Getting a BoolNode in C2 40
3.15 Get Top and End Offsets in C2 40
3.16 Get offset result in C2 40
3.17 Get the final results in C2 41
3.18 Basic branch code block in C2 41
3.19 PhiNode in C2 . 42
3.20 Pseudo code of object relocation in HCSGC 43
3.21 Pseudo code of checking by page type 43
3.22 Pseudo code of checking by object size 44
4.1 ZStatCounter Creation 48
4.2 Iterations ‐ the internal loop 50

xiv | LISTINGS

List of acronyms and abbreviations | xv

List of acronyms and abbreviations
CMS Concurrent Mark Sweep

EC evacuation candidate

GC Garbage Collector

HBIR High Bound Injection Rate

HCSGC Hot‐Cold Objects Segregation GC

JDK Java Development Kit

JIT Just‐In‐Time

JRE Java Runtime Environment

JVM Java Virtual Machine

OOP object‐oriented programming

RT Response‐Throughput

STW Stop The World

TLAB Thread Local Allocation Buffer

ZGC The Z Garbage Collector

xvi | List of acronyms and abbreviations

Introduction |1

Chapter 1

Introduction

The Garbage Collector (GC) plays a critical role in managed pro‐
gramming languages such as Java. Memory is considered garbage
if the heap‐allocated records are not reachable by any chain of
pointers from program variables [1]. Instead of release the unused
memory manually, the runtime of managed languages provides
GC to automate this process. By using GCs, the developer does
not need to take care of object lifetimes or match allocations with
deallocations. This will completely eliminate some errors related to
memory management, including the double‐free problem and most
types of memory leaking [2].

The ease of garbage collection comes with the cost of some
additional runtime overhead, which impacts the program’s overall
performance. Two key goals are set for GCs to minimize the impact,
throughput and latency. Throughput is a measurement of workload
within a specific unit of time, higher throughput results in higher
efficiency of the program. Latency is the responsiveness of the
application. The GC thread needs to pause all mutator threads, or
so‐called “Stop The World (STW)”, to reclaim unused memory. It will
make the application unresponsive for some time, therefore latency is
usually measured by the maximum pause time.

Modern GC attempts to improve the overall performance of
runtime virtual machines using several techniques. First, to improve
the latency, the parallel collection is implemented by deploying
multiple collector threads, including the ParallelGC [3] and the
Concurrent Mark Sweep (CMS) GC [4]. However, this is useless for
applications with very large heap since the pause time can be several

2| Introduction

seconds or more. Then, concurrent collectors, such as The Z Garbage
Collector (ZGC) [5] or Shenandoah GC [6], are developed to deal with
the large heaps. They can drastically reduce the STW time by making
GC threads running alongside mutator threads. Also, to improve the
throughput, other approaches are proposed to increase the program
locality by moving objects around[7, 8, 9]. A better program locality
can bring a higher cache hit rate, the throughput will increase as
memory access time reduces.

The object reordering process increases the relocation count in
each GC cycle and sometimes even increases the count of total GC
cycles. In most cases, more relocation will not impact the overall
performance for concurrent GCs, as the relocation runs on a different
thread from the mutator thread and not likely to block the program in
over‐provisioned environments. However, this could be different in
constrained environments. Poor relocation performance may affect
the overall performance in two ways.

• It may aggravate the memory fragmentation and increase
latency. When the allocation rate is higher than what GC can
keep up with, or more specifically, if the heap is exhausted
before the GC finishes, the mutator thread will enter Allocation
Stall phase and will be blocked until the end of the current GC
cycle. More relocations will increase GC time and lead to a
longer Allocation Stall. Also, longer GC time means a lower GC
capability, which brings more Allocation Stalls. We could trade
throughput for latency by assigning more CPU‐time to GC with
the XX:ConcGCThreads parameter [2], but this may not be an
option in constrained environments.

• Poor relocation performancewill also lower the overall through‐
put. In constrained environments, GCmay not have idle cores to
run on, and it will have contention withmutator threads for CPU
time. As a result, any GC performance regression will cause an
overall throughput regression.

A. M. Yang proposed Hot‐Cold Objects Segregation GC (HCSGC)
[8], a design to classify objects to hot and cold objects and reorder the
objects based on the mutators’ access order. The design will increase
the program locality significantly but introduces more relocations. In
HCSGC, the relocation amount is reduced by filtering out cold objects

Introduction |3

Page Size Class Page Size Object Size
Tiny 2 MB [0, 256] B
Small 2 MB (256B, 256kB]
Medium 32 MB (256 KB, 4 MB]
Large N × 2(> 4)MB > 4MB

Table 1.1: Tiny Page Size Class

and only relocate hot objects. It also ignores the Medium pages and
Large pages and only improves locality for objects in small pages.
However, even in small pages, the object size could be large and no
locality benefits to be reaped from the better locality. Thus, filtering
out and moving only the objects which are sufficiently small (tiny
objects) should lead to an increased return on investment.

In this thesis, we proposed a new design that efficiently identifies
the size of small objects. We also extended HCSGC to relocate the tiny
objects only to further increase the relocation performance without
affecting the overall performance.

1.1 Problem and Purpose
Modern GC tries to improve the overall performance of runtime
virtual machines by moving objects around. However, the object
reordering process may take a long time and lead to performance
regression in constrained environments. We propose that ignoring
the larger objects and moving only the objects which are sufficiently
small (tiny objects) could increase the relocation performance as well
as the overall performance.

We present several ways of optimizing the relocation phase. First,
we propose the tiny page method, as shown in Table 1.1. The three
page classes in ZGC are further extended to four page classes. With
the newly introduced tiny page class, we can decide whether relocate
ornot in the allocationphase. This design alsohelps reducingmemory
fragmentation in HCSGC. Second, a naive size check method is also
implemented. This method could work with the tiny pages to reduce
the memory fragmentation, or without the tiny pages, to reduce
overhead in allocation.

4| Introduction

Research Question 1:
Do bigger objects gain benefits frombetter locality? What is the threshold

of object size that start to gain benefits?
Research Question 2:
Which one has better performance of checking size of objects, the tiny

pages or the naive size check?

1.2 Goals
The goal of the degree project is to propose a new design that
efficiently identifies the size of small objects for ZGC. The new design
would not bring regressions in over‐provisioned environments, and is
supposed to have an overall performance improvement in constrained
environments.

• Subgoal 1:

Develop the proposed methods of identifying the size of tiny
objects. The introduced code should pass sanity check (i.e.
not crashing the Java Virtual Machine (JVM) and produce right
results).

• Subgoal 2:

Tune the threshold of tiny objects. Find the size that start to gain
benefits from locality.

• Subgoal 3:

Benchmark the methods with different algorithms. Find if any
of them cause regression in over‐provisioned environments.

• Subgoal 4:

Benchmark in constrained environments and find improve‐
ments in overall performance.

1.3 Scope
A viable and efficient size check for a specific platform and CPU
architecture shouldwork for other platforms and CPU architectures to
some extent. Although Java is developed for platform independence,

Introduction |5

port the design to all platforms is not in the scope of this thesis.
All implementations and performance tests are based on the Linux
system and x86_64 CPU architecture.

1.4 Ethics and Sustainability
The project has no ethical risks. All data we collected is non‐sensitive,
andnopersonal information is used. Weuse only benchmark software
to produce data, which means we have no physical or social risks
during data collection, and all data is reproducible. The OpenJDK and
the underlying ZGC are open‐source under the GPLv2 license[10]. It
meanswe can freelymodify and redistribute the code and the software
as long as we disclose the modification under the same license. Thus,
the project is facing no legal issues.

The project aims to increase the relocation performance by
reducing the number of objects to be relocated. It results in a lower
CPU and memory consumption and possibly better performance in
low‐power devices. As a result, the project can help reduce power
consumption and be eco‐friendly.

1.5 Structure of the thesis
Chapter 2 presents relevant background information about OpenJDK
and GC, as well as the HCSGC on which the thesis is based. Chapter
3 first argues that large objects do not benefit from a better locality,
then presents a high‐level description of different ways to identifying
object size, followed by the detail of actual implementations. Chapter
4 covers the evaluation methodology, and chapter 5 shows the
evaluation results with discussions. Finally, chapter 6 concludes and
presents potential future work.

6| Introduction

Background|7

Chapter 2

Background

2.1 OpenJDK
OpenJDK is an open‐source implementation of Java. It is used daily by
millions of people and thousands of businesses, such as the leading
smartphone operating system Android. As is used by mission‐critical
industrial applications, the OpenJDK project only accepts the highest‐
quality contributions. Also, the project contains tens of millions of
lines of code, and some parts of the code even came from more than
20 years ago, making it a delicate process to contribute to OpenJDK
[11].

OpenJDK provides Java Development Kit (JDK) for compiling and
debugging Java files, and Java Runtime Environment (JRE) for running
the compiled Java programs. JVM, the main component in JRE,
provides the bytecode interpreter and Just‐In‐Time (JIT) compiler to
run the program, as well as several different GCs for a better tuning
strategy.

2.1.1 The Interpreter and JIT Compiler in OpenJDK
One of Java’s great strengths is that you can write your code once
and then it runs on every system that supports the JVM. Instead of
being compiled into a specific binary for a specific CPU, the Java
code is compiled into an idealized assembly language, Java bytecode.
Then the bytecode is run by the JVM. This gives Java the platform
independence of an interpreted language [12].

But the interpreted code will almost always be measurably slower

8|Background

than compiled code. To resolve this, JVM is able to compile
the bytecode into the platform binary as the code executes. The
compilation occurs as the program is executed, so the compiler is
called Just‐In‐Time (JIT) compiler [13]. The JVM provides two kinds of
JIT compilers, the C1 compiler and the C2 compiler. The C1 compiler,
which is also called the Client compiler, does less optimization to
the code and compiles much faster than the other one. The name
Client also imply that the compiler is used in the relatively slower
“client” hardware, although it’s not really true today, 20 years after the
termwasutilized. TheC2 compiler also called theServer compiler or
Opto compiler, doesmore optimizations andmuch slower to compile.

The primary difference between the two compilers is their
aggressiveness in compiling code. The C1 compiler begins compiling
sooner than C2, so it will be faster at the beginning of code execution,
while the other compiler gains while it waits. Tiered Compilation,
which is enabled by default in OpenJDK, will make the code first
compile by the C1 compiler. When a code section is executed
frequently, it is recompiled by the C2 compiler. The C2 compiler uses
the C1 compiler and the interpreter to generate compiled versions
of methods that collect profiling information about themselves. The
compiled code is substantially faster than the interpreter, and the
program executes with greater performance during the profiling
phase. Tiered Compilation can also achieve better peak performance
than a regular C2 compiler since it has a longer period of profiling,
which can yield better optimization [14].

2.1.2 Different Garbage Collectors in OpenJDK
Garbage Collectors make assumptions about the way applications use
objects, therefore the choice of GCs can affect performance to a great
extent. OpenJDK provides several different GCs and also deprecates
or removes some of the old GCs in newer versions. Current available
GCs are listed below [2].

• Serial Garbage Collector

The serial collector uses a single thread to perform all garbage
collection work, which makes it relatively efficient because
there is no communication overhead between threads. It’s
best‐suited to single processor machines or applications with

Background|9

small data sets. It can be explicitly enabled with the option
XX:+UseSerialGC.

• Parallel Garbage Collector

The parallel collector is also known as throughput collector. It’s
a generational collector similar to the serial collector. The
primary difference is that the parallel collector has multiple
threads that are used to speed up garbage collection. It can be
enabled with the option XX:+UseParallelGC.

• The G1GC ‐ Garbage first garbage collector

G1 is a mostly concurrent collector. It perform some expensive
work concurrently to the application. This collector is designed
to scale from small machines to large multiprocessor machines
with a large amount of memory. It provides the capability to
meet a pause‐time goal with high probability, while achieving
high throughput. G1 is introduced in JDK7 and used to
replace the deprecated CMS GC. G1 is selected by default on
most hardware and operating system configurations, or can be
explicitly enabled using XX:+UseG1GC .

• The Z Garbage Collector

ZGC is a non‐generational, mostly concurrent, parallel, mark‐
compact, region‐based scalable low latency garbage collector.
ZGC performs all expensive work concurrently, without stop‐
ping the execution of application threads. ZGC provides max
pause times of a few milliseconds, but at the cost of some
throughput. It is intended for applications which require low
latency. Pause times are independent of heap size that is being
used. ZGC supports heap sizes from 8MB to 16TB [5].

ZGC is included in OpenJDK releases since JDK11. In JDK 11, it
can be enabled by the special flagsXX:+UnlockExperimenta
lVMOptions and XX:+UseZGC. In later versions, the experi‐
mental flag can be omitted.

• Shenandoah Garbage Collector

Shenandoah is a low pause time GC that reduces GC pause times
by performing more garbage collection work concurrently with
the running Java program. Shenandoah does the bulk of GC

10|Background

work concurrently, including the concurrent compaction, which
means its pause times are no longer directly proportional to the
size of the heap [6].
Shenandoah availability differs by vendor and JDK release.
OpenJDK 12+ builds normally include Shenandoah by default.
OpenJDK 11 requires the opt‐in during build time. It can be
enabled by JVM parameter XX:+UseShenandoahGC.

• Epsilon: A No‐Op Garbage Collector
Epsilon handles memory allocation but does not implement any
actual memory reclamation mechanism. It intends to provide
a completely passive GC implementation with a bounded
allocation limit and the lowest latency overhead possible, at the
expense of memory footprint and memory throughput. As a no‐
op GC, the Epsilon GC is mainly used in extremely short lived
jobs, or for test purpose such as performance testing, memory
pressure testing and VM interface testing [15].
The Epsilon GC can be enabled by XX:+UseEpsilonGC.

2.2 Garbage Collection and Object Alloca-
tion

An object is considered garbage and its memory can be reused by the
VMwhen it can no longer be reached from any reference of any other
live object in the running program. From the view of GC, a program
consists of two kinds of threads, one or more mutator threads and
one or more collector threads. Themutator threads contain several GC
roots, which are origin points to reach the rest of the objects in the
heap. If there is a path to an object from the root, the object is a live
object. Otherwise, the object is unreachable and considered garbage.

2.2.1 Generational Heap Space
For most of the generational GCs, the heap space is divided into
young and old generations. When the young generation fills up, a
minor collection will be invoked and only do garbage collection within
the young generation. Eventually, the old generation fills up and
must be collected, resulting in a major collection, in which the entire

Background|11

Ed
en

Su
rv
iv
or

Su
rv
iv
or

V
irt
ua
l

Vi
rtu
al

Young

Old

Figure 2.1: The heap space of a generational GC

heap is collected. Major collections usually last much longer than
minor collections because a significantly larger number of objects are
involved. The young generation consists of Eden and two Survivor
spaces. Most objects are initially allocated in Eden. When running
garbage collection, objects in Eden and Survivor space will move to
the other Survivor space. When copied a certain number of times or
there is no space left, the objects will be moved to the old generation.
The heap space and different regions are shown in Figure 2.1.

In JVM, the Garbage Collector will also handle the allocation
of objects. For example, although the no‐op GC Epsilon does
not implement any actual “garbage collection” functions, it handles
memory allocation. It is easier to get control over the object lifecycle
if the GC handles both allocation and deallocation.

2.2.2 Thread Local Allocation Buffer
In Java, most new objects are allocated in Eden, which is a space
shared between threads. If multiple mutator threads try to allocate
new objects at the same time, synchronizationwill take place for these
threads, whichwill definitely slow down the program. To deal with the
contention between threads, Thread Local Allocation Buffer (TLAB) is
introduced. TLAB is a small region in Eden that is exclusively assigned
to a thread. Since each thread can only write to its own TLAB, there is
no need for synchronization. TLAB is enabled by default, and can be
disabled by explicitly using the XX:UseTLAB parameter[16].

If TLAB is enabled, when a thread try to allocate an object, it
will instead allocate a much larger space (around 1% of Eden space)
as TLAB, and then allocate the object inside the TLAB. Each TLAB
contains three pointers, start, top and end. The start and end
pointer identifies the position of TLAB in Eden, which prevents other

12|Background

thread using the space. The top pointer, which equals to start
when TLAB is created, identifies the position for the next allocation.
The allocations in TLAB are done by bumping pointers, or called
“Bump pointer allocation”. More specifically, when a thread try to
allocate an object, the pointer to the new object will be top, and
the top pointer itself will add by the size of the new object, so the
memory space between the new top pointer and old top pointer is
reserved to the new object. Part of the TLAB allocation related code
[17, threadLocalAllocBuffer.inline.hpp:35‐55] is shown in Listing 2.1.
inline HeapWord* ThreadLocalAllocBuffer::allocate(size_t size

) {
HeapWord* obj = top();
if (pointer_delta(end(), obj) >= size) {
// successful threadlocal allocation
// This addition is safe because we know that top is
// at least size below end, so the add can’t wrap.
set_top(obj + size);

return obj;
}
// no enough space inside current TLAB, fallback to slower
allocation

return NULL;
}

Listing 2.1: TLAB Allocation Code

Allocations inside TLAB is actually located on the Eden, so the
TLAB can be directly discarded when it is full, then objects will be
left on the Eden space. However, it could be a hard thing to tell
whether a TLAB is full. When the object that is going to be allocated
is bigger than the available space in TLAB, we can either discard
the TLAB and allocate the object in a new TLAB, or allocate the
object in Eden and wait for a smaller object. Too many discards will
cause memory fragmented and increase the memory foorprint; too
many Eden allocations will reduce the effect of TLAB and increase
contention. In OpenJDK, the choice is done by using a waste limit.
If the object cannot be placed in the TLAB and the available space is
smaller than thewaste limit, the TLABwill be discarded and the object
will be put into a new TLAB. If the available space is larger than the
waste limit, the object will do its allocation in the Eden space.

A more detailed decription of TLAB allocation flow is shown Fig‐

Background|13

UseTLAB?
no

yes

allocate_inside_tlab

no

yes

allocate_inside_tlab_slow

no
Retire the old TLAB

yes

Allocate a new TLAB

Record slow allocation

Allocate inside TLAB

allocate_outside_tlab

Allocate inside Eden

Enough space in
TLAB

Larger than
waste limit

Figure 2.2: TLAB Allocation Flowchart

ure 2.2. Whenallocationhappens, the fast path,allocate_inside_tlab
method in MemAllocatorwill be invoked, and code shown in Figure
2.1 will try to allocate the object inside TLAB. If the TLAB cannot
hold the new object, a NULL pointer will be returned, and the
allocate_inside_tlab_slowwill run instead. The slow path will
first check if the amount free in the TLAB is too large to discard.
If the free space in TLAB is larger than the waste limit, the TLAB
will be retained, and a NULL pointer will be returned, then the
allocate_outside_tlab will be invoked to allocate the big object
in the Eden space directly. If the free space in TLAB is smaller than the

14|Background

Page Size Class Page Size Object Size
Small 2 MB [0, 256] KB
Medium 32 MB (256 KB, 4 MB]
Large N × 2(> 4)MB > 4MB

Table 2.1: ZGC Page Size Classes

waste limit, the TLAB will be retired and a new TLAB will be created.
The waste limit is set by XX:TLABRefillWasteFraction, the

fraction between the waste and total size of the TLAB. By default, this
value is 64, which means the TLAB will be discarded if the available
space is less than 1/64 of the TLAB size.

2.3 The Z Garbage Collector
ZGC is a non‐generational, region‐based, mostly concurrent, parallel,
mark‐compact garbage collector. It is included in OpenJDK releases
since JDK11 and is available for all platforms since JDK14 [5]. ZGC
uses multiple‐memory mappings, colored pointers, and load barriers
to enable concurrent garbage collection work.

ZGC is a single generation GC. Unlike G1GC, ZGC has no
identification of age of objects, so in every GC cycle, ZGC marks all
live objects. Instead, ZGC puts all objects into different page regions,
also called ZPage, which can be dynamically allocated and sized into
one of the three sizes shown in Table 2.1. A bump‐pointer allocation
scheme as shown in Figure 2.1 is used for small and medium pages.
When the current page can not satisfy the requested size, a new page
is allocated. Anobject larger than 4megabyteswill always have its own
page.

18 42
Unused bits Object Address

bits

Finalizable

Remapped

Marked 1

Marked 0

Figure 2.3: Colored pointer in ZGC

The “Colored Pointers” is one of the core concepts of the ZGC

Background|15

implementation. Every pointer in ZGC is colored with different
higher‐order bits, which contains metadata for the pointer. Four bits
are taken into action currently, Finalizable, Remapped, Marked0, and
Marked1. The positions of these four bits are shown in Figure 2.3. One
problem that arises with colored pointer is that some pointer masking
mechanism should be implemented to mask out the four‐color bits.
In some architecture such as ARM, the pointer masking is hardware
supported, after setting themask, operationswill automatically ignore
the specified bits. However, the x86 architecture does not support
this mechanism in hardware. Instead, multi‐mapping is proposed.
Multi‐mapping is a concept that maps multiple ranges of virtual
memory to the same physical memory. In ZGC, only one of Remapped,
Marked0, andMarked1bits could be 1 at any given time, therefore three
mappings should solve the pointer mask issue.

Time
M/R

mark/remap
STW 1 STW 2 STW 3

EC
Evacuation
Candidates

RE
relocation

Figure 2.4: ZGC cycle with three STW pauses

ZGC is designed as a low latency GC, which achieves STW time
independent of the heap size and never exceeds 10 milliseconds. As
shown in Figure 2.4, one ZGC cycle has three STW pauses and three
concurrent phases.

A ZGC cycle startswith a short STWpause STW1 that decideswhich
color is the good color by alternating two colors. IfMarked0 is selected
as good color, then Marked1 will be good color at the next ZGC cycle.
After the good color is decided, all GC roots will bemarked to good and
push to mark stacks. Followed by STW1 is the classical mark/remap
phase M/R, which runs concurrently. If the GC finds any pointer
with a bad color, the pointer will be updated to the current address
and marked to good color. Also, the size of all living objects on a
page is recorded to decide if a page is sparsely populated and needs
evacuation. STW2 is merely a synchronization point that ensures
all marking is completed. Then the EC phase will begin and select
all pages that do not have enough living objects using the previously
collected liveness information. The selected page is referred to as the

16|Background

relocation set. In STW3, the good color changes to Remapped, and all
roots pointing into EC are relocated and have good color. In RE, all
live objects in EC will be relocated.

2.4 The HCSGC
A. M. Yang proposed HCSGC [8] based on ZGC. The new design
dynamically reorganizes objects and attempts to place objects in the
way they are brought into the cache when they are about to be used
by the mutator. If an object is brought into cache due to access by a
particularmutator thread, the subsequent accesses by the same thread
usually hit the adjacent object. Many changes have been implemented
to achieve the reorganize, including revised EC selection, deferring
relocation phase, speculative hot‐cold segregation, and operating only
on small pages.

Revised EC selection. The original criteria to select EC in ZGC is
the live ratio of the page, but more objects should be selected in order
to get a better locality. HCSGC proposed hot and cold objects as well
as weighted live bytes to perform a intelligent EC selection. The hot
and cold classification avoid extra relocation for objects that have no
gain in locality. HCSGC introduced a new command‐line parameter
XX:+UsePartialEvacuation to enable this.

Time
M/R

mark/remap
STW 1 STW 2 STW 3

EC
Evacuation
Candidates

M/R
mark/remap

STW 1 STW 2 STW 3
EC

Evacuation
Candidates

RE moved to start of next cycle

RE
relocation

Figure 2.5: Deferring relocation phase

Deferring Relocation phase. Mutators and GC threads are
competing to relocate objects on EC pages. The original ZGC cycle
shown in Figure 2.4 is aimed to perform most of the relocation on GC
threads. As a result, themutator threads can read the updated address
in the forwarding table, thus, lowering the loads on mutator threads.
However, with the hotness information, the object layout will be
rearranged, which could bring more relocation overhead. Therefore,
HCSGC defer the relocation phase as shown in Figure 2.5. As a result,
objects will be relocated according to the access pattern between two

Background|17

GC cycles, which increases the locality. This could be enabled by the
parameter XX:+UseLazyRelocate.

Speculative hot‐cold segregation. This design segregate hot and
cold objects in memory, to further increase the chances of cache‐
friendly placement. By using the hotness information of each object,
during the relocation phase the hot and cold objects will be moved to
different destinations in memory.

OperatingOnlyonSmall Pages. Large objects could be easily over‐
approximated as hot objects according to the schemeofHCSGC,which
might cause the reduction of cache effectiveness. Therefore, HCSGC
only deals with small pages and leavesmedium and large pages intact.
However, the size for small pages is still quite large for the scheme,
and a new smaller page size class is required to maximize the benefits
of HCSGC. We aim to solve this in our proposal.

2.5 Related works
People tried to utilize the cache by focusing on the cache locality
from many years ago. Robert C. presented an adaptive memory
management algorithm to increase the locality [18]. He proposed that
dividing the address space into regions characterized by generation,
volatility, and activity can improve the locality of objects. This
algorithm introduced the trainspace, besides the fromspace, scavenge
space, and newspace in usual copying garbage collectors. The train
space is very similar to the fromspace and is used to identify the activity
of objects.

Lam et al. showed an approach to improve the locality by
considering the type and format of objects and then grouping co‐active
objects together with effective heuristics [19]. Object type directed
function grouping and data structure grouping are proposed in the
thesis. Authors assume that the object’s type indicates the access
pattern, so the data tag information of the object is used as the key
to group related objects. They also proposed that the most commonly
useddata type inLisp, the cons cell, couldbeusedbygarbage collectors
to recognize trees or association lists, then the data structure can be
guessed and grouped.

Huang et al. presented the online object reordering that detects
the program traversal patterns to improve spatial locality [7]. The

18|Background

proposal utilized the copying phase of a generational collector to
put hot objects before cold ones. Then topological locality could be
improved by putting hot fields together with their parent.

Chen et al. proposed an online profile‐guided proactive approach
to improve the locality [9]. Thework collects object access information
by a low‐overhead mechanism and improves both cache locality and
page locality. This method could run independent of GC cycles and is
more flexible.

Unfortunately, most of the proposals tried to improve locality on a
generational garbage collector. At the time of writing the thesis, the
generational heap is not implemented in ZGC yet.

Design and Implementation of Object Size Identification |19

Chapter 3

Design and Implementation
of Object Size Identification

In object‐oriented programming (OOP) languages such as Java,
programs’ data consist of objects, and the contents of fields in an
object are references. One drawback of this is that OOP tends to
have a lot of pointer chasing, which brings more memory access if
these references are distributed over a large memory range, causing
degradation in overall throughput. So locality is important for any
memory‐bounded computation. In languages like C/C++, a better
locality can be achieved by carefully placing the objects. But in
managed languages, the memory layout is changed frequently in the
process of garbage collection. An optimal object layout designed
by programmers could easily be destroyed. As a result, the locality
problem can only be solved in the GC.

The technique in HCSGC will improve locality for small objects,
also filtering out the cold objects to avoid relocate too many objects to
affect the performance. The design can be further improved by only
selecting tiny objects to relocate. In HCSGC, all hot objects on small
pages will be relocated, even if the object is so large that could not
benefit from a better locality. We propose that ignoring these large
objects will improve the relocation performance but not impact the
speedup from the locality.

In this chapter, we will first discuss why the performance of OOP
languages rely heavily on locality, followed by why bigger objects are
not affected by locality. Then, we propose two types of object size
identification method, including a naive method which checks the

20|Design and Implementation of Object Size Identification

object size in the relocation phase, and a “tiny page”method. The “tiny
page” method will mark the size class of an object by putting smaller
objects to tiny pages when it is allocated. After that, implementations
will be described, including the details in the interpreter and two JIT
compilers.

3.1 Object Size and Locality
The locality of objects could be classified as the locality inside one
object and the locality between several objects. The object itself is
stored sequentially, so the first type of locality is relatively easier
to achieve. There is no point in increasing the inner locality of
small objects, as they can fit in the cache line as a whole. For
large objects, inner locality can be improved by merely hardware
optimizations without insights on the actual running code. This is
done by partitioning data into blocks that can fit into a single cache
line, then using some simple prefetching method such as next‐line
prefetching [20]. On the contrary, the locality between objects is
hard to improve considering the impossibility of predicting accessing
patterns.

3.1.1 Locality inside one object
Large objects benefit from a better locality inside themselves.
Consider two loops that iterating a large array, as shown in Listing 3.1.
The first loop multiplies every element with 3, while the second loop
only changes every 16th element. Although the second loop only does
1/16 of the calculations, it takes roughly the same amount of time to
run [21].
for (int i = 0, n = array.length; i < n; i++) {

array[i] *= 3;
}

for (int i = 0, n = array.length; i < n; i+=16) {
array[i] *= 3;

}

Listing 3.1: Two simple loops

Design and Implementation of Object Size Identification |21

The reason behind this is the difference in the locality. A typical
integer is 4 bytes, and the minimum amount that transfers between
memory and cache, also called cache‐line size, is 64 bytes. Thus,
a cache‐line can store 16 consecutive integers in an array. In the
first loop, the CPU fetches 16 integers into the cache and does the
calculations with all 16 numbers from the cache. In the second loop,
the CPU also needs to fetch the 16 integers into the cache, but only
calculate the first number from the cache. Memory access time is
much slower than calculations in modern CPUs, and both loops fetch
and stored the same amount of data from thememory, as a result, they
take a similar amount of time.

3.1.2 Locality between objects
Objects also benefit from a better locality between them. The contents
of fields in objects are accessed with a pointer‐chasing style andmight
be fragmented in memory. Therefore, the locality between objects
plays a critical role in improving the performance of accessing fields.

Class User

+ UserInfo: info

+ Transactions: data

Class UserInfo

+ Date: birth

+ String: name

Figure 3.1: Simple pointer‐based objects

User

info

UserInfo

name

String

characters

Figure 3.2: Access pattern of the demo object

Consider a simple user management system that stores user
information in the form of Figure 3.1. When trying to get the
name field from a User object, we need to go through the path
user.info.name, which contains two pointer operations as shown
in Figure 3.2. If the three objects are located in different places in
memory, the CPU needs to access the memory three times to get the

22|Design and Implementation of Object Size Identification

Cache
line A B C

(a) Best case
Cache
line n A B

C ...

...

Cache
line n+1

(b) Adjacent line
Cache
line x A... ...

Cache
line y B... ...

Cache
line z C... ...

(c) Worst case

Figure 3.3: Locality for very small objects

required data. With a better locality, these pointers may be stored
sequentially and fall in a single cache line, which means the data can
be fetched by a single access.

3.1.3 Moving objects to improve locality
Moving objects together could improve the locality and sometimes
leads to better overall performance. Small objects that could be loaded
into the cache as a whole are likely to benefit from this. If we do not
consider runtime optimization such as software cache prefetching,
only objects that can fall in the same cache line can gain from the
locality. Any access to an object will make the CPU fetch the whole
line of objects into the cache, which acts as a hardware prefetching.

Considering three small objects A, B, C, that will be accessed in
order. The worst locality we can get is to place them randomly, as
shown in Figure 3.3c. Three accesses of memory are needed to get all
three objects. To improve the locality, these objects can be rearranged
and put together. In the best case, they can fall in the same cache line
(as shown in Figure 3.3a). Accessing A will bring all three objects to
the same cache line, speed up the following accesses. However, these
objects could fall in adjacent lines (Figure 3.3b), which might bring
another memory access. In modern processors, various hardware

Design and Implementation of Object Size Identification |23

prefetching mechanisms are implemented. The next‐line prefetcher,
a basic prefetch mechanism that will fetch the next cache line(s) after
a cache demand, has been implemented in most processors such as
AMD’s [22] and Intel’s [23]. With the prefetcher, access of object A will
bring the first line to cache, and in the meanwhile, emit a prefetch for
the second line. The following accesses will have a speed up similar to
the previous case. Therefore, moving small objects that could fall in
the same cache line can improve the locality and the performance.

However, improving the locality bymoving objects does not always
result in better performance, especially for large objects that could not
fit in a single cache line. The reasons are as follows.

• Moving objects will not change the locality inside themselves.
For larger objects like arrays, most of the accesses are iterating
over the object. Thus, the locality and performance are mainly
determined by the iteration patterns and inner layout. The
location of the object will not affect the iteration performance,
and the layout is static and could not be changed by the runtime.
As a result, moving such an object will not improve the overall
performance.

• If the large objects are accessed in a pointer‐chasing style,
locality might be improved by moving them closer, but almost
no performance benefits can yield from such a moving.

Consider three objects A, B, C. A and C are small objects, while
B is an array with 128 Integers that will takemore than 500 Bytes
of memory. The three objects will be accessed in the order “A‐
B[50]‐C”. The best locality we can get is shown in Figure 3.4a, and
theworst locality is shown in Figure 3.4b. Since object B is larger
than the cache line size, it will not load into the cache as a whole.
Instead, only the cache line that contains B[50] will be loaded. It
is clear from the figures that the memory address we required is
far from both boundaries of object B. Thus no matter how close
these objects are, they cannot fall in the same cache line and load
at once. For both cases, three accesses to memory are required.
Therefore, we cannot get performance improvement by moving
them around.

Moving large objects might gain a small benefit according to
boundary effects. If the accessed position is among the leading

24|Design and Implementation of Object Size Identification

Cache
line x B0A B1 ...

Cache
line y B50

...Cache
line z

... ...

B127 C ...

(a) Best case
Cache
line x A...

Cache
line y B1

...Cache
line w

... ...

C ...

...

Cache
line z B50... ...

B2B0

(b) Worst case

Figure 3.4: Locality for larger objects

or trailing ones in the array, it has a possibility of falling in
the same cache line with other objects. A better locality of
such objects could improve the performance. Consider we are
accessing B[0] instead of B[50] in the previous example. B[0]
could fall in the same cache line with A if objects A and B are
relocated and placed together, then the memory demand could
decrease by one. However, this only applies to objects that are
slightly larger than the cache line size whose boundary could
take a significant proportion to the whole object. For objects
much larger than the cache line, no noticeable improvement
could yield from such few boundary positions in them.

• Furthermore, the cost of relocating large objects is high. Moving
such objects will consume extra system bandwidth, introduce
more contention to the memory, and decrease the overall
performance. If the relocation is processed on the mutator
thread, it will further slow down the overall performance by
blocking the thread for a longer time.

Objects slightly larger than cache line size could get benefits from
the locality in some cases. Besides the boundary effects, the hardware
prefetcher could also help improve the performance of these objects.

Design and Implementation of Object Size Identification |25

The hardware prefetcher will load several more cache lines when
there is a cache demand, making it possible for the whole object to
be loaded into the cache even if the object is slightly larger than the
cache line. AMD’s CPU will load a maximum of 13 more cache lines
[22], while Intel’s will load up to 20 within the same 4KBytes page
[23]. However, there are many other restrictions for the prefetcher,
including the cache availability and access patterns, which makes it
usually fetch much fewer lines. We still need to care for a longer
time to move larger objects around either. Therefore, we must keep a
balance between a better locality and a better relocation performance
for these slightly larger objects.

3.1.4 Relocation in ZGC and HCSGC
In ZGC, the relocation phase executes concurrently, and most of the
relocations are processed in GC threads. Relocations will not impact
the overall performance in over‐provisioned environments.

Things could be different in HCSGC. Several mechanics that aim
to increase locality were introduced, including Enlarging EC and Lazy
Relocate. They increase the relocation amount and expose mutators
tomore relocation. As a side‐effect, they bringmore workloads on the
mutator and make the memory more fragmented, and in some cases,
lower the overall performance.

• Lazy Relocate is used to relocate objects according to mutators’
access pattern. This mechanic will defer the relocation phase of
each GC (which is the last phase in original ZGC) to the start of
the next GC cycle and makes it possible for mutators to relocate
objects between two GC cycles. As a result, some relocations
that were originally processed in GC thread will be moved to
the mutator thread. These relocations will compete with other
workloads and can lower the performance if the relocation set is
large.

• Enlarging ECmeans to flagmore pages as evacuation candidates
to improve more objects’ locality. However, it will increase
the relocation amount in both mutator threads and GC threads.
For the mutator part, it will further compete with the workers
and bring degradation to the performance. Relocations in GC
threads will not affect the performance in most cases, except

26|Design and Implementation of Object Size Identification

in CPU‐constrained environments, where all threads themselves
are competing for the limiting resource.

• Lazy Relocate will also retain the garbages longer, as the
relocation phase is moved to the next GC cycle. This will
cause a more fragmented memory and increase memory usage.
In memory‐constrained environments, this will drastically
increase the number of GC cycles and result in an overall
slowdown.

3.2 RelocationPerformance Improvement
As described in section 3.1.4, two key implementations in HCSGC, En‐
larging EC and Lazy Relocate, will lower the relocation performance.
The problem can be solved from two aspects, lower the relocation
amount and reducing the memory fragmentation.

According to our proposal in section 3.1.3, only objects smaller
than the cache line size (64 Bytes) or slightly larger than that could
benefit from the locality. We name these objects as tiny objects. The
larger objects on small pages that could not benefit from the locality
are named as small objects. Our designs focused on how to identify
and filter out the small objects and select the tiny ones.

3.2.1 Reduce the memory fragmentation
As the small objects will be ignored, we no longer need to lazy relocate
them. They can be fully relocated at the end of each GC cycles like the
original ZGC does. By doing so, the garbagewill not be retained to next
GC anymore, thus reduce the fragmentation.

However, the full relocation is on a page basis. We cannot fully
relocate some objects but lazy relocate other objects on the same page.
In HCSGC, Medium and Large pages will be fully relocated, and Small
pages (object size smaller than 256KBytes) will be lazy relocated.

Our threshold for tiny objects is apparently lower than the small
pages limit, so we further divided the small page type to tiny pages
and small pages, as shown in Table 1.1. The tiny pages will store the
tiny objects, while the small pagewill store the small objects that could
not benefit from relocation (larger than tiny objects but smaller than
256KBytes). As a result, we can safely fully relocate all small pages as

Design and Implementation of Object Size Identification |27

theywill never be selected to lazy relocate, andmemory fragmentation
could be reduced.

The memory fragmentation could be further reduced by imple‐
menting a separate TLAB for tiny pages and small pages. By only
accepting the tiny objects, the tiny TLAB could be filled granularly,
then the waste of TLAB could be reduced. In most Java applications,
tiny objects take the major proportion to the total memory, so any
improvements in the utilization of tiny TLABs could result in better
memory usage and less memory fragmentation.

3.2.2 Reduce the relocation amount
Reducing the relocation amount without harming the locality is the
key to bring improvements to the overall performance. All objects on
small pages (smaller than 256KBytes) will be selected for relocation
in HCSGC. We proposed to select the tiny objects only but ignore the
small objects, then the question comes to how to efficiently identify
the tiny objects and ignore the small objects during relocation.

The selection method in HCSGC is shown in Figure 3.5a, which is
mainly done by a page type check. If the object to be relocated is not
on a small page, it will be ignored from the relocation. Then other
checks will be handled, including whether the page is relocatable and
whether the object is already relocated. If all checks passed, the size
of the object will be acquired, and then relocation will be handled.

We came up with two ideas for identifying tiny objects. One
is the naive method, which will check the size of each object first,
ignoring the small objects and relocate the tiny ones, as shown in
Figure 3.5b. The other is the tiny page method, which will keep the
original selection inHCSGC, but replace the check for small pageswith
a check for tiny pages. The tiny pagemethodwill ignore all other pages
and only select tiny pages during relocation.

Both of the proposed methods need to get the page and object size
from the address. Therefore, the performances of the success path
of them are the same. However, if the object is not a tiny object, the
performance differs. The object size is the only information need to
be acquired in the naive method, while in the tiny page method, it’s
the page type. Any difference between obtain the object size and page
type will reveal in the relocation performance.

The code to get page type from object address is shown in Listing

28|Design and Implementation of Object Size Identification

Get page from
address

page type
is small

no

yes

other checks
no

yes

Get object size
from address

Do relocation

(a) HCSGC

Get page from
address

other checks
no

yes

Do relocation

Get object size
from address

smaller than
threshold

yes

no

(b) Naive

Figure 3.5: Different size checks

Design and Implementation of Object Size Identification |29

3.2. First, the page onwhich the object is locatedwill be obtained from
the page table. This step contains several bitwise operations to get the
page index, then dereference the page from the page table. Second,
the page type is read from the corresponding field in the page object.
offset = address & ZAddressOffsetMask;
index = offset >> ZGranuleSizeShift;
page = page_table[index];
return page>_type;

Listing 3.2: Get page type from object address

The code to get object size from the address is shown in Listing 3.3.
First, the addresswill be casted anddereferenced to a Java class object.
Second, the size information of the object will be acquired. Last, the
size is calculated and returned. Although it seems as simple as the
previous code to get the page type, this one could use a long time to
run when getting the size information.

For most of the Java classes, their size information will be
computed at class initialization, so the size() function is merely a
field access which is considerably fast. However, this does not apply to
all classes. For arrays, their size could not be obtained when initialize.
Instead, the element size will be computed and stored. When using
the size() function on an array object, extra operations need to be
handled, including getting the length of the array and multiplying the
length with the element size.

Making things worse, we need to filter out the small objects, which
are mostly arrays. Therefore, it is slower to get the size information of
these objects. In the tiny page method, this step will be skipped since
the small objects are not located in tiny pages; but in the naivemethod,
their size is checked first. This will introduce a significant degradation
in relocation performance.
oop = cast_to_oop(address);
size_in_words = oop>size();
bytes = size_in_words << LogBytesPerWord;
return bytes;

Listing 3.3: Get object size from address

As a result, the tiny pagemethodwhich checks for page type during
relocation is selected. We will discuss about the actual performance
difference in Section 5.1.

30|Design and Implementation of Object Size Identification

3.2.3 The Tiny pages
Adding the tiny pages could reduce the fragmentation introduced by
HCSGC, as well as lowering the relocation amount. The tiny pages
require a separate TLAB ‐ the tiny TLAB. As stated in section 3.2.1, the
new TLAB could also reduce the memory fragmentation. Although
adding a new TLAB may increase the memory footprint, the effect is
minor, as it will occupy at most 2MBytes of memory per CPU core.

The default object size limit for the tiny page is set to 256 bytes. As
is discussed before, this value shouldmake a balance between locality
and relocation performance. Also, this value should be larger than
the cache line size (64 bytes) and smaller than the small object size
limit (256 Kbytes). The best value for a tiny object size limit may vary
between different programs, sowemake a command‐line option to set
the size limit. For most of the benchmarks we tested, 256 bytes can be
the best choice, so it is set as the default size limit.

The page size of the tiny page is set to 2 Mbytes, which is the same
as small pages. The smallest page that ZGC can handle on an x86_64
architecture is 2 Mbytes, so we could not make a smaller page. On
the other hand, a larger page will increase thememory footprint. As a
result, 2Mbytes is selected as the tiny page size. Having the same page
size for the small and tiny pages might introduce some conflicts. We
will further discuss this in Section 3.3.

Furthermore, the tiny page will introduce an inevitable extra
check when allocating the object, which may cause performance
degradation to object allocation. We will discuss the reasons and
optimizations of this overhead for each implementation in Section 3.4.

An alternative way is to discard the optimization of memory
fragmentation and use size check for relocation. By doing this, the
relocation amount could still be reduced and the tiny pages could
be exempted so no overhead for object allocations. However, this
might not be an good option, since the memory fragmentation plays
a dominant role in relocation performance. We will discuss about the
actual performance difference in Section 5.1.

3.3 Adding a Page Size Class
The tiny page size is set by code shown in Listing 3.4, which is
located in the zGlobals.hpp file [17]. The ZGranuleSizeShift is

Design and Implementation of Object Size Identification |31

provided by ZGC, and identifies the smallest page size it can handle.
This value varies on different architectures. The granule size shift
equals to 21 on x86_64, means a 2 Mbytes minimum page size.
const size_t ZPageSizeTinyShift = ZGranuleSizeShift;
const size_t ZPageSizeTiny = (size_t)1 << ZPageSizeTinyShift;

Listing 3.4: Set tiny page size

The command‐lineparameters aredefined in thegc_globals.hpp
file [17]. As shown in Listing 3.5, the option can be added by using the
product macro. The first field indicates the accepted data type, the
second field for option name, third for default value, and the last one
for description.
product(size_t, ZObjectSizeLimitTiny, 256, ”Objects smaller

than this will be considered as a tiny object”)

Listing 3.5: Add tiny object limit parameter

The zPage.inline.hpp file provides some utilities to work with
different pages, including the type_from_size function, which
causes a conflict between small pages and tiny pages. The function
tries to return the page type based on the page size. Since small pages
and tiny pages have the same size, it cannot distinguish between them
only by the page size. The solution would be one of the following.

• The function is used to transform a physical memory block into
the corresponding page when combining small pages to a large
page or split a large page into small ones. We can record the page
type when the page is stored in the memory, then, when loading
the memory, read the record to decide which type of page it is.
This is a relatively unfeasible way. The function is working with
the physical memory, and we cannot add marks on physical
memory. Although we could use the colored pointer to store
this information, it is not practical. There are four page types
currently, so two bits are needed to store the page type. This
function is rarely used, and occupying several bits in the limited
pointer address space seems profitless. Using a fixed bit to
represent page type also results in non‐extendable page types.
Otherwise, a table that records all memory addresses and their
corresponding page type is needed. However, this method will
add extra overhead to page load and increasememory footprint.

32|Design and Implementation of Object Size Identification

• An alternate way is to regard all pages with a 2MBytes size as a
tiny page. This will treat small pages as tiny pages when using
this function. One typical behavior is that when we split a large
page containing small and tiny objects, this function will put
both of them into tiny pages.

However, doing so will not affect the performance because it is
acceptable to place small objects inside tiny pages. The tiny page
and the small page are identical in most characteristics, except
the lazy relocation behavior. Regarding the small pages as tiny
pages will introduce an extra lazy relocation for that particular
page (which is normally happening in HCSGC as it will lazy
relocate all small pages). After that, these small objects will be
relocated to small pages and no longer needs lazy relocation.
Moreover, this function is rarely used, so this degradation that
only happens once does not have a visible impact on the overall
relocation performance.

Each TLAB belongs to one page class. So a TLAB for tiny objects
should also be implemented. There are two ways to fulfill this:

• Track two independent TLAB in each Thread. The two TLABs
have their own lifecycles, which do not affect each other.

• Extend the TLAB class to hold two sets of top and end pointers
so the lifecycle can stay unchanged.

Although the second design is easier to implement, we chose the
first design because it is compatible with other GCs. The new TLAB
will only be enabled when using ZGC, therefore it keeps the original
behaviors when using other GCs.

Since the allocations differ in interpreter and JIT compiler, they
will be described in separate parts.

3.4 The Implementation of Allocation
The major part of adding a new page class is implementing the
corresponding object allocation code for it. We have implemented the
allocation for both inside/outside the TLAB in all three Java runtime
tiers, the bytecode interpreter, the C1 Compiler, and the C2 Compiler.

Design and Implementation of Object Size Identification |33

3.4.1 Java Interpreter
The modification in the bytecode interpreter is quite straightforward.
We need to check the size of the ongoing allocation and do the
allocation in corresponding places. When it is inside TLAB, the
allocation will be done by the tiny or small TLAB of the current
thread. When outside TLAB, the request is sent to the eden heap, then
allocated inside the corresponding page.

Eden Allocation

The Eden allocation is the most fundamental one in Java. As shown
in Figure 2.2, if allocation in TLAB failed, it will fallback to Eden
allocation. The allocation of TLABs is also handled by Eden allocation.

The Eden allocation is controlled by the ZObjectAllocator
class. When an object is going to be allocated, its size will be passed
to the alloc_object function, and then the place will be reserved in
corresponding pages.

The selection of pages is determined by a simple if...elseif...else
conditional statement. The tiny object could be checked by adding a
tiny check before the original small object check, as shown in Listing
3.6. This extra check will not bring visible performance degradation
to allocation. The vast majority of objects are tiny objects, which
always succeeds in the first condition check. Comparing the original
allocator, larger objects need onemore check, but theywill not impact
the performance notably due to their rareness.
if (size <= ZObjectSizeLimitTiny) {

return alloc_tiny_object(size, flags);
} else if (size <= ZObjectSizeLimitSmall) {

return alloc_small_object(size, flags);
} else if (size <= ZObjectSizeLimitMedium) {

return alloc_medium_object(size, flags);
} else {

return alloc_large_object(size, flags);
}

Listing 3.6: Eden allocation

A special case is the allocation of the tiny TLABs. The allocation of
TLABs is controlled by the Eden allocator, and the tiny TLABs needs to
be placed on tiny pages since they contain tiny objects. However, the
tiny TLAB itself is larger than the threshold of tiny objects. Therefore,

34|Design and Implementation of Object Size Identification

the allocation of TLABs must be handled separately. For tiny TLABs,
the underneath alloc_tiny_object will be invoked directly for
allocation.

Inside‐TLAB Allocation

Most of the allocations in Java are handled by TLABs. We add one
field _use_tiny_tlab in MemAllocator, as shown in Listing 3.8.
The field is initiated when constructing the memory allocator. When
allocating, the word size of the object will be passed to the allocator.
From that, we can decide whether the object is a tiny object. The code
shown in Listing 3.7 can choose the right TLAB for allocation and let
the TLAB do the allocation. The TLAB allocation is unmodified as
shown in Listing 2.1.
ThreadLocalAllocBuffer& tlab = _use_tiny_tlab ? _thread>

tlab_tiny() : _thread>tlab();
HeapWord* mem = tlab.allocate(_word_size);

Listing 3.7: TLAB Allocation in Interpreter

const bool _use_tiny_tlab;

MemAllocator(Klass* klass, size_t word_size, Thread* thread)
: _thread(thread),
_klass(klass),
_word_size(word_size),
_use_tiny_tlab(UseZGC && (word_size <= ZObjectSizeLimitTiny

/ HeapWordSize))
{ }

Listing 3.8: Use Tiny TLAB Cache in MemAllocator

Considering the performance, our proposal will introduce an extra
size check when allocating objects inside TLABs, or more specifically,
when constructing the MemAllocator. This check brings regression
but is necessary for placing objects to the right TLAB. Furthermore, a
new MemAllocator is needed for each allocation inside TLABs, so all
regressions in the constructor will reflect in object allocations.

The TLAB allocation handled by the Java interpreter is slow and
impossible to optimize, so we implement the new TLAB allocation in
JIT compilers. When JIT is enabled, most of the allocations will be
handled by the native code generated by JIT (the rest will fall back to

Design and Implementation of Object Size Identification |35

the Eden allocator), which is considerably faster. Therefore, TLAB
allocations handled by the interpreter could be greatly reduced to
avoid performance degradation.

3.4.2 C1 Compiler
In the JIT Compilers, the programwill be compiled into native code to
improve its performance. The C1 Compiler is easy to implement as it
only generates the assembly but does not optimize it. TheC1Compiler
has two stages when doing the allocation. The try_allocate
function in the frontend will check the parameters and then send the
allocation task to corresponding backends. Then, backends, which
contains tlab_allocate and eden_allocate, do the allocations.

The frontend of allocation

The original allocation code in C1 Compiler is shown in Listing 3.9.
void C1_MacroAssembler::try_allocate(Register obj, Register

var_size_in_bytes, int con_size_in_bytes, Register t1,
Register t2, Label& slow_case) {

if (UseTLAB) {
tlab_allocate(noreg, obj, var_size_in_bytes,
con_size_in_bytes, t1, t2, slow_case);

} else {
eden_allocate(noreg, obj, var_size_in_bytes,
con_size_in_bytes, t1, slow_case);

}
}

Listing 3.9: Original Frontend C1 Allocation

The size of object is passed by two parameters: Register
var_size_in_bytes and int con_size_in_bytes. When allo‐
cating an array, the array length is unknown in the compilation time.
Therefore the object size could only be passed by a register that stores
the actual size of the array. In this case, the con_size_in_bytes
will equals to0. When allocating an object, the actual size is fixed. The
size is passed by the integer, and the register var_size_in_bytes
will equal to noreg, whichmeans a null register. The flowchart of the
modified frontend check is shown in Figure 3.6.

36|Design and Implementation of Object Size Identification

UseTLAB?

UseZGC

has size info
(Object or Array)

is tiny object

No

eden_allocate

Yes

tlab_allocate

YesNo

Yes, Object

tlab_allocate

Nois tiny object
(check with ASM)

Yes

tlab_allocate_tiny

No, Array

tlab_allocate

No

Yes

tlab_allocate_tiny

Figure 3.6: Modified Frontend C1 Allocation

if (UseTLAB) {
if (UseZGC && (var_size_in_bytes == noreg) && ((size_t)
con_size_in_bytes <= ZObjectSizeLimitTiny)) {
tlab_allocate_tiny(...);

} else if (UseZGC && (con_size_in_bytes == 0)) {
Label normal;
Label end;
cmpl(var_size_in_bytes, ZObjectSizeLimitTiny);
jcc(Assembler::greater, normal);
tlab_allocate_tiny(...);
jmp(end);
bind(normal);
tlab_allocate(...);
bind(end);

} else {
tlab_allocate(...);

}
} else {
eden_allocate(...);

}

Listing 3.10: Modified Frontend C1 Allocation

Note: All allocators has the same parameters:
(noreg, obj, var_size_in_bytes, con_size_in_bytes, t1,
t2, slow_case)

Design and Implementation of Object Size Identification |37

In the modified code, we use the parameters to decide whether
allocate the object inside the TLAB of small pages or tiny pages. If
the allocation is for an object with a known size, it can be decided by a
normal check on con_size_in_bytes. Otherwise, an extra branch
is needed. The C1 Compiler provided several macros to generate
the corresponding assembly, including the cmpl to compare two
numbers, the jcc to jump based on conditions, and bind to create
tags. By using these macros as shown in Listing 3.10, we can easily
create a conditional branch that handles the allocation in different
TLABs.

The backend of allocation

verify_tlab();

movptr(obj, Address(thread, tlab_tiny_top_offset()));
if (var_size_in_bytes == noreg) {
lea(end, Address(obj, con_size_in_bytes));

} else {
lea(end, Address(obj, var_size_in_bytes, Address::times_1))
;

}
cmpptr(end, Address(thread, tlab_tiny_end_offset()));
jcc(Assembler::above, slow_case);

movptr(Address(thread, tlab_tiny_top_offset()), end);
// recover var_size_in_bytes if necessary
if (var_size_in_bytes == end) {
subptr(var_size_in_bytes, obj);

}
verify_tlab();

Listing 3.11: Tiny TLAB Allocation in C1 (pseudo code)

The backend of allocation in C1 Compiler contains tlab_allocate
and eden_allocate that do the allocation in TLAB and Eden
respectively. The tlab_allocate is not changed, and it still does the
allocations in TLAB of small pages. The eden_allocate will invoke
the underlying allocations in zCollectedHeap, which is already
adopted to check the size in the previous part. The onlymodification is
the newly introduced tlab_allocate_tiny that allocate inside the
tiny TLAB as shown in Listing 3.11. The code will directly move the
object to the top pointer of the TLAB and increase the top pointer.

38|Design and Implementation of Object Size Identification

The tiny object allocation implementation in the C1 Compiler has
a low but inevitable impact on the performance. In the original code,
the size check is handled implicitly by putting all objects into the
TLAB.Medium and Large objects cannot fit in the TLAB, so only small
objects can be successfully allocated by the fast path and enter the
TLAB. However, after adding the new page type and TLAB, both tiny
and small objects canfit in eachother’s TLABs, sowemust add an extra
check to make sure they go to the right one.

Nevertheless, the extra size check only has a small impact because
it only applied for arrays, which take a small part in objects.
Performance of allocating other objects remains the same since the
same amount of instructions are generated. The modified allocation
backend also has the same routine as the original one. As a result, the
performance degradation may be invisible.

3.4.3 C2 Compiler
The major work of the C2 Compiler is similar to C1, which is getting
the top and the end pointer of the TLAB and moving the object.
The difference is C2 will have optimizations, so not assembly, but
grammar trees are constructed. To achieve this, different Nodes are
created and add to the grammar tree. After that, the tree will be
optimized by pruning and combining branches, alsomake predictions
to different branches to further improve the efficiency.
void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &

eden_end_adr) {
if (UseTLAB) {
Node* thread = transform_later(new ThreadLocalNode());
int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);

} else {
CollectedHeap* ch = Universe::heap();
address top_adr = (address)ch>top_addr();
address end_adr = (address)ch>end_addr();
eden_top_adr = makecon(TypeRawPtr::make(top_adr));
eden_end_adr = basic_plus_adr(eden_top_adr, end_adr top_adr);

}
}

Listing 3.12: Get Allocation Pointers in C2

The original code that gets the pointer of the TLAB is shown in
Listing 3.12. Same to C1, the slow path allocation in Eden is handled

Design and Implementation of Object Size Identification |39

by the underlying zCollectedHeap, so we only care about the TLAB
part. Several helper functions are used in the original code:

• transform_later:
Since the C2 Compiler is a process of building grammar
trees, leaf nodes should be recorded and add to the tree.
The transform_later function is used to record the node
provided in the argument.

• in_bytes:
A simple cast to mitigate different integer lengths in different
platforms.

• basic_plus_adr:
Will create an AddPNode, a node used to add a pointer with an
integer.

• MakeConX:
A macro that create an const long integer node ConLNode.

Weaddanextraparameter to the functionNode* size_in_bytes
to convey the size of the object. Also, since the tiny TLAB is only
available in ZGC, we introduce an extra check. The overall structure of
the modified code is shown in Listing 3.13. Notice this check will not
introduce overhead to the program since the compiler code will only
be executed once to generate the assembly.
void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr,

Node* &eden_end_adr, Node* size_in_bytes) {
if (UseTLAB) {
if (UseZGC) {

// get different TLAB based on size
} else {

// original TLAB code
}

} else {
// original Eden code

}
}

Listing 3.13: Structure of Modified C2 Allocation code

We proposed two ways of getting the corresponding TLAB based
on the object size, using the two different types of conditional node
provided in C2 Compiler: the Conditional Move node and the IF node.

40|Design and Implementation of Object Size Identification

Using the Conditional Move Node

To use a Conditional Move Node, a BoolNode and a CmpLNode
(Compare Long Integer Node) should be generated first to control the
results. The code shown in Listing 3.14 could generate a BoolNode by
comparing the size and size limit(transform_laters are omitted).
The BoolTest::le means “less or equal”, so the BoolNode will be
true when the size is smaller or equal to the tiny object threshold.
Node* istiny_cmp = new CmpLNode(size_in_bytes, MakeConX(

ZObjectSizeLimitTiny));

Node *istiny_bol = new BoolNode(istiny_cmp, BoolTest::le);

Listing 3.14: Getting a BoolNode in C2

Then, two sets of top and end offsets are generated to work as
a candidate for final results, as shown in Listing 3.15. The resulting
offset is created by constructing a Conditional Move Long Integer
Node CMoveLNodewith the BoolNode, two candidate offsets, and the
type value, as shown in Listing 3.16. The final results are generated by
the same basic_plus_adr function.

Node* tlab_small_top_offset = MakeConX(in_bytes(JavaThread::
tlab_top_offset()));

Node* tlab_small_end_offset = MakeConX(in_bytes(JavaThread::
tlab_end_offset()));

Node* tlab_tiny_top_offset = MakeConX(in_bytes(JavaThread::
tlab_tiny_top_offset()));

Node* tlab_tiny_end_offset = MakeConX(in_bytes(JavaThread::
tlab_tiny_end_offset()));

Listing 3.15: Get Top and End Offsets in C2

Node *tlab_top_offset = new CMoveLNode(istiny_bol,
tlab_small_top_offset, tlab_tiny_top_offset, TypeLong::
LONG);

Node *tlab_end_offset = new CMoveLNode(istiny_bol,
tlab_small_end_offset, tlab_tiny_end_offset, TypeLong::
LONG);

Listing 3.16: Get offset result in C2

Design and Implementation of Object Size Identification |41

eden_top_adr = basic_plus_adr(top(), thread, tlab_top_offset)
;

eden_end_adr = basic_plus_adr(top(), thread, tlab_end_offset)
;

Listing 3.17: Get the final results in C2

Using the IF Node

The Conditional Move Node is easy to construct but is not able to be
optimized by the C2 Compiler. We canmaximize the optimization and
performance by using an IFNode. With the IFNode, the C2 Compiler
can prune the tree to merge some branches or even make branch
predictions by the arguments provided to the IFNode.

A basic branch structure can be created by the code shown in
Listings 3.18. TheIFNode should be contained in aRegionwith three
fields. Also, it needs a Control input to be functional. The Control
is the key point of C2’s optimization. C2 will follow the Control to
remove all unneeded nodes andmerge branches. It is also the difficult
part in C2 development since we need to receive the Control from
upstream and pass the Controls to downstream. For the IFNode,
it creates two Control signals: IFTrueNode and IFFalseNode.
Both of them should be correctly connected to another node, or the
compilation will fail.
Node *istiny_reg = new RegionNode(3);
Node* istiny_cmp = new CmpLNode(size_in_bytes, MakeConX(

ZObjectSizeLimitTiny));
transform_later(istiny_cmp);
Node *istiny_bol = new BoolNode(istiny_cmp, BoolTest::le);
transform_later(istiny_bol);
IfNode *istiny_if = new IfNode(ctrl, istiny_bol, PROB_LIKELY

(0.9), COUNT_UNKNOWN);
transform_later(istiny_if);
Node *istiny_ift = transform_later(new IfTrueNode(istiny_if))

;
Node *istiny_iff = transform_later(new IfFalseNode(istiny_if)

);
istiny_reg>init_req(1, istiny_ift);
istiny_reg>init_req(2, istiny_iff);

Listing 3.18: Basic branch code block in C2

42|Design and Implementation of Object Size Identification

A PhiNode is used to collect results from the branch. The
PhiNode needs to be created within the Region and bind cor‐
responding input nodes to the results. The code shown in
Listings 3.19 creates the PhiNode with the previous Region and
binds eden_tiny_end_adr to IFTrueNode and eden_end_adr to
IFFalseNode. So the actual value of this PhiNode will be changed
based on the result of the IFNode.

Node* phi = new PhiNode(istiny_reg, Type::BOTTOM);
phi>init_req(1, eden_tiny_end_adr);
phi>init_req(2, eden_end_adr);

Listing 3.19: PhiNode in C2

It is hard to judge the performance impact of the nodes introduced
in both CmpLNode and IFNode methods. Unlike the C1 Compiler,
arrays and other objects share the same allocation path in C2. It
appears to be that C2 is not optimized because, for normal objects, no
extranative codewas generated inC1, but an extranodewas generated
in C2. However, C2 could prune these tree nodes automatically, so
it is expected that the added node will be removed (or precompiled)
since the size of normal objects is fixed. There is also a possibility of
bringing the same optimization to arrays. Futhermore, the allocation
grammar tree in C2 contains thousands of Nodes, so it is unreliable to
theoretically analyze the impact of this extra Node.

3.5 The Implementation of Relocation
The pseudo‐code for relocate objects in HCSGC is shown in Listings
3.20. As can be seen in the code, when an object is to be relocated,
its address will be searched in the per‐page forwarding table. The
forwarding table, which is provided by ZGC, is used to record a map
from old addresses to the new one when accessing stale pointers. If
the forwarding table contains that address, the object will be fully
relocated by ZGC. In ZGC, if the object is not on the forwarding table,
it will not be relocated. However, in HCSGC with partial evacuation
enabled, the whole page will be selected to relocate. In this case, they
will not be on the forwarding tables and be relocated by a separate
function relocate_object_in_pec. In that function, the size of
object will be calculated beforemoving the object to the new location.

Design and Implementation of Object Size Identification |43

uintptr_t ZHeap::relocate_object(uintptr_t addr) {
ZForwarding* forwarding = _forwarding_table.get(addr);
if (forwarding == NULL) {
if (UsePartialEvacuation) {
page = _page_table.get(addr);
if (page>is_relocatable() && page>type() ==

ZPageTypeSmall) {
// HCSGC Partial Evacuation Relocation
return relocate_object_in_pec(page, addr);

}
}
// Not forwarding
return ZAddress::good(addr);

}

// ZGC Full Relocation
return relocate_object(forwarding, addr);

}

Listing 3.20: Pseudo code of object relocation in HCSGC

We proposed two methods of checking whether the object needs
to be relocated, by the page type and by the object size. The page type
check can be implemented by simply changing the ZPageTypeSmall
to ZPageTypeTiny, as shown in Listings 3.21. The object size check
is shown in Listings 3.22. To optimize this, size of the object is passed
to the relocate_object_in_pec function to prevent double size
calculation of the same object.

As proposed in Section 3.2.2, the object size calculation is much
slower than the page type check. The code shown in Listings 3.21 can
bail out early if the object is not on the tiny page and prevent the size
calculation, while the other code always needs to calculate the size.
Therefore, we could suggest that the page type check will be faster.

page = _page_table.get(addr);
if (page>is_relocatable() && page>type() == ZPageTypeTiny)

{
// HCSGC Partial Evacuation Relocation
return relocate_object_in_pec(page, addr);

}

Listing 3.21: Pseudo code of checking by page type

44|Design and Implementation of Object Size Identification

size_t size = ZUtils::object_size(addr);
if (size > ZObjectSizeLimitTiny) {

// Not forwarding
return ZAddress::good(addr);

}
page = _page_table.get(addr);
if (page>is_relocatable()) {

// HCSGC Partial Evacuation Relocation
return relocate_object_in_pec(page, addr, size);

}

Listing 3.22: Pseudo code of checking by object size

Evaluation Methodology |45

Chapter 4

Evaluation Methodology

Relocating fewer objects could improve the relocation performance,
but with a locality trade‐off. We proposed in the previous chapter
that larger objects will not benefit from moving them around.
Thus, ignoring these objects in relocation could avoid the impact
on overall performance and at the same time reduce the size of
the relocation set. A smaller relocation set leads to a higher
relocation performance, which may enhance the overall throughput
in constrained environments. There are several aspects we will
discuss in this chapter:

• Ways to measure relocation performance. The throughput
of a program can be indicated by the total time to finish the
program or the count of operations finished in a specified
period. However, the relocation performance could be difficult
to tell. Theoretically, the relocation performance is inversely
proportional to the size of the relocation set. We can
get a numerical measurement of relocation performance by
recording the relocation set size of each GC and do the statistics.
Practically, we want something that could improve the system to
some extent, especially some speed up.

• The performance of size identification method. Two methods
of checking the size of objects are proposed in Section 3.2.1. We
suggest that the tiny page could be more efficient since it can
skip a time‐consuming step in some cases. However, the actual
performance difference introduced by the two methods is still
unknown and could change in different benchmarks. Besides,

46|Evaluation Methodology

the page division introduced an extra check when objects are
being allocated, we want to know the overhead introduced by
the page division.

• The optimal size limit for tiny objects. As discussed in
Section 3.1, the size limit is a balance between the locality and
the relocation performance, and this balance differs between
environments and applications.

In constrained systems, a smaller relocation amount means a
smaller workload, and a lower memory fragmentation means a
lower memory footprint and less GCs, which both lead to better
performance. A small size limit may cause poor locality, but the
improvements in relocationwill compensate for this. Therefore,
the size limit could be reduced drastically.

In over‐provisioned systems, we have enough memory to deal
with the fragmentation and enough CPUs to deal with the high
relocation workload. A lower relocation performance will not
affect the throughput by any means, but the locality does.
Therefore, only the large object that could never get any locality
benefits can be ignored. We need to avoid introducing visible
degradation by the page division, so the size limit needs to be
higher than constrained environments.

We introduced a command‐line parameter to set the size limit
in Section 3.3. End‐users could tweak this value to get the best
performance for their programs. Otherwise, a default value for
the size limit is needed.

• The selection of benchmarks. According to the nature of tiny
pages, it could only get performance improvements when there
are an observable amount of objects that are larger than the
limit. However, in most of the programs, the vast majority of
objects are very small. In these cases, the tiny page would not
make any difference from the original HCSGC since they are
relocating the same amount of objects. These benchmarks could
prove whether the page division will introduce performance
degradation. Nevertheless, it is more meaningful to find
benchmarks that could benefit from our proposal.

Evaluation Methodology |47

4.1 Measuring Method
A reasonable way to measure the relocation performance is critical
in evaluation. We did this from two aspects. First, we record the
relocation status of each GC. Less GC count and smaller relocation
size is the sign of higher relocation performance. Second, wemeasure
the overall throughput of the benchmark. If the result is better than
HCSGC, we can infer that we got a larger relocation performance
improvement with a smaller loss in the locality.

Recording the GC status, especially the relocation size, will
introduce degradation to the overall performance. Thus, the overall
throughput should be benchmarked without extra debug flags or GC
statistics. As a result, these two aspects must bemeasured in different
benchmark runs.

4.1.1 Record GC status
To get a clear outline of GC status, we collect data from several aspects,
including the percentage of tiny/small objects, the count of GC cycles,
and the total size and count of relocations. We also recorded the
execution time as a reference.

• The percentage of objects with different size could be extracted
from the built‐in GC statistics in JRE. The command‐line
parameter Xlog:gc+reloc could print logs that have both
gc and reloc (means relocation) tags. A typical output of the
relocation statistics is shown below.

[gc,reloc] GC(1) Tiny Pages: 25 / 50M(20%), Empty: 0M(0%),
Compacting: 0M(0%)>0M(0%)

[gc,reloc] GC(1) Small Pages: 71 / 142M(55%), Empty: 0M(0%),
Compacting: 132M(52%)>72M(28%)

[gc,reloc] GC(1) Medium Pages: 1 / 32M(12%), Empty: 0M(0%),
Compacting: 0M(0%)>0M(0%)

[gc,reloc] GC(1) Large Pages: 4 / 32M(12%), Empty: 6M(2%),
Compacting: 0M(0%)>0M(0%)

[gc,reloc] GC(1) Relocation: Successful

From the log, we know that in this particular GC cycle, the tiny
objects take 20% of the heap space, and the small objects take
55% of the heap space. A single benchmark run often contains

48|Evaluation Methodology

hundreds of GC cycles. We calculate the overall percentage of
tiny objects by averaging all GC cycles.

• The count of GC cycles could be extracted by another parameter,
Xlog:gc. The following line will be printed after each GC,
where N is the current count of GC cycles and Allocation Rate is
the reason why this GC happens.

[gc] GC(N) Garbage Collection (Allocation Rate)

We could get the total GC cycles by finding the maximum N in
the log.

• The relocation size counter is not provided by default. We could
create one by the ZStatCounter constructor. The related code
is shown in Listing 4.1. ZStatUnitBytesPerSecond indicates
that the unit of the counter is bytes per second, which is used to
count the relocation size. While theZStatUnitOpsPerSecond
means the unit is operations per second, and we use it to count
the number of objects that are being relocated. The counter
could be increased by the ZStatInc function.
static const ZStatCounter ZCounterRelocationSize(”

relocationsize”, ”Relocation Size”,
ZStatUnitBytesPerSecond);

static const ZStatCounter ZCounterRelocationCount(”
relocationcount”, ”Relocation Count”,
ZStatUnitOpsPerSecond);

Listing 4.1: ZStatCounter Creation

As described in Section 2.4, the HCSGC defers the relocation
phase of some pages (small pages in HCSGC, or tiny pages in
our implementation) to the next GC cycle. It means we have
two types of relocations in HCSGC, the full relocation and the
lazy relocation. The full relocation may happen in both mutator
threads and the concurrent GC threads, while the lazy relocation
could only happen in mutator threads. To deal with this, we add
the size and operations counter for all combinations of different
relocation types and different threads.

The statistics could be printed by the command‐line parameter
Xlog:gc+stats. It can be combined with the previous

Evaluation Methodology |49

ones and become Xlog:gc,gc+reloc,gc+stats, or simply
output all GC‐related logs by Xlog:gc*.

4.1.2 Measure overall throughput
The throughput difference could be small, so it is critical to make
the results more reliable. We designed the layered benchmark flow
(Figure 4.1) to narrow the confidence interval.

Config 0 Config 1 Config N...

Pass 0

Benchmark
program

Pass 1 Pass M

Iteration 0 Iteration 1 Iteration K

Figure 4.1: The benchmark flow

For each of the benchmark programs, several different configu‐
rations will be applied, which contains several passes. Every pass
is an invocation to the benchmark program, which will generate the
time data such as wall‐clock time. This data will be collected and
calculate the average, standard deviation, and confidence interval.
There are usually 5 to 30 passes for each configuration, depending on
the stability of the results.

Iteration is the internal loop of each benchmark. Usually, the
benchmark programwill provide a command‐line argument to set the
number of iterations. The iteration time will be printed after each
iteration.

The reason of using iterations is the Tiered Compilation mentioned
in Section 2.1.1. The first several iterations are usually executed by

50|Evaluation Methodology

the C1 Compiler for a faster startup. The C2 Compiler will work after
the third or fourth iteration and generate a faster assembly. Usually,
the benchmark gets stable after this. But the C2 will collect runtime
information and try to generate further optimized code. Therefore,
some of the benchmarks may be unstable even after ten iterations.
When the time gets stable, we make it run ten more iterations and
collect the average of the last ten stable iterations as the final result
for this pass.

If we remove the iterations (so there is only one iteration in each
pass), the code will always run in the less optimized mode and gets a
lower throughput.

The pseudo‐code of the iterations is shown in Listing 4.2. Notice
that we put a force GC System.gc() at the end of each iteration but
without timing on it. It could assure the memory layout is the same at
the beginning of each GC to prevent unstable values.
for (int i = 0; i < iterations; i ++) {

var start = System.currentTimeMillis();
// <workload>
var end = System.currentTimeMillis();
System.out.println(”Benchmark X Iteration ” + i + ”
PASSED in ” + (endstart));
System.gc();

}

Listing 4.2: Iterations ‐ the internal loop

4.1.3 Common configurations
Following common parameters are used for all of the benchmarks.

• The default HCSGC switch XX:+UsePartialEvacuation
and XX:+UseLazyRelocate will be enabled for all bench‐
marks except the vanilla ZGC.

• Constrained environments need to be created for most of
the benchmarks to get throughput improvements. Memory‐
constrained environment can be created by limiting the
Java heap size, with the JVM arguments Xmx<size> and
Xms<size>.

• Creation of CPU‐constrained environments differs according
to the benchmark program. For single‐threaded benchmarks,

Evaluation Methodology |51

Table 4.1: Configuration used in benchmarking

Configuration No. 0 1 2 3 4 5 6 7 8 9

Garbage Collector HCSGC Tiny page Vanilla
ZObjectSizeLimitTiny n/a 262144 512 256 255 192 128 64 32 n/a

we use the taskset c 0 <workload> command to force
both mutator and GC thread to run on the same core so they
will compete for the limited resource. For multi‐threaded
ones, the benchmark program itself will exhaust the hardware.
Therefore, no extra operations need to be taken.

4.2 Tiny page threshold
We run the benchmark with different thresholds for tiny objects to
test for the best size limit of each benchmark. As shown in Table
4.1, different size limits from 32 bytes to 256K bytes are chosen,
as well as the original HCSGC and vanilla ZGC. The threshold is
set to the corresponding number by the command‐line parameter
XX:ZObjectSizeLimitTiny=<size> proposed in Section 3.3.

Config 0 is baseline benchmark runs with the original HCSGC.
Config 1, whichhas a 256Kbytes limit, should haveno small pages, and
all previous small objects inHCSGCwould nowbe on tiny pages and be
lazy relocated. Ideally, Config 1 should have the same performance as
Config 0. Comparing the results of Config 1 to Config 0 could show the
overhead introduced by the page division. Config 9 runs with vanilla
ZGC as a reference.

With the size limit decreases from left to right, the locality will also
decrease. For the benchmarks run in unconstrained environments,
the relocation performance would not affect the throughput. As a
result, the overall performance decreases as the locality decreases.
If we find such a number N that Config N has a similar performance
as Config 0, while Config N+1 has a degradation, then Config N
is the optimal threshold for the current benchmarking program in
unconstrained environments.

For the constrained environments, if we got an overall improve‐
ment, that is likely come from the relocation. Therefore, we can easily
get the threshold with the best performance by finding the shortest

52|Evaluation Methodology

execution time.
Note that we added a special threshold of 255 into the configura‐

tions. The performance difference between 255 Bytes and 256 Bytes
threshold is only introducedbywhether ignoring the 256Bytes objects.
This could identify the relocation improvement and locality loss of
objects that are exactly 256 Bytes. We select this value based on the
following reasons.

• 256 Bytes suits the “slightly larger than cache line size” that
we want. As described in Section 3.1, objects smaller than
the size of the cache line will get benefits from the locality.
Objects that are slightly larger than that have a chance of getting
benefits, but we also need to pay the price of reducing relocation
performance. Considering the CPUs have amaximumof 13 or 20
extra prefetches, 256 Bytes, which equals four times of cache line
size and needs 3 or 4 prefetches to load the whole object, is ideal
for our “slightly larger” size.

• Several benchmark programs have a considerable amount of
objects that are exactly 256 Bytes, making it easier for us to
discover any performance difference.

End‐users could tweak this threshold to get the best performance
for their programs. Otherwise, a default value for the size limit is
needed. We set the default threshold to the value that would not
introduce any degradation on most of (if not all) the benchmarks
in unconstrained environments. That value is selected because: (1)
this is the smallest threshold that would not lower the performance
comparing to original HCSGC, (2) this is the best improvement over
relocation performance that we can get (with the restriction of (1)).

4.3 Benchmark software

4.3.1 Synthetic benchmark
The synthetic benchmark is used as a form of sanity check, that
exhibits a stable but unpredictable access pattern. The benchmark
illustrates the HCSGC could capture the pattern and reorganize the
objects to improve cache utilization. [8]

Evaluation Methodology |53

In the original benchmark, an array of 2 × 106 Pairs is created.
Each Pair contains two numbers. A loop will persist on accessing
the array, and at the same time, allocating some garbage to trigger
GC. From the page’s perspective, the synthetic benchmark has one
large page, which stores the large 2 × 106 array. All other objects,
including the temporary variables when doing the workload, is very
small and will live on tiny pages. So it would not get any difference in
performance between HCSGC and tiny pages.

To illustrate the usage of tiny pages, we changed the synthetic
benchmark a bit by extending the original Pair class to a larger
LargePair class, which contains 1000 numbers. Then, we replaced
part of the Pairs in the array with LargePairs. As a result, we
can get some small pages. The proportion of replaced objects could
be changed to change the overall small page percentage. In this
benchmark, we changed 5% of Pairs into LargePairs and get 80%
of small pages. With tiny page enable, this 80% of objects could
be ignored from relocation, thus we can suppose a performance
improvement.

4.3.2 DaCapo Suite
TheDaCapobenchmark suite is a collection of carefully selected open‐
source real‐world applications with complex logic. All benchmarks in
the suite are considered to offer a unique aspect of the performance
of JVM [24]. The latest stable release of DaCapo is DaCapo‐9.12‐bach‐
MR1, which was released in 2009. Although old, it is still used by
the community as it provides credibility. For this thesis, a subset
of the DaCapo will be used. We use the largest input size for each
benchmark we choose. The detail of selected benchmarks and input
size is shown in Table 4.2. For the other benchmarks that are not
chosen, the reasons are as follows.

• Some of the benchmarks could not even start. The DaCapo
developed a long time ago, with a quite old version of JDK. Many
benchmarks have compatibility issues with newer versions such
as the JDK 15 which is used by this thesis.

• Some of the benchmarks lack larger objects. We will not
run benchmarks that have more than 99% of tiny pages
with the default threshold (256 Bytes). The difference in

54|Evaluation Methodology

Table 4.2: Brief description of selected benchmarks in DaCapo

benchmark size description

avrora large Simulates a number of programs run on a grid of AVR
microcontrollers.

fop default Takes an XSL‐FO file, parses it and formats it, generating
a postscript file.

h2 huge

H2 is an SQL relational database engine written in
Java. This benchmark executes a TPC‐C like in‐memory
benchmark, executing the following models: customers,
districts, warehouses, purchases and deliveries.

luindex default Indexes a set of documents, the works of Shakespeare
and the King James Bible.

lusearch large Text search of keywords over a corpus of data comprising
the works of Shakespeare and the King James bible.

sunflow large Renders a set of images using ray tracing.

xalan large
Xalan is an XSLT processor for transforming XML docu‐
ments into HTML. This benchmark will repeatedly
transforms a set of XML documents.

relocation amount will be indistinguishable if most of the
previous small objects transfer to tiny objects and be relocated,
and the relocation performance improvement could be even
imperceptible. We could lower the tiny object threshold to
put more objects on small pages and ignore more objects
in relocation, but this would definitely lower the overall
performance since these objects could benefit from the locality.

4.3.3 JGraphT
The JGraphT is a Java library of graph theory data structures and
algorithms, focusing on flexibility, powerfulness, and efficiency [25].
We run two algorithms from the JGraphT as benchmarks. The
first is the Bron‐Kerbosch maximal clique enumeration algorithm,
maximal clique (MC) [26]. The other is a weakly biconnected
components algorithm, connected components (CC) [27]. We use

Evaluation Methodology |55

the uk200705@100000 graph data from Laboratory for Web
Algorithms (LAW) [28, 29].

HCSGC implemented a minimal driver that only loads the graph
and calls amethod from JGraphT on the graph towork as a benchmark
[30]. To keep a consistent result, we will use that implementation for
the JGraphT benchmark.

4.3.4 SPECjbb2015
The SPECjbb® 2015 benchmark has been developed from the ground
up to measure performance based on the latest Java application
features. It is relevant to all audienceswhoare interested in Java server
performance. [31]

A typical SPECjbb2015 benchmark run takes about 2 hours, which
contains several phases shown in Figure 4.2. The benchmark starts
with the Search HBIR phase. High Bound Injection Rate (HBIR) is an
estimation of the maximum injection rate that the system can handle.
In the later phase, Response‐Throughput (RT) curve building, the RT
step value is increased by 1% of HBIR. The HBIR is calculated by
running different injection rate levels for a fixed duration to determine
whether the system is able to successfully execute the level. It is an
estimation of throughput without any latency constraints.

Thebenchmarkhas twometrics,maxjOPS andcriticaljOPS.
The maxjOPS indicates the throughput of the system, which is
calculated by the last success injection rate of RT step level before the
first failure of an RT step level. The criticaljOPS indicates the
latency of the system, which is the geo‐mean of jOPS in 10ms, 25ms,
50ms, 75ms, and 100ms response time. The jOPS is measured by the
99th percentile response for all requests.

Although the HBIR and maxjOPS both measure the throughput,
they have different values and the maxjOPS usually between 70%‐
90% of HBIR. A much lower maxjOPS than HBIR may indicate the
system has occasional long pauses [32].

There is an option to execute the benchmark on more than one
machine to benchmark on network I/O. Since the garbage collector is
not affected by the network, we run SPECjbb2015 with the composite
setting (single VM, single host). The heap size is set to 64GB.

56|Evaluation Methodology

Search HBIR
(High Bound Injection Rate)
about 15~20 minutes

RT curve building
(Response Throughput)
about 90 minutes

Validation
(Run checks)

about 5 minutes

Profiling
(Statistical data)

about 2 minutes

Reporter
(Generate HTML files)

about 2 minutes

Figure 4.2: The SPECjbb2015 run progress

4.4 Machines to Collect Data
As shown in Table 4.3, we have two machines to run the benchmark.
The larger memory machine A has an AMD Ryzen 9 3900X @ 3.8GHz
with 12 cores (2 hyperthreads/core), 96GB RAM, 64KB L1(per core),
512KB L2(per core), 64MB L3(by 4x16MB), and running Ubuntu
20.04.2.0 LTS (Focal Fossa) with Linux kernel version 5.8.0‐53‐generic.
The other machine B has an Intel® Core™ i7‐4710mq CPU @ 2.5GHz
with 4 cores (2 hyperthreads/core), 8GB RAM, 64KB L1(per core),
256KB L2(per core), 6MB L3(shared), also running Ubuntu 20.04.2.0
LTS (Focal Fossa) with Linux kernel version 5.8.0‐53‐generic.

The SPECjbb2015 benchmark requires a large heap, so it runs on
machine A. Other benchmarks runs on machine B.

The C/C++ compiler used is GCC 7.5.0, and theOpenJDK versionwe
based on is JDK 15.

4.5 Evaluation Design
Weaim to evaluate the following aspects of our implementation of tiny
pages.

1. The better size identification method. Two methods of
checking the size of objects are proposed in Section 3.2.2, named
the naive method, which checks the size of each object first,
and the tiny page method, which checks the page type first. We
also provided an alternative method that avoids the overheads

Evaluation Methodology |57

Table 4.3: Machines to Collect Data

Configuration Machine A Machine B

CPU
AMD Ryzen 9 3900X
@ 3.8GHz with 12 cores
(2 hyperthreads/core)

Intel® Core™ i7‐4710mq CPU
@ 2.5GHz with 4 cores
(2 hyperthreads/core)

Memory 96 GB DDR4@2400MHz 8 GB DDR3@1600MHz

L1 Cache 64KB (per core)

L2 Cache 512KB (per core) 256KB (per core)

L3 Cache 64MB 6MB

System Ubuntu20.04.2.0 LTS (Focal Fossa)

Kernel Linux kernel version 5.8.0‐53‐generic

in allocation but discards the fragmentation improvements in
Section 3.2.3. Theoretically, we suggest that the tiny page
method could be more efficient since it can skip a time‐
consuming step in some cases. We also state that the alternative
way does not benefit since fragmentation plays a critical role
in performance. We need to validate these proposals by
benchmarks. After finding the best size identification method,
we could settle the implementation for subsequent benchmarks.

2. The overhead of tiny pages. As discussed in Section 3.4, there
is a small but inevitable allocation overhead of using tiny pages
since we need to check whether the object is tiny or small.
We want to know the degradation introduced by this overhead.
Besides, we proposed two types of size checking in C2 Compiler
in Section 3.4.3, the CMoveLNode and the IFNode. We want to
knowwhich one is better. These could be detected by comparing
the overall throughput difference of Config 0 and 1 shown in
Table 4.1.

3. The optimal size limit for tiny objects. As discussed in
Section 4.2, we need to find the optimal threshold that would
not introduce degradation on most of the benchmarks in
unconstrained environments.

58|Evaluation Methodology

4. The throughput improvements or regressions. The improve‐
ments in relocation may reflect in the overall throughput. We
want to know what is the best throughput improvements we can
get in eachbenchmarkprogram. Also, wewant to checkwhether
any benchmark gets regression after introducing our proposal.

5. Analysis of relocation performance improvements from the
GC status view. The relocation performance is related to
the memory fragmentation and the relocation count/size. We
want to know these values in different tiny page thresholds
to find relations between relocation performance and overall
throughput.

Results and Discussion |59

Chapter 5

Results and Discussion

5.1 Comparison of size identifying methods
We proposed the following three implementations of reducing the

relocation amount.
I1 Enable the tiny page. When relocating, check the page type and

only relocate objects that are on tiny pages.

I2 Enable the tiny page. When relocating, check the object size and
only relocate objects that are smaller than the tiny threshold.

I3 Disable the tiny page. When relocating, check the object size and
only relocate objects that are smaller than the tiny threshold.

We try to find the best method by comparing the throughput with
different tiny object thresholds and environments. Six configurations
are selected to test this, as shown in Table 5.1. The selection is based
on the following reasons.

• To maximize the difference, we use benchmarks that gets
improvements in HCSGC, so the H2 and JGraphT benchmark are
selected.

• Implementation I3 will keep the memory fragmented, so it
is supposed to have lower performance when the heap size
is small. Therefore, we will evaluate these in both memory‐
constrained and ‐unconstrained environments.

60|Results and Discussion

Table 5.1: Benchmark configuration for comparisonof size identifying
methods

Benchmark Heap size

DaCapo H2 Unconstrained: 6GB
Constrained: 3GB

JGraphT
connected_components

Unconstrained: 1GB
Constrained: 512MB

JGraphT
maximal_clique

Unconstrained: 1GB
Constrained: 512MB

• The size check is handled during lazy relocation, which is
processed in worker threads. It is competing with mutators
regardless of the environment. Therefore, there is no need to
evaluate in CPU‐constrained environments.

The results of each benchmark are presented in Table 5.2, 5.3,
5.4, respectively, and visualized in Figure 5.1, 5.2, 5.3. The results
are collected as wall‐clock time in seconds, a lower result means a
better throughput. In the table, HCSGC indicates the results are from
original HCSGC, while the others following the format “INSize”
where N represents the Nth implementation presented above, and
Size represents the tiny page threshold.

We see that Implementation I1has the sameor better performance
than I2 in all benchmarks. The only difference between the two
implementations is the tiny object identification method. The results
indicate that the tiny page method has a better performance than the
naive method.

However, the results of unconstrained environments may give the
impression that Implementation I3 has the best performance. It is
reasonable since memory fragmentation will not cause regressions
when memory is large enough, and tiny pages will introduce extra
overhead without getting any benefits in this situation.

We also see the same results in the constrained configuration of
the H2 benchmark, as shown in Figure 5.1c. It may be caused by
the following reasons. First, 3G Bytes of the heap is not constrained
enough. From the throughput column of Table 5.2a and Table
5.2b, we can see that all configurations have similar performance,
while other benchmarks got a 20%‐30% regression in constrained

Results and Discussion |61

Table 5.2: Comparison of size identifying methods in DaCapo H2

(a) Unconstrained: 6G Bytes Heap

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 10 122558.00 860.39 0.70% 0.00% 122204.26 122957.78
I1‐256 10 126124.47 2801.05 2.22% ‐2.91% 124726.68 127527.38
I2‐256 10 124737.47 1340.06 1.07% ‐1.78% 124081.16 125358.44
I3‐256 10 124255.33 1569.57 1.26% ‐1.38% 123548.22 125024.12
I1‐192 10 124987.33 362.63 0.29% ‐1.98% 124805.38 125167.78
I2‐192 10 129892.87 501.17 0.39% ‐5.98% 129648.70 130138.56
I3‐192 10 125403.80 2431.01 1.94% ‐2.32% 124257.54 126422.34
I1‐128 10 132822.00 2142.70 1.61% ‐8.37% 131843.54 133924.36
I2‐128 10 135276.87 3111.64 2.30% ‐10.38% 133715.84 136767.94
I3‐128 10 129457.93 944.70 0.73% ‐5.63% 128989.88 129894.58

(b) Constrained: 3G Bytes Heap

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 10 124952.07 2333.47 1.87% 0.00% 123793.06 126037.26
I1‐256 10 124326.73 2679.04 2.15% 0.50% 123198.70 125581.78
I2‐256 10 124251.47 681.73 0.55% 0.56% 123909.22 124590.32
I3‐256 10 122191.87 590.57 0.48% 2.21% 121901.80 122459.50
I1‐192 10 126666.93 219.88 0.17% ‐1.37% 126552.12 126765.56
I2‐192 10 129749.87 3735.91 2.88% ‐3.84% 127930.18 131413.68
I3‐192 10 126881.13 7714.48 6.08% ‐1.54% 123717.04 130462.66
I1‐128 10 137847.47 300.98 0.22% ‐10.32% 137700.24 137979.50
I2‐128 10 137582.73 1277.75 0.93% ‐10.11% 136937.44 138139.98
I3‐128 10 135364.50 2150.88 1.59% ‐8.33% 134223.83 136450.86

environments. This indicates that 3G Bytes are unable to introduce
enough memory pressure. We have tried smaller heap sizes such
as 2GB, but it would fail immediately with an out‐of‐memory error.
Second, the H2 benchmark does not have enough garbage to make
memory fragmented. Memory fragmentation in HCSGC is caused by
the lazy relocation, which keeps the garbage until the next GC, so
the garbage will live one GC cycle longer than the original behavior.
However, sinceH2 is a database program,most of the objects inH2 live
for a long time. If the object livesmore thanhundreds of GC cycles, the
extra cycle will not have a visible effect on the overall memory usage.

In conclusion, we could say that Implementation I1which uses the
tiny page to reduce memory fragmentation and relocation amount is
the best option for constrained environments.

62|Results and Discussion

(a) boxplot/6G Heap (b) errorbar/6G Heap

(c) boxplot/3G Heap (d) errorbar/3G Heap

Figure 5.1: Comparing size identifying methods in DaCapo H2

Results and Discussion |63

Table 5.3: Comparing size identifying methods in connected_components

(a) Unconstrained: 1G Bytes Heap

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 10 22320.00 474.72 2.13% 0.00% 22047.00 22609.00
I1‐256 10 21895.00 768.19 3.51% 1.90% 21466.00 22362.03
I2‐256 10 22842.00 564.44 2.47% ‐2.34% 22488.00 23158.03
I3‐256 10 22888.00 551.78 2.41% ‐2.54% 22575.00 23213.02
I1‐192 10 23686.00 2228.80 9.41% ‐6.12% 22452.98 25068.00
I2‐192 10 28059.00 5904.42 21.04% ‐25.71% 24858.95 31664.32
I3‐192 10 22535.00 701.11 3.11% ‐0.96% 22130.00 22939.00
I1‐128 10 24525.00 3845.74 15.68% ‐9.88% 22761.92 27087.12
I2‐128 10 26669.00 4957.87 18.59% ‐19.48% 23971.98 29740.07
I3‐128 10 22760.00 922.45 4.05% ‐1.97% 22195.00 23279.00

(b) Constrained: 512M Bytes Heap

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 10 28300.00 1158.99 4.10% 0.00% 27615.00 29036.67
I1‐256 10 27716.00 854.83 3.08% 2.06% 27243.00 28232.03
I2‐256 10 27914.00 682.84 2.45% 1.36% 27535.00 28334.00
I3‐256 10 28202.00 628.33 2.23% 0.35% 27878.00 28611.00
I1‐192 10 28142.00 948.41 3.37% 0.56% 27563.00 28678.03
I2‐192 10 29227.00 3317.70 11.35% ‐3.28% 27462.98 31338.05
I3‐192 10 28713.00 1061.89 3.70% ‐1.46% 28099.98 29320.00
I1‐128 10 28355.00 1394.14 4.92% ‐0.19% 27547.97 29213.00
I2‐128 10 29947.00 2810.63 9.39% ‐5.82% 28338.98 31666.05
I3‐128 10 28960.00 854.19 2.95% ‐2.33% 28487.00 29474.03

(a) boxplot/1G Heap (b) errorbar/1G Heap

(c) boxplot/512M Heap (d) errorbar/512M Heap

Figure 5.2: Comparing size identifying methods in connected_components

64|Results and Discussion

Table 5.4: Comparing size identifying methods in maximal_clique

(a) Unconstrained: 1G Bytes Heap

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 10 109794.00 3790.89 3.45% 0.00% 107423.00 111884.08
I1‐256 10 110718.00 3574.42 3.23% ‐0.84% 108379.97 112486.00
I2‐256 10 111154.00 3032.50 2.73% ‐1.24% 109291.98 112826.02
I3‐256 10 108297.00 4199.98 3.88% 1.36% 105773.95 110720.02
I1‐192 10 113219.00 7642.92 6.75% ‐3.12% 108876.97 117769.10
I2‐192 10 110520.00 8026.14 7.26% ‐0.66% 106315.95 115785.20
I3‐192 10 109722.00 3611.07 3.29% 0.07% 107442.90 111665.00
I1‐128 10 112949.00 8676.44 7.68% ‐2.87% 108172.00 118414.07
I2‐128 10 118614.00 8234.70 6.94% ‐8.03% 113967.85 123618.12
I3‐128 10 107663.00 3907.20 3.63% 1.94% 105415.97 109944.00

(b) Constrained: 512M Bytes Heap

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 10 138750.00 2005.73 1.45% 0.00% 137813.00 140104.05
I1‐256 10 134478.00 1542.86 1.15% 3.08% 133628.00 135414.02
I2‐256 10 139484.00 781.26 0.56% ‐0.53% 139029.00 139936.02
I3‐256 10 144676.00 1579.40 1.09% ‐4.27% 143719.95 145565.00
I1‐192 10 132834.00 2186.84 1.65% 4.26% 131553.98 134119.00
I2‐192 10 136468.00 1172.42 0.86% 1.64% 135750.00 137118.02
I3‐192 10 143790.00 703.10 0.49% ‐3.63% 143410.00 144225.00
I1‐128 10 136004.00 1274.15 0.94% 1.98% 135171.98 136702.02
I2‐128 10 142271.00 1701.56 1.20% ‐2.54% 141327.00 143315.00
I3‐128 10 143468.00 1059.54 0.74% ‐3.40% 142840.00 144089.02

(a) boxplot/1G Heap (b) errorbar/1G Heap

(c) boxplot/512M Heap (d) errorbar/512M Heap

Figure 5.3: Comparing size identifying methods in maximal_clique

Results and Discussion |65

Table 5.5: Overhead of tiny pages

Benchmark Config N Mean Standard
Deviation

Relative Standard
Deviation Performance CI Lower CI Upper

avrora_large CMove 10 35263.34 272.91 0.77% ‐0.31% 35101.75 35422.31
avrora_large HCSGC 10 35153.13 341.00 0.97% 0.00% 34957.13 35353.89
avrora_large IFNode 10 35129.55 278.66 0.79% 0.07% 34974.08 35302.10

cc_uk CMove 10 18723.75 428.10 2.29% 0.00% 18468.29 18969.10
cc_uk HCSGC 10 18698.58 257.14 1.38% 0.13% 18554.17 18851.01
cc_uk IFNode 10 18584.93 402.19 2.16% 0.74% 18339.57 18811.33

H2_huge CMove 10 131011.01 2408.17 1.84% ‐0.28% 129644.41 132474.18
H2_huge HCSGC 10 130651.60 2216.83 1.70% 0.00% 129408.83 132047.64
H2_huge IFNode 10 131397.90 2024.60 1.54% ‐0.57% 130356.56 132682.00

xalan_large CMove 10 17601.42 311.27 1.77% ‐0.37% 17427.17 17790.95
xalan_large HCSGC 10 17536.85 421.67 2.40% 0.00% 17287.87 17781.93
xalan_large IFNode 10 17495.65 198.85 1.14% 0.23% 17380.82 17613.06

5.2 The overhead of tiny pages
In this part, we aim to measure the overhead of tiny pages. The
avrora_large, H2_huge, xalan_large benchmark from DaCapo, and
connected_components with UK dataset from JGraphT benchmark
are selected. The results are collected as wall‐clock time in seconds,
presented in Table 5.5, and visualized in Figure 5.4. HCSGC
indicates the results are from the original HCSGC, CMove is for the
Conditional Move implementation, and IFNode is for the IF Node
implementation. Both CMove and IFNode use 256K Bytes as the
tiny page threshold to behave the same as the original HCSGC. Any
regression in the results could represent the overhead introduced by
the tiny page.

As shown in Figure figs. 5.4b, 5.4d, 5.4f and 5.4h, the confidence
intervals of all three configurations are overlapping. Therefore,
we could say the tiny page will not introduce visible performance
degradation. However, we are unable to find a better implementation
between CMove and IFNode since they have the same performance.

66|Results and Discussion

(a) boxplot/avrora (b) errorbar/avrora

(c) boxplot/connected_components (d) errorbar/connected_components

(e) boxplot/H2 (f) errorbar/H2

(g) boxplot/xalan (h) errorbar/xalan

Figure 5.4: Overhead of tiny pages

Results and Discussion |67

5.3 Overall throughput benchmarks
In this part, we will go through all benchmarks with different
configurations shown in Table 4.1 to find the best tiny page threshold
for each benchmark. Then, the results will be analyzed and the
default threshold will be selected. We will also check if there are any
benchmarks getting regressions with our proposal.

5.3.1 JGraphT
We selected the connected_components and maximal_clique
algorithm with the UK dataset to test the performance of the
JGraphT library. Each configuration mentioned in Table 4.1
will be tested in unconstrained, memory‐constrained, and CPU‐
constrained environments. The heap size of the memory‐constrained
environment is set to 512MB, while the other two are set to 1GB.

The results of connected_components are shown in Table
5.6 and visualized in Figure 5.5. In unconstrained environments,
although all thresholds except Tiny32 have overlapping confidence
intervals with the HCSGC, we see the results get unstable and more
than 1% regression starting from Tiny255. We could also find
similar trends in the L1 cache miss rate, as shown in Figure A.1. We
suggest that the benchmark has the possibility of having performance
degradation with a 255B threshold. Therefore, the best value for
connected_components is set to 256 Bytes.

The CPU‐constrained configuration has a different behavior,
where the HCSGC itself has a huge regression (‐17.07%) comparing to
the vanilla ZGC. It reveals that the relocationperformancedegradation
introduced by HCSGC exceeds the locality it gained. As a result, less
relocation leads to higher performance. We could find this from
Figure 5.5f, where a lower threshold got a better throughput.

The results of maximal_clique are shown in Table 5.7 and
visualized in Figure 5.6. Similar to the previous case, the benchmark
gets overlapping results inmost of the configurations. The results start
to be unstable in the Tiny255 config, so we set the best threshold
for maximal_clique to 256 Bytes. In constrained environments, we
see a maximum of 4.56% improvement with memory constraint and
3.19% improvement with CPU constraint.

68|Results and Discussion

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 22709.33 646.98 2.85% 0.00% 22319.00 23087.00
tiny256K 15 22776.00 505.18 2.22% ‐0.29% 22478.97 23085.00
tiny256 15 22694.67 608.53 2.68% 0.06% 22305.98 23033.00
tiny255 15 23254.00 949.97 4.09% ‐2.40% 22738.00 23857.00
tiny192 15 22969.33 424.10 1.85% ‐1.14% 22705.00 23216.00
tiny128 15 23633.33 1556.44 6.59% ‐4.07% 22972.98 24748.00
tiny64 15 23448.67 2145.14 9.15% ‐3.26% 22624.00 25031.05
tiny32 15 30935.33 4749.53 15.35% ‐36.22% 27961.90 33685.05
jdk‐15 15 35065.33 5926.67 16.90% ‐54.41% 31603.92 38645.07

(a) Unconstrained
Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 28163.57 950.20 3.37% 0.00% 27586.66 28776.68
tiny256K 15 26999.23 1371.41 5.08% 4.13% 26093.73 27878.88
tiny256 15 27677.33 759.05 2.74% 1.73% 27229.00 28139.00
tiny255 15 28073.33 1561.43 5.56% 0.32% 27181.98 29063.08
tiny192 15 28389.33 1223.73 4.31% ‐0.80% 27721.00 29163.00
tiny128 15 29337.33 2157.64 7.35% ‐4.17% 28113.97 30697.02
tiny64 15 28284.67 2339.65 8.27% ‐0.43% 27398.00 29901.12
tiny32 15 41506.00 7977.79 19.22% ‐47.37% 37282.00 46737.20
jdk‐15 15 35996.67 5026.47 13.96% ‐27.81% 33278.97 39245.22

(b) Memory‐constrained
Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 45335.00 1746.24 3.85% 0.00% 44303.97 46344.03
tiny256K 15 45486.00 1258.88 2.77% ‐0.33% 44725.97 46197.00
tiny256 15 46427.00 1121.21 2.41% ‐2.41% 45718.98 47017.02
tiny255 15 43617.00 4480.04 10.27% 3.79% 40654.00 45896.05
tiny192 15 44975.00 2720.25 6.05% 0.79% 43171.00 46188.00
tiny128 15 41572.00 5696.64 13.70% 8.30% 38193.97 44874.05
tiny64 15 45525.00 1194.00 2.62% ‐0.42% 44801.00 46198.03
tiny32 15 36468.00 5952.91 16.32% 19.56% 33357.00 40315.12
jdk‐15 15 37598.00 2558.70 6.81% 17.07% 36104.00 39147.03

(c) CPU‐constrained

Table 5.6: Benchmark results of connected_components

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 104943.33 1074.75 1.02% 0.00% 104389.00 105661.02
tiny256K 15 105930.00 1557.88 1.47% ‐0.94% 105008.00 106854.00
tiny256 15 105581.33 877.52 0.83% ‐0.61% 105085.00 106126.03
tiny255 15 106684.00 7709.32 7.23% ‐1.66% 102773.98 111689.08
tiny192 15 106894.67 9454.83 8.84% ‐1.86% 102080.98 113613.00
tiny128 15 108378.00 8296.77 7.66% ‐3.27% 103933.00 113869.10
tiny64 15 110208.67 7854.08 7.13% ‐5.02% 105764.00 115265.03
tiny32 15 135272.67 9591.08 7.09% ‐28.90% 129689.98 141025.00
jdk‐15 15 185240.00 9500.25 5.13% ‐76.51% 179288.85 190610.10

(a) Unconstrained

Table 5.7: Benchmark results of maximal_clique

Results and Discussion |69

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 138656.00 930.11 0.67% 0.00% 138122.00 139257.00
tiny256K 15 135338.67 1522.61 1.13% 2.39% 134461.00 136264.02
tiny256 15 133948.00 1284.04 0.96% 3.40% 133219.95 134742.05
tiny255 15 132333.33 1194.08 0.90% 4.56% 131538.98 132936.02
tiny192 15 132778.00 1371.23 1.03% 4.24% 132034.98 133663.02
tiny128 15 136513.33 1579.94 1.16% 1.55% 135605.93 137484.02
tiny64 15 134714.00 1892.65 1.40% 2.84% 133692.98 135940.00
tiny32 15 153574.67 6072.85 3.95% ‐10.76% 150052.93 157367.10
jdk‐15 15 202871.33 11064.45 5.45% ‐46.31% 196042.98 209076.22

(b) Memory‐constrained
Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 177307.00 2119.11 1.20% 0.00% 175900.98 178222.02
tiny256K 15 178375.00 3246.93 1.82% ‐0.60% 176218.00 180060.00
tiny256 15 181757.00 1468.83 0.81% ‐2.51% 180910.00 182633.00
tiny255 15 171872.22 3637.53 2.12% 3.07% 169968.89 174392.05
tiny192 15 174524.00 7995.86 4.58% 1.57% 169993.00 179577.12
tiny128 15 171645.00 7342.51 4.28% 3.19% 167981.77 176645.02
tiny64 15 174002.00 7954.01 4.57% 1.86% 170015.98 178995.02
tiny32 15 195637.00 5196.44 2.66% ‐10.34% 192624.00 198689.00
jdk‐15 15 231074.00 8275.23 3.58% ‐30.32% 226037.85 235715.10

(c) CPU‐constrained

Table 5.7: Benchmark results of maximal_clique

(a) boxplot/unconstrained (b) errorbar/unconstrained

(c) boxplot/memory‐constrained (d) errorbar/memory‐constrained

Figure 5.5: Benchmark results of connected_components

70|Results and Discussion

(e) boxplot/CPU‐constrained (f) errorbar/CPU‐constrained

Figure 5.5: Benchmark results of connected_components

(a) boxplot/unconstrained (b) errorbar/unconstrained

(c) boxplot/memory‐constrained (d) errorbar/memory‐constrained

(e) boxplot/CPU‐constrained (f) errorbar/CPU‐constrained

Figure 5.6: Benchmark results of maximal_clique

Results and Discussion |71

5.3.2 DaCapo Suite
We selected the following benchmarks in the DaCapo suite to test our
proposal: avrora_large,fop_default,h2_huge,luindex_def
ault, lusearch_large, sunflow_large, andxalan_large. The
H2 benchmark with huge input size requires a larger heap. Therefore,
the heap size of H2 is set to 6GB, while others are set to 1GB.

As discussed in Section 5.1, although the H2 benchmark requires a
large heap, we could not reduce the heap size to constrain thememory.
Thus, we will only test the unconstrained and CPU‐constrained
environment for H2. It also applies to small‐heap benchmarks,
avrora_large, fop_default, and luindex_default, since they
only require a small memory that does not even trigger a single
garbage collection. Therefore, reduce the heap size for these
benchmarks could not create a memory‐constrained environment.
The HCSGC does not get better performance on these benchmarks
either, since the locality cannot be improved without garbage
collection. We only use them to find possible throughput degradation
after introducing tiny pages.

Other benchmarks, the lusearch_large, sunflow_large, and
xalan_large, will also test in the memory‐constrained environ‐
ment. The heap size is set to 512MB.

The results of the H2 benchmark are shown in Table 1 and
visualized in Figure 1. The cache miss rate and results of other
benchmarks are listed and plotted in Section A.2. Similar to the
JGraphT benchmark, the H2 starts to get performance degradation
fromTiny255 configuration, so thebest tiny object threshold forH2 is
256 Bytes. The sunflow_large benchmark gets a ~5% regression for
all thresholds except 256KB. All other benchmarks have overlapping
confidential intervals for all configurations, so we could not find a
suitable threshold for these benchmarks. Since these benchmarks
do not benefit from both HCSGC and tiny pages, a better option is to
turn off both optimizations. We leave it as future work to monitor the
GC statistics during runtime and dynamically enable or disable these
optimizations.

In CPU‐constrained environment, we still get overlapping results
for most of the benchmark. The only improvement we get is in
the sunflow_large benchmark. We get a 0.9% improvement
with Tiny255, Tiny192, and Tiny128 configuration. In memory‐

72|Results and Discussion

Table 5.8: Benchmark results of H2_huge

(a) Unconstrained

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 124261.27 2404.87 1.94% 0.00% 122879.29 125776.33
tiny256K 15 124788.96 1936.29 1.55% ‐0.42% 123698.62 125989.09
tiny256 15 124831.19 1828.58 1.46% ‐0.46% 123827.20 126035.15
tiny255 15 126155.73 1995.13 1.58% ‐1.52% 125062.85 127435.28
tiny192 15 126884.23 2529.78 1.99% ‐2.11% 125495.10 128497.98
tiny128 15 133299.08 1634.89 1.23% ‐7.27% 132381.71 134328.94
tiny64 15 144944.63 2390.78 1.65% ‐16.65% 143546.94 146393.26
tiny32 15 146443.12 2155.44 1.47% ‐17.85% 145287.16 147847.20
jdk‐15 15 175393.85 2007.35 1.14% ‐41.15% 174271.18 176684.50

(b) CPU‐Constrained

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 229930.90 2659.21 1.16% 0.00% 228470.77 231444.57
tiny256K 15 231121.32 1414.91 0.61% ‐0.52% 230312.20 232018.10
tiny256 15 232444.40 3761.91 1.62% ‐1.09% 230604.35 235026.67
tiny255 15 233270.92 2983.87 1.28% ‐1.45% 231497.48 235108.95
tiny192 15 232035.04 2525.84 1.09% ‐0.92% 230415.61 233539.03
tiny128 15 242957.28 1193.78 0.49% ‐5.67% 242214.76 243660.20
tiny64 15 251475.88 1751.05 0.70% ‐9.37% 250496.09 252622.57
tiny32 15 245361.32 2580.07 1.05% ‐6.71% 243997.32 247100.40
jdk‐15 15 213858.16 1545.76 0.72% 6.99% 212889.51 214768.00

(a) boxplot/unconstrained (b) errorbar/unconstrained

(c) boxplot/CPU‐constrained (d) errorbar/CPU‐constrained

Figure 5.7: Benchmark results of H2_huge

Results and Discussion |73

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 10 22130.90 829.41 3.75% 0.00% 21589.84 22557.73
Tiny256 10 21644.80 2268.92 10.48% ‐2.20% 20129.94 22779.10
Tiny192 10 22394.00 1064.42 4.75% 1.19% 21661.29 22857.10
Tiny128 10 22537.30 1059.61 4.70% 1.84% 21839.09 23009.00
ZGC 10 23009.00 910.39 3.96% 3.97% 22415.85 23447.90

(a) critical‐jOPS
Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 10 26126.60 854.41 3.27% 0.00% 25583.40 26556.11
Tiny256 10 26296.70 972.62 3.70% 0.65% 25639.30 26727.00
Tiny192 10 26312.20 1061.73 4.04% 0.71% 25597.60 26783.60
Tiny128 10 26383.50 1336.10 5.06% 0.98% 25496.10 26984.40
ZGC 10 26183.80 1019.07 3.89% 0.22% 25526.40 26641.20

(b) max‐jOPS
Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 10 26571.90 708.97 2.67% 0.00% 26136.30 26963.50
Tiny256 10 27221.60 627.31 2.30% 2.45% 26865.00 27607.01
Tiny192 10 27538.20 823.20 2.99% 3.64% 27011.58 27953.03
Tiny128 10 27163.90 1060.61 3.90% 2.23% 26504.44 27668.40
ZGC 10 26704.40 1033.21 3.87% 0.50% 26024.24 27218.20

(c) HBIR

Table 5.9: Benchmark results of SPECjbb2015

constrained environment, we get similar results to the unconstrained
one.

5.3.3 SPECjbb2015
A single iteration of SPECjbb2015 will last longer than two hours. Only
a subset of the configurations are selected due to time limitations: the
HCSGC, the vanilla ZGC, and tiny page implementationwith 256 Bytes,
192 Bytes, 128 Bytes as the tiny object threshold. All configurations
will run with the composite setting of SPECjbb2015 with 64G heap size
and without any constraints since the benchmark could exhaust the
hardware.

TheSPECjbb reports twometrics,maxjOPS andcriticaljOPS,
corresponding to throughput and latency. We also recorded the HBIR
for each iteration. The results are shown in Table 5.9 and Figure A.10,
higher is better in all cases. Weget a over 3% largerHBIR comparing to
both ZGC and HCSGC. But the confidence intervals of the two metrics
are overlapping, we cannot say whether the tiny page improves the

74|Results and Discussion

overall performance.

5.3.4 Analysis
First, we will analyze benchmarks that do not get improvements, or
even have worse performance with our tiny page implementation.

In most benchmarks that the HCSGC does not get improvements,
our implementation also failed to improve. In this case, all config‐
urations have overlapping confidence intervals. These benchmarks
could be grouped to two categories: (1) small‐heap benchmarks,
the avrora_large, fop_default, and luindex_default, (2)
large‐heap benchmarks, the lusearch_large, xalan_large, and
SPECjbb2015. As described in Section 5.3.2, small‐heap benchmarks
will not trigger garbage collection. HCSGC needs garbage collections
to improve the locality, and our tiny page implementation aims to
optimize the relocation phase of garbage collection, so if no GC
happened, no improvements could be found in both implementations.

If the benchmark requires a large heap but still does not benefit
from HCSGC, a possible reason is that most of the objects in that
benchmark die young. HCSGC could only improve the locality if the
object lives long enough, so the locality optimization will not work for
these benchmarks. In benchmarks such as lusearch_large, the
locality is not improved, but HCSGC does not get worse performance
although it introduces more relocation and fragmentation. It means
the introduced overhead is not large enough to impact the overall
performance. Our tiny page implementation could reduce the
relocation amount and fragmentation, but it is meaningless when
these overheads are indistinguishable. Furthermore, if most objects
die young but heap size is large, the allocation amount is also likely to
be large. Since the tiny page proposal adds an extra overhead in the
object allocation phase, we may even see small regressions in these
benchmarks.

In unconstrained environments, our implementation does not get
better performance than HCSGC. This is reasonable since we aim to
reduce the relocation amount and memory fragmentation, which will
not affect the performance in unconstrained environments. Running
these tests could help us find the threshold that objects starting to get
benefits from locality. For all the benchmarks we tested, 256 Bytes is
the best threshold for the tiny objects.

Results and Discussion |75

Second, we will analyze improvements in the sunflow_large
and maximal_clique benchmark.

Another possible reason for large heap benchmarks which do not
benefit from HCSGC is that the fragmentation introduced by HCSGC
outperforms the locality benefits and lowers the throughput. In the
CPU‐constrained test ofsunflow_large andconnected_components
benchmarks, the HCSGC has the same or worse performance. If
we reduce the relocation amount, we could see an improvement.
The regression of sunflow_large in unconstrained environments
could also be explained, as we reduced a bit locality to trade for
a better relocation performance. It will cause a lower throughput
in unconstrained environments but an improvement in constrained
ones.

The maximal_clique is the ideal benchmark for our implemen‐
tation because the HCSGC gets a huge improvement over ZGC, and
the tiny page could further increase the throughput in constrained
environments. We will analyze it by recording detailed information
about each garbage collection.

5.4 The relocation performance
Lastly, we want to find some relations between the threshold of tiny
pages, the GC status, and the throughput. Since we get performance
improvement in both CPU‐ and memory‐constrained environment of
maximal_clique benchmark, we choose it again for the analysis.

Three different environment configurations are used to show the
GC status under different constraints, named JGraphT 1G, JGraphT
512M, and JGraphT 1G (taskset). 1GB is sufficient for the maximal
clique algorithm to run. Thus, the heap size is set to 1GB to create an
unconstrained environment in the first configuration. It is set to 512M
in the second one to emulate a memory‐constrained environment. In
the last configuration, enoughheap size is provided, but CPU is limited
using the taskset command mentioned in Section 4.1.3.

The result is shown in Table 5.10. The table contains the following
data (from left to right): the tiny object threshold in Bytes, the average
of wall‐clock execution time, count of GC cycles, the proportion of tiny
pages to all pages, and relocation status. In the relocation status part,
Lazy means the Lazy relocation, Full means the Full relocation, and

76|Results and Discussion

Total is the summarize of them. Mutator indicates that the relocation
happened in the worker thread and will compete with mutators, and
GC indicates that it happened in the concurrent GC thread. Count is
measured by relocation operations per second, while Size is relocation
amounts in MBytes per second.

From the results, we could summarize the following points.

• For all three configurations, the total relocation handled by
mutator threads reduces with a lower threshold, which leads to
a higher relocation performance.

• In memory‐constrained environments, the memory fragmenta‐
tion introduced by HCSGC will drastically increase the memory
usage and count of GC cycles. Although ZGC is a mostly
concurrent collector, more GC will increase the system load and
slow down the program. More relocation on the critical pathwill
also result in the same thing. Therefore, we see improvements
in a lower threshold.

• In CPU‐constrained environments, the memory fragmentation
will not increase theGC count. However, in this case, relocations
handled by the concurrent GC thread will compete with the
mutator thread. Thus, we still see improvements when fewer
objects are selected for relocation.

• In unconstrained environments, thememory fragmentationwill
not increase the GC count, and the relocations in GC thread will
not infect the performance either. As a result, a lower threshold
will only cause a poorer locality and a lower throughput.

Results and Discussion |77

Count Size Count Size Count Size Count Size Count Size
JGraphT 1G
262144 59.66 40.2 94.0 83,547 2 170,277 4.2 155,178 5.4 253,824 6.2 155,178 5.4
256 58.47 41.0 89.6 88,255 2 167,267 4 168,973 6.8 255,522 6 168,973 6.8
255 67.09 37.8 10.4 185,208 5 22,527 0 122,685 5 207,735 5 122,694 5
192 65.88 37.4 10.4 185,757 4.6 22,970 0 127,587 5.2 208,727 4.6 127,587 5.2
128 66.74 37.4 10.6 180,762 4.2 24,303 0.2 127,042 5 205,065 4.4 127,042 5
64 81.95 36.6 8.4 117,551 2.4 20,424 0.2 95,981 3.6 137,974 2.6 95,981 3.6
32 83.40 35.2 4.8 123,466 2.6 23,181 0.2 103,024 3 146,647 2.8 103,024 3
0 95.30 34.4 0.0 - 0 10,087 0 49,661 1.8 10,087 0 49,661 1.8

262144 106.83 167.2 89.8 114,123 2.6 311,975 7.8 1,191,542 48 426,097 10.4 1,191,542 48
256 107.76 167.0 81.2 112,344 2.6 312,640 7.8 1,558,428 56 424,984 10.4 1,558,428 56
255 87.31 115.3 21.5 369,727 9.3 19,786 0 125,206 5.8 389,513 9.3 125,206 5.8
192 92.21 111.2 20.8 328,967 8.2 20,236 0 106,601 4.8 349,203 8.2 106,601 4.8
128 93.78 113.0 20.8 322,712 8 17,434 0 111,050 5 340,147 8 111,050 5
64 95.84 106.4 19.4 311,319 7.4 17,350 0 109,256 5.2 328,669 7.4 109,256 5.2
32 108.76 93.0 6.4 205,973 4.2 17,119 0 110,301 3.6 223,092 4.2 110,301 3.6
0 102.26 87.8 0.0 - 0 21,276 0.2 58,434 2.2 21,276 0.2 58,434 2.2

262144 88.59 61.2 94.0 52,086 1 186,966 4.4 98,410 3.6 239,052 5.4 98,410 3.6
256 88.95 60.8 89.2 52,548 1 180,143 4.6 105,329 4 232,692 5.6 105,329 4
255 86.86 54.6 11.8 199,147 4.6 17,143 0 75,589 3 216,290 4.6 75,589 3
192 83.93 54.4 12.2 207,769 5 16,513 0 79,984 3.2 224,282 5 79,984 3.2
128 95.24 53.2 11.4 164,539 3.8 15,441 0 67,816 2.4 179,980 3.8 67,816 2.4
64 93.98 53.6 11.4 168,900 3.8 18,180 0 71,683 2.8 187,080 3.8 71,683 2.8
32 98.21 54.0 3.8 152,594 3 26,101 0.4 74,049 2.2 178,695 3.4 74,049 2.2
0 88.20 48.4 0.0 - 0 31,502 0.2 48,233 1.8 31,502 0.2 48,233 1.8

JGraphT 512M

JGraphT 1G (taskset)

Tiny object
limit (Bytes)

Time (s)
GC

Count
Tiny

page %

Full Total
Mutator Mutator GC Mutator GC

Lazy

Table 5.10: GC status for JGraphT

78|Results and Discussion

Conclusions and Future work | 79

Chapter 6

Conclusions and Future work

Introducing more relocations to objects based on the access pattern
could increase the locality and overall throughput, but with the
degradation of relocation performance. This thesis shows a feasible
way to improve the relocation performance by ignoring larger objects
in the relocation phase. We achieved to reduce more than 40% of the
relocations without affecting the overall throughput. Also, we see a 3‐
5% overall performance improvement when running the benchmark
in constrained environments. The goal of improving the relocation
performance is thus considered to be fulfilled.

From a broader perspective, this project is meaningful for both
application and research purposes. The relocation of reduced HCSGC
can increase the performance in constrained environments, which
means our implementation is able to reduce the power consumption
and also speed up the program in such environments, for example,
embedded devices. Embedded systems providers might want to
utilize this GC for the sake of performance and cost. Also, we run
multiple benchmarks to find the balance between the cache locality
and relocation amount. Thus, this project can be a good reference for
those who develop next‐generation GCs.

Our proposal of tiny pages could not get improvements in most
cases when HCSGC does not. The HCSGC depends on applications
exhibiting stable access patterns on long‐lived objects. If objects
die young, the HCSGC could not get many locality benefits. At the
same time, more short‐lived objects also mean more allocations.
The extra check for tiny pages at the allocation stage may lower the
performance.

80|Conclusions and Future work

As future work, a backing‐off scheme can be implemented to avoid
regression in some cases. An extra check of object survival rate can
be added to the relocation phase. If the survival rate is lower enough,
turn off the HCSGC as well as the tiny page. This will cause all tiny
and small objects to be placed on tiny pages. As proposed before, tiny
and small pages are identical from vanilla JDK’s perspective, so it is
reasonable to do this when HCSGC is turned off.

We also implemented both HCSGC and tiny pages in the newer
version of OpenJDK, namely JDK17. However, the DaCapo benchmark
got around 10% regression in the new version, and some of the
benchmarks even failed to run at all (such as tradesoap and
tradebeans). To keep coherent with previous HCSGC implementation,
we decided to continue using JDK15.

The DaCapo benchmark using reflections to invoke corresponding
programs to run the test, but OpenJDK became more strict in unsafe
operations like this. The latest version of DaCapo was released
more than 10 years ago and it is reasonable that it could not run on
modern platforms. So another future work is to develop a benchmark
that could run in modern versions of JDK, and have a coherent
performance with older versions.

REFERENCES|81

References

[1] A. W. Appel and J. Palsberg, Modern Compiler Implementation
in Java. Cambridge: Cambridge University Press, 2002. ISBN
9780521820608

[2] “HotSpot Virtual Machine Garbage Collection Tuning Guide.”
[Online]. Available: https://docs.oracle.com/en/java/javase/15/
gctuning/index.html

[3] “The Parallel Collector.” [Online]. Available: https://docs.oracle.
com/javase/8/docs/technotes/guides/vm/gctuning/parallel.html

[4] “Concurrent Mark Sweep (CMS) Collector.” [Online].
Available: https://docs.oracle.com/javase/8/docs/technotes/
guides/vm/gctuning/cms.html

[5] P. Lidén and S. Karlsson, “JEP 333: ZGC: A Scalable Low‐Latency
Garbage Collector.” [Online]. Available: https://openjdk.java.net/
jeps/333

[6] C. H. Flood and R. Kennke, “JEP 189: Shenandoah: A Low‐Pause‐
Time Garbage Collector.” [Online]. Available: https://openjdk.
java.net/jeps/189

[7] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z.Wang,
and P. Cheng, “The Garbage Collection Advantage: Improving
Program Locality,” SIGPLAN Not., vol. 39, no. 10, p. 69–80,
Oct. 2004. doi: 10.1145/1035292.1028983. [Online]. Available:
https://doi‐org.focus.lib.kth.se/10.1145/1035292.1028983

[8] A. M. Yang, E. Österlund, and T. Wrigstad, “Improving Program
Locality in the GC Using Hotness,” in Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and

https://docs.oracle.com/en/java/javase/15/gctuning/index.html
https://docs.oracle.com/en/java/javase/15/gctuning/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/parallel.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/parallel.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/cms.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/cms.html
https://openjdk.java.net/jeps/333
https://openjdk.java.net/jeps/333
https://openjdk.java.net/jeps/189
https://openjdk.java.net/jeps/189
https://doi-org.focus.lib.kth.se/10.1145/1035292.1028983

82|REFERENCES

Implementation, ser. PLDI 2020. New York, NY, USA: Association
for Computing Machinery, 2020. doi: 10.1145/3385412.3385977.
ISBN 9781450376136 p. 301–313. [Online]. Available: https:
//doi.org/10.1145/3385412.3385977

[9] W.‐k. Chen, S. Bhansali, T. Chilimbi, X. Gao, and W. Chuang,
“Profile‐Guided Proactive Garbage Collection for Locality
Optimization,” in Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI
’06. New York, NY, USA: Association for Computing Machinery,
2006. doi: 10.1145/1133981.1134021. ISBN 1595933204 p. 332–340.
[Online]. Available: https://doi.org/10.1145/1133981.1134021

[10] “OpenJDK License: GPLv2 with the Classpath Exception.”
[Online]. Available: https://openjdk.java.net/legal/gplv2+ce.html

[11] “OpenJDK ‐ How to contribute.” [Online]. Available: https:
//openjdk.java.net/contribute/

[12] H. Schildt, Java, 6th ed. McGraw Hill Osborne, 2014. ISBN 0‐07‐
180925‐2

[13] S. Oaks, Java performance : the definitive guide, 1st ed. Sebastopol,
California : O’Reilly Media, 2014. ISBN 1‐4493‐6354‐7

[14] “HotSpot Java Virtual Machine Guide.” [Online]. Available: https:
//docs.oracle.com/en/java/javase/15/vm/index.html

[15] “JEP 318: Epsilon: A No‐Op Garbage Collector (Experimental).”
[Online]. Available: https://openjdk.java.net/jeps/318

[16] “The java Command.” [Online]. Available: https://docs.oracle.
com/en/java/javase/15/docs/specs/man/java.html

[17] “openjdk/jdk: JDK main‐line development.” [Online]. Available:
https://github.com/openjdk/jdk

[18] R. Courts, “Improving locality of reference in a garbage‐collecting
memory management system,” Commun. ACM, vol. 31, no. 9,
p. 1128–1138, sep 1988. doi: 10.1145/48529.48536. [Online].
Available: https://doi.org/10.1145/48529.48536

https://doi.org/10.1145/3385412.3385977
https://doi.org/10.1145/3385412.3385977
https://doi.org/10.1145/1133981.1134021
https://openjdk.java.net/legal/gplv2+ce.html
https://openjdk.java.net/contribute/
https://openjdk.java.net/contribute/
https://docs.oracle.com/en/java/javase/15/vm/index.html
https://docs.oracle.com/en/java/javase/15/vm/index.html
https://openjdk.java.net/jeps/318
https://docs.oracle.com/en/java/javase/15/docs/specs/man/java.html
https://docs.oracle.com/en/java/javase/15/docs/specs/man/java.html
https://github.com/openjdk/jdk
https://doi.org/10.1145/48529.48536

REFERENCES|83

[19] M. S. Lam, P. R. Wilson, and T. G. Moher, “Object type directed
garbage collection to improve locality,” in Memory Management,
Y. Bekkers and J. Cohen, Eds. Berlin,Heidelberg: SpringerBerlin
Heidelberg, 1992. ISBN 978‐3‐540‐47315‐2 pp. 404–425.

[20] K. Yotov, T. Roeder, K. Pingali, J. Gunnels, and F. Gustavson,
“An experimental comparison of cache‐oblivious and cache‐
conscious programs,” in Proceedings of the Nineteenth Annual ACM
Symposium on Parallel Algorithms and Architectures, ser. SPAA ’07.
New York, NY, USA: Association for Computing Machinery, 2007.
doi: 10.1145/1248377.1248394. ISBN 9781595936677 p. 93–104.
[Online]. Available: https://doi.org/10.1145/1248377.1248394

[21] M. Heinrichs, “Java and the modern CPU, Part
1: Memory and the cache hierarchy.” [Online].
Available: https://blogs.oracle.com/javamagazine/
java‐and‐the‐modern‐cpu‐part‐1‐memory‐and‐the‐cache‐hierarchy

[22] “ Software Optimization Guide for AMD Family 17h Processors.”
[Online]. Available: https://developer.amd.com/wordpress/
media/2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf

[23] “ Intel® 64 and IA‐32 Architectures Optimization
Reference Manual.” [Online]. Available: https:
//software.intel.com/content/www/us/en/develop/download/
intel‐64‐and‐ia‐32‐architectures‐optimization‐reference‐manual.
html

[24] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann, “The dacapo benchmarks:
Java benchmarking development and analysis,” in Proceedings
of the 21st Annual ACM SIGPLAN Conference on ObjectOriented
Programming Systems, Languages, and Applications, ser. OOPSLA
’06. New York, NY, USA: Association for Computing Machinery,
2006. doi: 10.1145/1167473.1167488. ISBN 1595933484 p. 169–190.
[Online]. Available: https://doi.org/10.1145/1167473.1167488

[25] “JGraphT: a Java library of graph theory data structures and
algorithms.” [Online]. Available: https://jgrapht.org/

https://doi.org/10.1145/1248377.1248394
https://blogs.oracle.com/javamagazine/java-and-the-modern-cpu-part-1-memory-and-the-cache-hierarchy
https://blogs.oracle.com/javamagazine/java-and-the-modern-cpu-part-1-memory-and-the-cache-hierarchy
https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf
https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
https://doi.org/10.1145/1167473.1167488
https://jgrapht.org/

84|REFERENCES

[26] R. Samudrala and J. Moult, “A graph‐theoretic algorithm for
comparative modeling of protein structure11edited by f. cohen,”
Journal ofMolecular Biology, vol. 279, no. 1, pp. 287–302, 1998. doi:
https://doi.org/10.1006/jmbi.1998.1689. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0022283698916898

[27] J. Hopcroft and R. Tarjan, “Algorithm 447: Efficient algorithms
for graph manipulation,” Commun. ACM, vol. 16, no. 6, p. 372–
378, Jun. 1973. doi: 10.1145/362248.362272. [Online]. Available:
https://doi.org/10.1145/362248.362272

[28] P. Boldi and S. Vigna, “TheWebGraph framework I: Compression
techniques,” in Proc. of the Thirteenth International WorldWideWeb
Conference (WWW 2004). Manhattan, USA: ACM Press, 2004, pp.
595–601.

[29] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label prop‐
agation: A multiresolution coordinate‐free ordering for com‐
pressing social networks,” in Proceedings of the 20th international
conference on World Wide Web, S. Srinivasan, K. Ramamritham,
A. Kumar, M. P. Ravindra, E. Bertino, and R. Kumar, Eds. ACM
Press, 2011, pp. 587–596.

[30] A. M. Yang and T. Wrigstad, “TobiasWrigstad/pldi2020‐artefact.”
[Online]. Available: https://github.com/TobiasWrigstad/
pldi2020‐artefact

[31] “ Standard Performance Evaluation Corporation: SPECjbb® 2015.”
[Online]. Available: https://www.spec.org/jbb2015/

[32] “SPECjbb2015 Benchmark Design Document.” [Online].
Available: https://www.spec.org/jbb2015/docs/designdocument.
pdf

https://www.sciencedirect.com/science/article/pii/S0022283698916898
https://www.sciencedirect.com/science/article/pii/S0022283698916898
https://doi.org/10.1145/362248.362272
https://github.com/TobiasWrigstad/pldi2020-artefact
https://github.com/TobiasWrigstad/pldi2020-artefact
https://www.spec.org/jbb2015/
https://www.spec.org/jbb2015/docs/designdocument.pdf
https://www.spec.org/jbb2015/docs/designdocument.pdf

Appendix A: Extra results | 85

Appendix A

Extra results

A.1 JGraphT
Cache miss rate data of JGraphT benchmark is presented in this part.
The data is collected with perf stat e L1dcacheloads,
L1dcacheloadmisses,LLCloads,LLCloadmisses, and
cache miss rate is calculated with Equation A.1.

cache_miss_rate =
cache_misses

cache_loads
× 100% (A.1)

The cache miss rate of connected_components is presented in
Table A.1 and visualized in Figure A.1.

The cache miss rate of maximal_clique is presented in Table A.2
and visualized in Figure A.2.

A.2 DaCapo
The cache miss rate of H2_huge benchmark is presented in Table
A.3 and Figure A.3. Results of other benchmarks in DaCapo suite are
presented in Tables A.4 to A.9 and Figures A.4 to A.9.

A.3 SPECjbb2015
The benchmark results of SPECjbb2015 are plotted in Figure A.10.

86|Appendix A: Extra results

Table A.1: Cache miss rate in connected_components

(a) L1 cache miss rate

Config N Mean Standard Deviation Relative Standard Deviation Change CI Lower CI Upper

HCSGC 15 2.61 0.17 6.32% 0.00% 2.52 2.71
tiny256K 15 2.55 0.21 8.32% ‐2.28% 2.42 2.68
tiny256 15 2.58 0.22 8.53% ‐1.36% 2.44 2.71
tiny255 15 2.57 0.23 8.98% ‐1.56% 2.44 2.72
tiny192 15 2.55 0.19 7.39% ‐2.46% 2.43 2.66
tiny128 15 2.57 0.37 14.27% ‐1.68% 2.39 2.82
tiny64 15 2.60 0.38 14.59% ‐0.50% 2.42 2.87
tiny32 15 3.23 0.39 12.01% 23.70% 3.04 3.50
jdk‐15 15 3.54 0.20 5.78% 35.41% 3.41 3.66

(b) LLC cache miss rate

Config N Mean Standard Deviation Relative Standard Deviation Change CI Lower CI Upper

HCSGC 15 49.21 1.24 2.52% 0.00% 48.52 49.95
tiny256K 15 49.18 1.91 3.87% ‐0.06% 48.03 50.30
tiny256 15 49.09 0.93 1.89% ‐0.23% 48.55 49.68
tiny255 15 51.00 3.27 6.41% 3.64% 49.28 53.13
tiny192 15 49.91 0.92 1.84% 1.43% 49.39 50.46
tiny128 15 50.93 2.85 5.60% 3.51% 49.50 52.82
tiny64 15 49.46 3.27 6.60% 0.51% 47.98 51.71
tiny32 15 54.95 9.78 17.80% 11.66% 49.01 60.64
jdk‐15 15 71.50 4.30 6.01% 45.31% 68.99 74.03

(a) boxplot/L1 miss rate (b) errorbar/L1 miss rate

(c) boxplot/LLC miss rate (d) errorbar/LLC miss rate

Figure A.1: Cache miss rate in connected_components

Appendix A: Extra results | 87

Table A.2: Cache miss rate in maximal_clique

(a) L1 cache miss rate

Config N Mean Standard Deviation Relative Standard Deviation Change CI Lower CI Upper

HCSGC 15 3.75 0.10 2.71% 0.00% 3.69 3.81
tiny256K 15 3.73 0.09 2.29% ‐0.52% 3.68 3.78
tiny256 15 3.79 0.08 2.11% 0.97% 3.74 3.83
tiny255 15 3.85 0.20 5.32% 2.79% 3.74 3.99
tiny192 15 3.86 0.23 6.03% 2.91% 3.73 4.01
tiny128 15 3.92 0.22 5.67% 4.44% 3.80 4.06
tiny64 15 3.97 0.28 7.17% 5.87% 3.82 4.16
tiny32 15 5.04 0.25 4.88% 34.53% 4.90 5.19
jdk‐15 15 6.75 0.31 4.52% 80.05% 6.57 6.93

(b) LLC cache miss rate

Config N Mean Standard Deviation Relative Standard Deviation Change CI Lower CI Upper

HCSGC 15 27.75 0.81 2.90% 0.00% 27.28 28.25
tiny256K 15 27.29 1.21 4.43% ‐1.66% 26.56 28.00
tiny256 15 27.53 0.70 2.54% 0.80% 27.11 27.94
tiny255 15 27.75 2.30 8.27% 0.00% 26.51 29.21
tiny192 15 27.91 2.46 8.81% 0.58% 26.54 29.49
tiny128 15 27.83 2.03 7.30% 0.27% 26.68 29.11
tiny64 15 28.05 2.44 8.70% 1.08% 26.71 29.58
tiny32 15 28.23 1.67 5.93% 1.71% 27.23 29.24
jdk‐15 15 32.19 1.05 3.25% 15.99% 31.53 32.78

(a) boxplot/L1 miss rate (b) errorbar/L1 miss rate

(c) boxplot/LLC miss rate (d) errorbar/LLC miss rate

Figure A.2: Cache miss rate in connected_components

88|Appendix A: Extra results

Table A.3: Cache miss rate of H2_huge

(a) L1 cache miss rate

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 2.69 0.13 4.87% 0.00% 2.61 2.77
tiny256K 15 2.75 0.16 5.78% ‐2.56% 2.66 2.85
tiny256 15 2.73 0.14 5.30% ‐1.69% 2.65 2.82
tiny255 15 2.66 0.08 3.14% 0.84% 2.62 2.72
tiny192 15 2.68 0.13 4.70% 0.11% 2.61 2.76
tiny128 15 2.82 0.14 5.02% ‐4.84% 2.74 2.91
tiny64 15 2.91 0.17 5.90% ‐8.49% 2.82 3.02
tiny32 15 2.96 0.18 5.97% ‐10.08% 2.85 3.06
jdk‐15 15 3.31 0.07 2.20% ‐23.33% 3.27 3.35

(b) CPU‐Constrained

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 58.14 0.72 1.24% 0.00% 57.70 58.56
tiny256K 15 57.68 0.83 1.43% 0.79% 57.21 58.21
tiny256 15 57.82 0.55 0.95% 0.54% 57.51 58.16
tiny255 15 57.86 0.47 0.80% 0.47% 57.61 58.16
tiny192 15 57.74 0.58 1.00% 0.68% 57.40 58.09
tiny128 15 57.71 0.71 1.24% 0.73% 57.28 58.14
tiny64 15 56.38 0.76 1.34% 3.02% 55.91 56.81
tiny32 15 56.79 0.68 1.20% 2.31% 56.40 57.22
jdk‐15 15 60.06 0.80 1.33% ‐3.31% 59.58 60.53

(a) boxplot/L1 miss rate (b) errorbar/L1 miss rate

(c) boxplot/LLC miss rate (d) errorbar/LLC miss rate

Figure A.3: Cache miss rate of H2_huge

Appendix A: Extra results | 89

Table A.4: Benchmark results of avrora_large

(a) Unconstrained

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 34832.71 479.83 1.38% 0.00% 34543.31 35118.96
tiny256K 15 34789.61 502.72 1.45% 0.12% 34504.44 35095.75
tiny256 15 34874.18 402.64 1.15% ‐0.12% 34654.81 35143.10
tiny255 15 34878.65 445.90 1.28% ‐0.13% 34619.25 35148.53
tiny192 15 34870.61 450.66 1.29% ‐0.11% 34590.41 35121.00
tiny128 15 34941.09 421.57 1.21% ‐0.31% 34691.04 35202.60
tiny64 15 34966.29 355.43 1.02% ‐0.38% 34750.37 35175.12
tiny32 15 34913.54 404.48 1.16% ‐0.23% 34674.78 35159.16
jdk‐15 15 34804.11 362.06 1.04% 0.08% 34583.52 35016.66

(b) CPU‐Constrained

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 43664.13 886.41 2.03% 0.00% 43109.32 44128.83
tiny256K 15 43922.03 934.01 2.13% ‐0.59% 43399.58 44493.89
tiny256 15 43499.89 783.94 1.80% 0.38% 42955.81 43869.81
tiny255 15 44042.13 519.26 1.18% ‐0.87% 43753.22 44361.76
tiny192 15 43871.45 1155.14 2.63% ‐0.47% 43135.38 44508.42
tiny128 15 43748.44 805.24 1.84% ‐0.19% 43298.06 44236.90
tiny64 15 43693.20 1265.40 2.90% ‐0.07% 42958.33 44445.15
tiny32 15 44429.16 1473.13 3.32% ‐1.75% 43558.25 45262.33
jdk‐15 15 43480.42 1460.16 3.36% 0.42% 42670.94 44370.31

(a) boxplot/Unconstrained (b) errorbar/Unconstrained

(c) boxplot/CPU‐constrained (d) errorbar/CPU‐constrained

Figure A.4: Benchmark results of avrora_large

90|Appendix A: Extra results

Table A.5: Benchmark results of fop_default

(a) Unconstrained

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 537.41 22.61 4.21% 0.00% 524.14 551.15
tiny256K 15 527.30 24.12 4.57% 1.88% 513.17 542.62
tiny256 15 525.18 16.90 3.22% 2.28% 515.29 535.48
tiny255 15 526.24 20.22 3.84% 2.08% 514.33 538.42
tiny192 15 526.61 18.27 3.47% 2.01% 516.33 538.14
tiny128 15 522.27 21.60 4.14% 2.82% 508.82 534.76
tiny64 15 527.17 21.25 4.03% 1.90% 514.16 539.28
tiny32 15 529.19 22.17 4.19% 1.53% 515.85 542.15
jdk‐15 15 523.78 20.35 3.89% 2.54% 510.98 535.45

(b) CPU‐Constrained

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 949.12 20.88 2.20% 0.00% 936.08 960.50
tiny256K 15 955.99 22.53 2.36% ‐0.72% 942.86 969.46
tiny256 15 947.18 25.37 2.68% 0.20% 931.34 960.86
tiny255 15 943.46 21.65 2.29% 0.60% 930.51 955.94
tiny192 15 938.81 13.45 1.43% 1.09% 930.73 946.38
tiny128 15 948.43 25.30 2.67% 0.07% 933.23 963.10
tiny64 15 955.98 21.94 2.29% ‐0.72% 943.12 968.78
tiny32 15 947.84 16.41 1.73% 0.13% 938.63 957.78
jdk‐15 15 939.06 23.45 2.50% 1.06% 927.31 954.25

(a) boxplot/Unconstrained (b) errorbar/Unconstrained

(c) boxplot/CPU‐constrained (d) errorbar/CPU‐constrained

Figure A.5: Benchmark results of fop_default

Appendix A: Extra results | 91

Table A.6: Benchmark results of luindex_default

(a) Unconstrained

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 939.39 12.02 1.28% 0.00% 931.78 946.10
tiny256K 15 957.54 49.27 5.15% ‐1.93% 935.21 992.76
tiny256 15 957.07 44.00 4.60% ‐1.88% 938.12 988.11
tiny255 15 954.11 43.54 4.56% ‐1.57% 937.22 984.98
tiny192 15 980.27 86.13 8.79% ‐4.35% 937.09 1036.00
tiny128 15 960.95 52.55 5.47% ‐2.29% 936.45 997.05
tiny64 15 938.61 11.62 1.24% 0.08% 931.28 945.29
tiny32 15 962.29 61.50 6.39% ‐2.44% 935.87 1006.92
jdk‐15 15 942.11 32.64 3.46% ‐0.29% 928.93 965.33

(b) CPU‐Constrained

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 1233.48 40.57 3.29% 0.00% 1215.20 1260.82
tiny256K 15 1245.34 33.69 2.71% ‐0.96% 1227.36 1266.79
tiny256 15 1238.76 25.35 2.05% ‐0.43% 1224.46 1253.96
tiny255 15 1245.23 60.43 4.85% ‐0.95% 1214.49 1286.01
tiny192 15 1249.24 60.71 4.86% ‐1.28% 1224.34 1289.89
tiny128 15 1235.46 34.18 2.77% ‐0.16% 1220.20 1258.14
tiny64 15 1224.41 17.30 1.41% 0.74% 1214.93 1235.28
tiny32 15 1234.34 19.56 1.58% ‐0.07% 1222.97 1245.89
jdk‐15 15 1245.65 45.75 3.67% ‐0.99% 1223.17 1275.79

(a) boxplot/Unconstrained (b) errorbar/Unconstrained

(c) boxplot/CPU‐constrained (d) errorbar/CPU‐constrained

Figure A.6: Benchmark results of luindex_default

92|Appendix A: Extra results

Table A.7: Benchmark results of lusearch_large

(a) Unconstrained

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 2279.39 129.78 5.69% 0.00% 2196.18 2350.34
tiny256K 15 2263.16 127.99 5.66% 0.71% 2181.62 2336.69
tiny256 15 2314.56 114.69 4.96% ‐1.54% 2242.48 2379.89
tiny255 15 2298.29 88.40 3.85% ‐0.83% 2241.73 2346.55
tiny192 15 2299.17 91.91 4.00% ‐0.87% 2240.06 2350.87
tiny128 15 2300.16 125.49 5.46% ‐0.91% 2220.91 2369.42
tiny64 15 2312.69 94.01 4.06% ‐1.46% 2254.89 2366.82
tiny32 15 2305.81 110.97 4.81% ‐1.16% 2235.73 2367.46
jdk‐15 15 2257.63 134.60 5.96% 0.95% 2172.84 2333.87

(b) Memory‐Constrained

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 2458.48 208.83 8.49% 0.00% 2321.00 2544.21
tiny256K 15 2505.14 231.94 9.26% ‐1.90% 2351.30 2599.17
tiny256 15 2556.71 174.72 6.83% ‐4.00% 2443.64 2641.49
tiny255 15 2523.61 102.22 4.05% ‐2.65% 2457.32 2576.17
tiny192 15 2541.35 89.54 3.52% ‐3.37% 2482.72 2586.36
tiny128 15 2557.63 75.37 2.95% ‐4.03% 2516.33 2604.58
tiny64 15 2628.57 197.18 7.50% ‐6.92% 2531.66 2759.46
tiny32 15 2598.71 55.90 2.15% ‐5.70% 2566.08 2630.74
jdk‐15 15 2513.20 65.85 2.62% ‐2.23% 2479.79 2556.20

(c) CPU‐Constrained

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 5830.38 89.85 1.54% 0.00% 5776.93 5881.21
tiny256K 15 5760.51 73.58 1.28% 1.20% 5719.64 5805.28
tiny256 15 5840.52 115.64 1.98% ‐0.17% 5773.42 5907.35
tiny255 15 5814.81 112.27 1.93% 0.27% 5746.91 5878.92
tiny192 15 5889.50 139.39 2.37% ‐1.01% 5810.34 5972.85
tiny128 15 5811.27 86.21 1.48% 0.33% 5761.49 5862.04
tiny64 15 5831.46 90.41 1.55% ‐0.02% 5779.37 5885.53
tiny32 15 5922.05 130.55 2.20% ‐1.57% 5846.05 5998.03
jdk‐15 15 5666.40 108.78 1.92% 2.81% 5610.27 5736.61

Appendix A: Extra results | 93

(a) boxplot/Unconstrained (b) errorbar/Unconstrained

(c) boxplot/Memory‐constrained (d) errorbar/Memory‐constrained

(e) boxplot/CPU‐constrained (f) errorbar/CPU‐constrained

Figure A.7: Benchmark results of lusearch_large

94|Appendix A: Extra results

Table A.8: Benchmark results of sunflow_large

(a) Unconstrained

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 6235.58 213.54 3.42% 0.00% 6105.78 6357.86
tiny256K 15 6069.13 181.46 2.99% 2.67% 5960.36 6173.15
tiny256 15 6666.34 269.35 4.04% ‐6.91% 6498.80 6823.64
tiny255 15 6666.65 254.42 3.82% ‐6.91% 6512.74 6812.64
tiny192 15 6629.27 265.44 4.00% ‐6.31% 6466.16 6780.14
tiny128 15 6728.73 295.89 4.40% ‐7.91% 6546.48 6895.57
tiny64 15 6881.89 251.48 3.65% ‐10.36% 6723.72 7028.29
tiny32 15 6446.16 247.41 3.84% ‐3.38% 6295.01 6590.45
jdk‐15 15 6221.23 237.29 3.81% 0.23% 6073.47 6356.75

(b) Memory‐Constrained

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 7577.34 94.70 1.25% 0.00% 7521.79 7634.54
tiny256K 15 7376.72 110.25 1.49% 2.65% 7313.01 7441.68
tiny256 15 8045.99 164.34 2.04% ‐6.18% 7947.04 8149.68
tiny255 15 8025.04 156.96 1.96% ‐5.91% 7931.94 8119.36
tiny192 15 8036.42 118.99 1.48% ‐6.06% 7968.72 8107.65
tiny128 15 8169.16 211.83 2.59% ‐7.81% 8061.37 8303.47
tiny64 15 8360.92 179.71 2.15% ‐10.34% 8260.47 8469.43
tiny32 15 7786.68 89.91 1.15% ‐2.76% 7732.91 7836.55
jdk‐15 15 7420.15 121.77 1.64% 2.07% 7347.47 7488.85

(c) CPU‐Constrained

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 17065.93 90.87 0.53% 0.00% 17013.01 17120.43
tiny256K 15 17108.02 98.24 0.57% ‐0.25% 17049.83 17164.68
tiny256 15 17144.11 77.39 0.45% ‐0.46% 17096.89 17187.13
tiny255 15 16909.26 103.94 0.61% 0.92% 16848.92 16969.56
tiny192 15 16907.23 110.82 0.66% 0.93% 16846.80 16976.02
tiny128 15 16907.08 129.76 0.77% 0.93% 16837.25 16987.83
tiny64 15 16937.67 124.11 0.73% 0.75% 16864.48 17010.28
tiny32 15 17195.26 98.10 0.57% ‐0.76% 17142.20 17254.68
jdk‐15 15 17139.77 119.66 0.70% ‐0.43% 17074.68 17216.11

Appendix A: Extra results | 95

(a) boxplot/Unconstrained (b) errorbar/Unconstrained

(c) boxplot/Memory‐constrained (d) errorbar/Memory‐constrained

(e) boxplot/CPU‐constrained (f) errorbar/CPU‐constrained

Figure A.8: Benchmark results of sunflow_large

96|Appendix A: Extra results

Table A.9: Benchmark results of xalan_large

(a) Unconstrained

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 14867.74 564.01 3.79% 0.00% 14508.66 15204.73
tiny256K 15 14892.34 561.47 3.77% ‐0.17% 14547.70 15213.06
tiny256 15 15032.89 493.88 3.29% ‐1.11% 14728.54 15310.49
tiny255 15 15019.91 515.65 3.43% ‐1.02% 14697.24 15310.36
tiny192 15 15079.81 460.62 3.05% ‐1.43% 14801.24 15363.23
tiny128 15 14964.86 533.50 3.57% ‐0.65% 14636.75 15269.01
tiny64 15 15057.13 416.99 2.77% ‐1.27% 14797.92 15301.10
tiny32 15 15287.77 588.10 3.85% ‐2.83% 14919.46 15619.54
jdk‐15 15 14867.64 449.13 3.02% 0.00% 14594.98 15127.14

(b) Memory‐Constrained

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 17183.80 356.32 2.07% 0.00% 16968.22 17409.31
tiny256K 15 17055.09 563.00 3.30% 0.75% 16723.63 17369.04
tiny256 15 17424.24 369.86 2.12% ‐1.40% 17200.29 17669.64
tiny255 15 17353.28 365.88 2.11% ‐0.99% 17117.45 17568.11
tiny192 15 17247.15 285.66 1.66% ‐0.37% 17053.92 17403.73
tiny128 15 17351.05 632.38 3.64% ‐0.97% 16943.00 17715.62
tiny64 15 17680.03 635.10 3.59% ‐2.89% 17300.80 18132.79
tiny32 15 17669.64 619.12 3.50% ‐2.83% 17294.81 18109.83
jdk‐15 15 16620.41 307.48 1.85% 3.28% 16394.79 16797.02

(c) CPU‐Constrained

Config N Mean Standard Deviation Relative Standard Deviation Performance CI Lower CI Upper

HCSGC 15 39315.81 504.89 1.28% 0.00% 39000.59 39590.72
tiny256K 15 39683.28 629.87 1.59% ‐0.93% 39291.26 40034.57
tiny256 15 39627.86 523.52 1.32% ‐0.79% 39318.57 39933.88
tiny255 15 39267.89 1193.91 3.04% 0.12% 38583.96 39989.11
tiny192 15 40218.55 948.78 2.36% ‐2.30% 39670.71 40788.70
tiny128 15 39811.07 739.42 1.86% ‐1.26% 39429.45 40302.15
tiny64 15 39868.42 688.59 1.73% ‐1.41% 39449.06 40255.63
tiny32 15 39896.46 1012.56 2.54% ‐1.48% 39339.35 40529.33
jdk‐15 15 40116.31 873.60 2.18% ‐2.04% 39644.10 40671.27

Appendix A: Extra results | 97

(a) boxplot/Unconstrained (b) errorbar/Unconstrained

(c) boxplot/Memory‐constrained (d) errorbar/Memory‐constrained

(e) boxplot/CPU‐constrained (f) errorbar/CPU‐constrained

Figure A.9: Benchmark results of xalan_large

98|Appendix A: Extra results

(a) boxplot/critical‐jOPS (b) errorbar/critical‐jOPS

(c) boxplot/max‐jOPS (d) errorbar/max‐jOPS

(e) boxplot/HBIR (f) errorbar/HBIR

Figure A.10: Benchmark results of SPECjbb2015

For DIVA
{
”Author1”: {

”Last name”: ”Yu”,
”First name”: ”Jinyu”,
”E-mail”: ”jinyuy@kth.se”,
”ORCiD”: ”0000-0002-3532-2160”,
”organisation”: {”L1”: ”School of Electrical Engineering and Computer Science ”,

}
},

”Degree”: {”Educational program”: ”Master’s Programme, Embedded Systems, 120 credits”},
”Title”: {

”Main title”: ”Improving relocation performance in ZGC by identifying the size of small objects ”,
”Language”: ”eng” },

”Alternative title”: {
”Main title”: ”Förbättrad omplaceringsprestanda i ZGC genom att identifiera storleken på små objekt”,
”Language”: ”swe”

},
”Supervisor1”: {

”Last name”: ”Wrigstad”,
”First name”: ”Tobias”,
”E-mail”: ”tobias.wrigstad@it.uu.se”,
”Other organisation”: ”Uppsala University, Department of Information Technology”}

},
”Supervisor2”: {

”Last name”: ”Lidén”,
”First name”: ”Per”,
”E-mail”: ”per.liden@oracle.com”,
”Other organisation”: ”Oracle”}

},
”Supervisor3”: {

”Last name”: ”Österlund”,
”First name”: ”Erik”,
”E-mail”: ”erik.osterlund@oracle.com”,
”Other organisation”: ”Oracle”}

},
”Supervisor4”: {

”Last name”: ”Thilakasiri”,
”First name”: ”Thilanka”,
”E-mail”: ”thilanka@kth.se”,
”organisation”: {”L1”: ”School of Electrical Engineering and Computer Science ”,

”L2”: ”Division of electronics and embedded systems” }
},

”Examiner1”: {
”Last name”: ”Becker”,
”First name”: ”Matthias”,
”E-mail”: ”mabecker@kth.se”,
”organisation”: {”L1”: ”School of Electrical Engineering and Computer Science ”,

”L2”: ”Division of electronics and embedded systems” }
},

”Cooperation”: { ”Partner_name”: ”Oracle”},
”Other information”: {
”Year”: ”2022”, ”Number of pages”: ”xv,99”}
}

	Introduction
	Problem and Purpose
	Goals
	Scope
	Ethics and Sustainability
	Structure of the thesis

	Background
	OpenJDK
	The Interpreter and JIT Compiler in OpenJDK
	Different Garbage Collectors in OpenJDK

	Garbage Collection and Object Allocation
	Generational Heap Space
	Thread Local Allocation Buffer

	The Z Garbage Collector
	The HCSGC
	Related works

	Design and Implementation of Object Size Identification
	Object Size and Locality
	Locality inside one object
	Locality between objects
	Moving objects to improve locality
	Relocation in ZGC and HCSGC

	Relocation Performance Improvement
	Reduce the memory fragmentation
	Reduce the relocation amount
	The Tiny pages

	Adding a Page Size Class
	The Implementation of Allocation
	Java Interpreter
	C1 Compiler
	C2 Compiler

	The Implementation of Relocation

	Evaluation Methodology
	Measuring Method
	Record GC status
	Measure overall throughput
	Common configurations

	Tiny page threshold
	Benchmark software
	Synthetic benchmark
	DaCapo Suite
	JGraphT
	SPECjbb2015

	Machines to Collect Data
	Evaluation Design

	Results and Discussion
	Comparison of size identifying methods
	The overhead of tiny pages
	Overall throughput benchmarks
	JGraphT
	DaCapo Suite
	SPECjbb2015
	Analysis

	The relocation performance

	Conclusions and Future work
	References
	Extra results
	JGraphT
	DaCapo
	SPECjbb2015

