
External Uniqueness

Tobias Wrigstad a,∗ Dave Clarke b

aDSV Stockholm University/Royal Institute of Technology, Sweden
bCWI, The Netherlands

Abstract

External uniqueness is a novel form of unique pointers that fit more natural with
object-oriented programming. External uniqueness enforces the structural property
that a unique pointer is a dominating node to the aggregate it references—there may
be no other pointer from outside the aggregate to objects in it in the rest of the
system. This paper completes previous work by the authors (Clarke and Wrigstad,
ECOOP 2003) with the full semantics of the Joline language and proofs of the
structural invariants.

Key words: Alias Management, Ownership, Uniqueness, Object-Oriented
Programming

1 Introduction

The two traditional approaches to adding unique references to object-oriented
programs [1,2] are flawed. Not only do they provide only shallow unique-
ness, in the sense that a unique object’s representation can be arbitrarily
shared, but the mechanisms used to enable uniqueness in a modular fashion—
class-level annotations and method-level annotations—break abstraction: as
software evolves, programs which use uniqueness are forced to change their
interfaces when purely internal implementation changes are made.

Combining uniqueness with a system that provides strong encapsulation, such
as Ownership Types [3,4,5] can overcome the first problem as such systems

∗ Corresponding author. Address: DSV Stockholm University/Royal Institute of
Technology, Forum 100, 164 60 Kista, SWEDEN

Email addresses: tobias@dsv.su.se, dave.clarke@cwi.nl (Dave Clarke).

Preprint submitted to Elsevier Science 29th May 2006

provide a stronger notion of aggregate. Two examples of systems using owner-
ship and uniqueness are AliasJava [6] and SafeJava [7]. Sadly, these languages
both suffer from the abstraction problem inherent in traditional uniqueness.

In previous work [8], we introduced the notion of external uniqueness. An
externally unique pointer is the only pointer to an aggregate visible outside
the aggregate itself. In the system we proposed, an externally unique pointer
cannot be used to call methods or access fields. The only way to dereference a
unique pointer and access the aggregate’s internals is to temporarily convert it
into a regular non-unique pointer for a specific scope. Consequently, while the
externally unique pointer is in place, any internal alias of it will be invisible
outside the aggregate and therefore, we conclude that external uniqueness
is not weaker that regular uniqueness. External uniqueness does not suffer
from problems with breaking abstraction and is to our mind more suitable for
object-oriented systems than traditional uniqueness.

In this paper, we extend our previous work on external uniqueness with the
full semantics of our Joline language that sports externally unique pointers,
as well as proof that externally unique pointers are dominating edges, the
graph-theoretic property of and structural invariant of our proposal.

Outline In Section 2, we discuss the problems of adding uniqueness to
object-oriented programming languages. In Section 3 we introduce ownership-
types to set the scene for Section 4 which introduces external uniqueness.
Section 5 presents the Joline language and Section 6 discusses its soundness.
Section 7 discusses related work and Section 8 concludes.

2 Adding Uniqueness To OOPLs

Uniqueness is a simple but powerful concept. Basically, a reference annotated
with a unique keyword pointing to some object o is the only reference in the
entire system pointing to o. Uniqueness gives powerful reasoning guarantees—
for example, the full effects of updating and object is visible, and the (local)
state of the object pointed to by a unique variable v will remain unchanged
when evaluating a statement that does not explicitly mention v. This is use-
ful in for example specifications when constructing type systems. The sys-
tems using uniqueness are many and its benefits have been described else-
where [9,1,2,10,11,6,12,8,13,14].

A study by Noble and Potanin [15] suggests that uniqueness as a concept fits
well with the current ways of constructing object-oriented software: inspection
of heap dumps of running programs from the Purdue Benchmark Suite has

2

shown that as much as 85% of all objects are uniquely referenced in a pro-
gram. This study is optimistic, as uniqueness violations could occur in-between
the heap dumps and this go undetected by the analysis. However, more fine-
grained, less optimistic studies of smaller programs have shown similar results,
suggesting that Noble and Potanin’s optimistic results are correct. All in all,
it would seem that we stand to gain from adding support for unique point-
ers in object-oriented programming languages. However, this is not entirely
straight-forward.

In short, there are three (closely related) problems with adding uniqueness to
object-oriented languages:

(1) the implicit destruction of unique receivers,
(2) how to restrict a method’s use of its receiver to allow it to be automati-

cally reinstated after a call, and
(3) how to make sure that a constructor returns a unique reference.

As is visible from the above list, all problems are related to dealing with
this. Different approaches in the literature reflect the treatment of this by
annotations on a class’ interface in two ways. The annotations are necessary
to achieve modular checking of the uniqueness invariant and are either at
class-level or method level:

Via class annotation Classes are divided into two kinds, those whose in-
stances may assign this internally, and those whose instances may not.
Only instances of the latter may be referenced uniquely [1].

Via method annotation Methods are annotated to indicate that they may
consume this [9,2]. Calling such a method requires that its target be de-
structively read (or equivalent, in the presence of an effective uniqueness
scheme).

We now detail the description of these approaches to show how they both
create a problem with abstraction in the presence of evolving code.

2.1 Class-level Annotations

Class-level uniqueness annotations, proposed by Minsky [1] in Eiffel∗, deco-
rates class declarations and controls whether instances of a particular class
can or cannot be uniquely referenced. In the example in Figure 1, a class
Server is annotated with the uniqueness keyword allowing its instances to be
uniquely referenced. The unique annotation requires that all methods in the
server class are anonymous (do not capture this), that is they don’t assign
this, or pass this as an argument to a method. As all methods in a unique
class are anonymous, this can be safely used as a receiver in all methods as

3

// The class declaration is annotated with a unique keyword
unique class Server extends Object {
Int noConnections = 0;

void connect(Client client) { // Invalid method
client.setManager(this); // -- won’t compile (see Figure text)

}

Int getConnections() { // Good method
return this.noConnections;

}
}

Figure 1. Using class-level annotations to control how this is treated internally.
The connect() method will not compile as it is creates an alias to this and passes
it as an argument to the setManager() method in client.

no method will create an alias to it.

The class-level annotation approach has several problems: it violates abstrac-
tion by making the uniqueness keyword reflect aspects of the class’ implemen-
tation; it is inflexible; and it places large constraints on the evolution of a
program.

2.1.1 Violating the Principle of Abstraction

Using class annotations, whether or not an object can be uniquely referenced
becomes a property of the class, or more specifically, of how the class’ methods
can treat the this variable. Thus, internal implementation details are visible
in the interface, which is a violation of the principle of abstraction as this
annotation controls how the object can be used externally. The negative effects
of this will be addressed again shortly and compared to a similar problem for
method level annotations.

2.1.2 Inflexibility

Classes whose instances should be possible to reference uniquely may only
contain anonymous methods. A single method that needs to create an alias to
this in a class will thus preclude uniquely referenced instances of the class,
which is clearly very inflexible. If a class’ instances should be both uniquely
and non-uniquely referenced, methods invoked on non-unique references still
would not be allowed to alias this.

Last, instances of classes not annotated with the unique keyword cannot be
uniquely referenced, even if the class’ implementation would allow it as only in-

4

neverunique class A extends Object {
void aliasingMethod() {
B temp = this; // Creates an alias to this

}
}

// changing uniqueness declaration for the subclass
unique class B extends A { }

unique B b = new B();
m.aliasingMethod(); // invalidates uniqueness

Figure 2. Subclassing with class-level annotations. Instances of class A are never
unique. However, if we are allowed to subclass A with a unique class B, uniqueness
of unique references to B objects can be invalidated if a method call binds to a
method defined in A.

class Server extends Object {
Int noConnections = 0;

void connect(Client client) consumes {
client.setManager(this);

}

Int getConnections() anonymous {
return this.noConnections;

}
}

Figure 3. Using method-level annotation to control subjective treatment of this.

stances of classes annotated with unique are allowed to be referenced uniquely.

2.1.3 Constraining Evolution

As is illustrated in Figure 2, the (non)uniqueness annotation must be preserved
through subclassing as uniqueness could otherwise be invalidated by overriding
methods that created aliases to this. This makes extension via subclassing
harder or less powerful since the annotation of the superclass must be respected
by all subclasses.

It might be possible to allow unique classes to have non-unique subclasses as
the implementation of the unique superclasses work even if this is not unique,
but as Figure 2 clearly shows, not the other way around.

5

2.2 Method-level Annotations

With method-level annotations, used by for example Hogg [9] and Boyland [2],
each method is annotated to reflect its treatment of this and allow only
methods that do not capture this to be invoked on unique receivers. Thus,
method-level annotations allows an object to be uniquely referenced regard-
less of its class’ implementation. This is more fine-grained and thus more
flexible than class-level annotation. The price is increased syntactic overhead.
Figure 3 shows the Server class from Figure 1 using consumes and anonymous

annotations, similar to Boyland’s proposal.

In Figure 3, getConnection() is now annotated with the anonymous keyword,
meaning that it does not alias this. The connect() method is annotated
with consumes meaning that it may create an alias to this. Validity of these
annotations can be controlled by a simple compile-time check

While avoiding many of the problems caused by the coarseness of class-level
annotations, method-level annotations are not problem-free. For example,
overriding methods suffer similar constraints as subclasses in the class-level
example with respect to preserving annotations.

Most importantly, however, the abstraction problem persists as the annotation
of a method reflects its implementation. Thus, internal implementation details
are again visible in the interface leading to problems when implementation
details change over time.

2.3 Uniqueness and Abstraction

In this section, we detail the discussion about the abstraction problem with
both styles of annotation above. In both cases, and for methods and construc-
tors alike, a problem surfaces when the implementation of a class changes
the way it uses this which leads to a violation of the principle of abstrac-
tion. We will now examine this problem in more detail, recapping the original
arguments of Clarke and Wrigstad [16].

For concreteness, assume that we have the following class with a single method:

class BlackBox {
void xyzzy() {
... // unknown implementation

}
}

and at some other place in the program, a unique variable or field

6

unique BlackBox bb;

As the enclosing software system evolves, a later version of BlackBox requires
an addition to xyzzy() that includes the line:

OtherBlackBox obb = new OtherBlackBox(this);

Thus, the new implementation of xyzzy() now creates an alias to the receiver.
Under the existing proposals, this forces a change of BlackBox’s interface. The
consequences of this vary depending on whether we are using class-level anno-
tations or method-level annotations, as we will see in the following sections.

2.3.1 With Class Annotations

As it is visible in a class’ interface how it treats its this variable, changes to
how this is treated might lead to problems with changes in the interface.

Using class annotations BlackBox would have been annotated unique to show
that its instances can be uniquely referenced. As a consequence of the addition
to xyzzy(), instances of BlackBox can no longer be uniquely referenced which
is reflected in change of the class header from unique class BlackBox to
neverunique class BlackBox.

Consequently, all variable declarations of type unique BlackBox, such as
unique BlackBox bb; above would no longer be valid in the program, and
must have their uniqueness stripped to compile. Depending on how unique-
ness is realised, it may also be the case that all destructive reads of BlackBox
objects throughout the entire program would have to be changed to ordinary
reads, perhaps with destructive reads performed manually. Obviously, these
changes could propagate through the entire program.

2.3.2 With Method Annotations

As it is visible in a method header how the method treats the this variable,
changes to how this is treated might lead to problems with changes in the
method header.

Using method annotations, the xyzzy() method would have been annotated
anonymous. However, the addition to the method forces it to be changed
to consumes. Potentially, this forces much fewer changes to the program
compared to class-level annotations, as instances of BlackBox may still be

7

uniquely referenced. However, the call bb.xyzzy() will now create an alias to
its receiver requiring that the variable bb is nullified to preserve uniqueness.
Depending on the realisation of uniqueness this change from anonymous to
consumes might propagate as an addition of a destructive read operation
to the calls. If this is not the case, the result is even more drastic, as the
behaviour of the method call has changed silently from the original program
to consume its target. This is both awkward and counter-intuitive.

2.4 Conclusion

Uniqueness is simple and powerful concept. However, in both traditional ways
of adding uniqueness to object-oriented system, a purely internal change to
the implementation of the BlackBox class can force changes to its interface,
which propagate through the program—either statically or dynamically. Not
only does this introduce the opportunity for errors since the behaviour of a
program changes, also it means that objects cannot be treated like black boxes,
because:

Software evolution which changes the uniqueness aspects of an object’s im-
plementation can force changes in the object’s interface, which then propa-
gates changes throughout the program.

Thus extant uniqueness proposals break abstraction.

In conclusion, it seems that current approaches to uniqueness are ill-fitted to
the object-oriented setting.

As our proposed solution to this problem is based on ownership types, we now
briefly describe ownership types to set the state for external uniqueness.

3 Ownership Types

Deep ownership types [4] enforces the conceptual structural property that an
object’s representation (the subobjects conceptually belonging to it) is inside
its enclosing object and cannot be exported outside it. This is called the
owners-as-dominators property and gives strong encapsulation.

Ownership types introduces the notion of objects as owners and representation
objects are owned by their enclosing objects. Classes are parameterised by
ownership information and types are formed by instantiating these parameters
with actual owners.

8

Deep ownership enable constraining of the object graph by capturing the nest-
ing of objects in the types in a simple and elegant manner. Representation
objects are ordered inside their enclosing objects, and references to represen-
tation are not allowed to flow to the outside world. As the nesting is captured
in the class declarations, the nesting information is propagated through the
program, giving control over the global structure of the object graph. By pro-
hibiting references owned by some owner x to flow to objects outside x, a
strong, but flexible, containment invariant is achieved that cannot be circum-
vented 1 .

An owner can be seen as the permission to reference a group of objects. Types
are formed from classes and owner parameters, which serve as placeholders to
give permissions to reference external objects. Thus, a type does not denote a
set of possible instances of a class, but a set of possible instances of a class with
a particular set of permissions to reference other objects. Types with different
owner parameters are not compatible and references of types with different
owners cannot be aliases as shown by Clarke and Drossopoulou [17].

3.1 Annotating Classes with Ownership Information

To be able to statically control ownership nesting, class declarations are ex-
tended with annotations which describe the relations between owner parame-
ters to thread nesting information through the program. As an example, the
class StringList below takes two owner parameters where the first parameter
is nested inside the second and both are outside the owner owner.

class StringList< owner1 outside owner, owner2 outside owner1 >

Ownership parameters of a class must always be outside the implicit owner
owner, the owner of the instance. This is key to avoiding the problem of
indirect representation exposure in shallow ownership [14].

The omnipresent owner world is outside all owners, is visible in all scopes and
denotes global objects, accessible everywhere in the object graph. In addition
to owner and world, a class body has access to the owners declared in its class
header, and the owner this, which denotes the current object and is inside
owner.

For subclassing, the extends clause is extended with a mapping relation from
the owners of the subclass to those of the superclass. The number of owner

1 Circumventing the containment is however possible in shallow ownership, causing
indirect representation exposure [5]. Here we only consider non-shallow ownership.

9

parameters in a subclass may grow or shrink depending on the relations be-
tween the owners in the super class.

class List< some outside owner > extends Object { . . . }

class StringList< owner1 outside owner, owner2 outside owner1 >
extends List< owner2 > { . . . }

The owner must be preserved through subtyping as it acts as the permis-
sion governing access to the object. Preserving it by subsumption is a key
to achieving a sound system as shown by Clarke [5]. In the example above,
StringList’s second owner parameter will be mapped to some when viewed as
its super class. This is valid if owner2 is outside owner, a requirement derived
from List’s class header. That the requirement is fulfilled can be derived from
the class header of StringList as nesting is a transitive relation (owner2 is
outside owner1 and owner1 is outside owner implies owner2 is outside owner).

3.2 Forming Types

Types have following the syntax:

owner : ClassName< owner1, ..., ownern >

where owner is the owner of the type, ClassName is a class name and owner1..n

are visible permissions (in the current context) to reference external objects.

When forming types from a class, the nesting requirements of the owners in the
class’ header must be satisfied by the owners in scope to which they are bound.
The object graph is well-constructed with respect to the nesting requirements
specified in the classes.

Below are a few examples of Joline types with ownership using the recent class
declaration examples.

class StringList< owner1 outside owner, owner2 outside owner1 >
extends List< owner2 > {

this : StringList< owner, owner1 > representation;
owner : StringList< owner1, owner2 > outgoing;
// owner1 : StringList< this, owner2 > illegal;
// world : StringList< this, owner2 > alsoIllegal;

owner : List< owner2 > super = outgoing;
}

10

In the code example above, the third and fourth variable declarations are
illegal as the owners in scope do not satisfy the requirements of the class
header of StringList as this is inside both world and owner1.

The variable representation holds a representation object with permission
to reference back to the object itself as it is parameterised with owner.

The variable outgoing has the same type as the current instance. As the type
of outgoing does not have this as its owner, it cannot point to a represen-
tation object as all representation objects are owned by this and types with
different owners are not assignment compatible. Furthermore, the type is not
given explicit permission to reference this (this is not an owner in the type).
This means that references to representation cannot be stored in an object
referenced by the variable. Such violations are statically checkable and will
not compile. Actually, having this in the type of outgoing would not be valid
as that would give an external object permission to reference the current rep-
resentation. This is prevented by the restriction that the owner must be inside
all other owner parameters.

Last, super shows subsumption—the type owner : List< owner2 > is a super
type of owner : StringList< owner1, owner2 > and we can therefore assign
from outgoing to super. Note the remapping and hiding of owner parameters
as discussed on the previous page.

4 External Uniqueness

The idea behind external uniqueness is simple: exclude internal aliases in the
uniqueness definition. Thus, a reference is unique if it is the only external
reference to the object. Hence the name external uniqueness.

Our definition is a minor tweak, but has major consequences. In short, exter-
nal uniqueness overcomes the abstraction problem and allows a flexible form of
aggregate uniqueness that relaxes the uniqueness definition for internal point-
ers without compromising effective uniqueness. Some subsequent proposals [7]
have adopted our approach.

Naturally, our proposal requires a system with strong encapsulation, such as
ownership types to make sure that internal references stay internal, and to
be able to distinguish an object’s inside from its outside. We can implement
external uniqueness with a simple extension to ownership: unique owners.

Externally unique references are denoted using types such as unique :c〈pi∈1..n〉.
The unique annotation can only appear in the owner position, and thus no

11

pi∈1..n may be unique. As ownership types maintain the dominators prop-
erty, to obtain external uniqueness we need only add machinery to ensure the
uniqueness of references of unique type when viewed externally.

4.1 Operations on Externally Unique Pointers

We aim to make our system as clean and simple as possible to make it play well
with other constructs and for the constructs themselves to remain orthogonal
and combinable. To this end, we allow only two operations on unique pointers,
movement and borrowing.

The movement operation simply moves a unique from one variable or field to
another, nullifying the source. The borrowing operation converts the unique
into a normal pointer for a well-defined scope. To invoke methods or access
fields of a unique object, the object must first be borrowed.

4.1.1 Movement

For simplicity, we chose to implement movement with destructive reads [9].
To make the syntax clearer, and also to simplify the formal account of our
proposal, we chose to make destructive reads explicit. Consequently, when
destructively reading an l-value, it must be suffixed with --. Thus, the syntax
of movement becomes:

lval --; // make contents of lval a free value and nullify lval
x = lval --; // move contents of lval into x and nullify lval
return lval --; // return contents of lval and nullify lval

The use of destructive reads (or equivalent mechanisms, such as alias burying
[2]) protects the uniqueness invariant. As reading a unique variable has the
side-effect of updating the variable with null, unique values are effectively
moved instead of aliased when assigned from.

4.1.2 Borrowing

Many proposed systems [9,1,18,11,6] use borrowing to tackle the “slipperiness”
[19] of unique pointers. A unique variable may be passed as a borrowed argu-
ment to a method. Borrowed arguments may only be used to invoke anony-
mous methods (methods that do not create aliases to their receiver), can only
be passed to another method as a borrowed argument, and may not be re-
turned nor stored on the heap. Thus, all aliases to a borrowed reference created
by a method will be destroyed when the method exits. Thus, the borrowed

12

OwnershipInvalid refUnique refRef and Object

Root

u
s

r

i

��
��
��
��

��
��
��
��

Root

Stack
b

f

s

r

i
b’

Heap

External Uniqueness Borrowing

Figure 4. Mediating between external uniqueness and borrowing — b is the original
borrowed reference. b, b′ are only valid during the borrowing. (Stack grows down-
wards.)

value is once again unique when the borrowing ceases. This alleviates some of
the pain of programming with unique values as uniques passed as borrowed
arguments or borrowed receivers can be automatically reinstated when the
borrowing method exits.

In our proposal, we introduce an additional borrowing statement which tem-
porarily moves a unique value into a non-unique value confined to a specific
scope. The syntax of the borrowing statement looks thus:

borrow lval as temp:var { ... }

where lval is a uniquely typed, l-value and temp and var are the names of the
temporary owner and variable introduced for the duration of the block.

When the borrowing block is evaluated, the content of lval is destructively
read, moved into var and given a new owner temp. As we shall see later, this
restricts the scope of the borrowed reference to remain inside the block.

In existing systems using borrowing, borrowed pointers are an additional kind
of pointers that may not be stored on the heap nor returned from methods.
These are very arbitrary restrictions that are likely to make programming with
borrowing more complex and less flexible. Provided all borrowed references are
destroyed before the method exits, it is safe to allow borrowed arguments to
be stored on the heap. However, the type systems of previous proposals have
simply not been strong enough to express such constraints. In previous work
[8], we showed how our vehicle language, Joline, overcomes these limitations
by virtue of ownership types.

Borrowing can be implemented to maintain uniqueness or not. Our system can
support both, but for simplicity, we only consider the second case here and

13

in our formalism. For borrowing that maintains uniqueness for the borrowed
pointers, see the author’s dissertation [14].

4.1.3 Movement Bounds

As we discussed in Section 3, subsumption may hide owners in a type. This
leads to problems as information that controls how a unique may move is lost
and might lead to references to representation leaking out of its aggregate. To
overcome this, we attach a movement bound on unique references. In our for-
malism, these are written uniquep where p is the outermost owner to which the
unique may move. Previous work [16] include a discussion of how to put move-
ment bounds under programmer control and a program elaboration scheme
that automatically decorates all uniques in a program with default movement
bounds. Movement bounds default to owner or, in contexts without owner, to
world.

We now move on to describe Joline, a programming language with external
uniqueness built on ownership types. Joline sports owner-polymorphic methods
and method-local owners called scoped-regions. These are useful not only in
an ownership types setting, but can be used to simulate borrowing without
prohibiting borrowed references to be stored on the heap. For brevity, refrain
from discuss these here and instead refer the reader to the original proposal
[8] or the author’s dissertation [14].

5 Joline

Joline is a class-based object-oriented Java-like programming language with
deep encapsulation due to ownership types. It is based on Clarke and Drosso-
poulou’s Joe1 [17], but lacks some of its constructs, such as the effect anno-
tations which are not needed for our purposes here, and add others, most
notably ownership nesting in the class headers. Joline supports inheritance,
overriding, subsumption and dynamic binding.

This section presents the formal semantics of the Joline programming lan-
guage, its static type system, its dynamic semantics, soundness proof and
proofs of its structural invariants that describe the effects of ownership types
and external uniqueness in terms of what parts of the system may alias what
parts.

The major obstacle of formalising Joline is no doubt the external uniqueness.
As uniqueness is built on ownership, and owners are captured in types, move-

14

c ∈ ClassName f ∈ FieldName md ∈ MethodName
x, y ∈ TermVar α, β ∈ OwnerVar R ∈ {≺∗,�∗}

P ::= class i∈1..n s e Program

class ::= class c〈αi Ri pi∈1..m〉 extends c′〈p′i′∈1..n〉 { fd j∈1..r methk∈1..s } Class

fd ::= t f = e; Field

meth ::= 〈αi Ri pi∈1..m〉 t md(ti xi∈1..n) { s return e } Method

lval ::= l-value
x variable
e.f field

e ::= Expression
this this
lval l-value
lval-- destructive read
new t new
null null
(p) e lose uniqueness
e.md〈pj∈1..m〉(ei∈1..n) method call

s ::= Statement
skip; skip
t x = e; variable declaration
e; expression
lval = e; update of lvalue
s1; s2 sequence
if (e) { s1 } else { s2 } if-statement
(α) { s } scoped region
{ s } block
borrow lval t as α : x { s } borrowing

p, q ::= Owners
this this
α owner parameter
world world
owner owner
unique unique
uniquep unique in elaborated language

t ::= Type
p :c〈pi∈1..n〉

Table 1
Syntax of Joline

ment and borrowing causes types of unique objects to change. Our way of
dealing with this is to use a slightly different form of store type, where types
of uniques are hidden to everything except the unique objects themselves.
Thus, with a few exceptions, judgements never depend on non-invariant parts
of type information. This practise avoids a lot of trouble and is explained in
more detail in the dynamic semantics.

15

5.1 Joline, Statically

We now describe the syntax and static semantics of Joline. The dynamic
semantics follow in Section 5.3.

The syntax of Joline is displayed in Table 1. It is basically a subset of Java ex-
tended with ownership types and uniqueness and should be familiar to anyone
with some experience of Java. A program is a collection of classes followed by
a statement and a resulting expression that are the equivalent of Java’s main
method. We could have followed Java’s example and use a static main method
etc., but chose this way out for simplicity.

As we showed in Section 3, classes are parameterised with owner parameters.
Each owner parameter (except the implicit, first parameter, owner) must be
related to either owner or some previously declared parameter of the same
class. Classes contain fields and methods. Fields must be initialised. Object
creation requires the owner parameters specified in the class header to be
bound to actual owners.

Before presenting the static semantics of Joline, we first introduce owner sub-
stitutions, a few helper functions as well as field and method lookup. We then
present the type rules, beginning with the rules for well-formed environments,
owner orderings, classes, methods and programs. We then proceed with types
and subtypes. Last, we present the type rules for Joline’s statements and ex-
pressions.

5.1.1 Owner Substitutions

Substitution is denoted σ, where σ is a map from owner variables to owners.

We write σp to mean σ ∪ {owner 7→ p} and σn to mean σ ∪ {this 7→ n} and
σp

n for the combination. Applying a substitution to an owner is written σ(p).
For brevity, we write σ(α R p) for applying a substitution to a pair of owners
related with R. The application is defined thus:

σ(p) = q, if p 7→ q ∈ σ

σ(p) = p, if p 7→ q /∈ σ

σ(p R q) = σ(p) R σ(q) if p ∈ dom(σ)

σ(p R q) = p R q if p 6∈ dom(σ)

Applying a substitution to a type is written σ(t) or σ(t → t′) and is defined
thus:

16

σ(p :c〈pi∈1..n〉) = σ(p) :c〈σ(pi) i∈1..n〉
σ(uniqueb :c〈pi∈1..n〉) = uniqueσ(b) :c〈σ(pi) i∈1..n〉

σ(t → t′) = σ(t) → σ(t′)

We write ◦ for composition of substitution maps:

σ1 ◦ σ2 = {p 7→ σ1(q) | p 7→ q ∈ σ2}

As an illustration, if type p :List〈q〉 is formed from the class definition class
List< data outside owner > { . . . } then p :List〈σ〉 is the same type where
σ = {data 7→ q}.

5.1.2 Field lookup

For any class c, Fc is a map from the names of all fields defined in c and all of
its superclasses to their corresponding types. For example, given the following
class definitions

class Super< some outside owner > extends Object {
owner : Link< some > f1;

}

class Example< data outside owner, other outside data >
extends Super< other > {

this : Link< data > f2;
}

we have FExample = { f1 7→ owner :Link〈other〉, f2 7→ this :Link〈data〉 }. Note
that the map contains f1 and that the type of f1 has been translated using
the superclass mapping into using the owner names defined in Example, not
the names used in Super.

Field lookup is formally defined as:

Fc(f) =

⊥, if c ≡ Object
t, if class c · · · { · · · f t · · · } ∈ P
σ(Fc′(f)), if class c〈 〉 extends c′〈σ〉 { fd1 ..n · · · } ∈ P ∧

f /∈ dom(fd1 ..n)

The ⊥ means that the field is not defined for class c.

The σ on the third line is a map from the superclass’ parameters to the
parameters used in the subclass. When looking up a field variable for class c
on the third line, the types in Fc′ use owner names in the class definition of class

17

c′. Thus we apply the substitution σ(Fc′(f)) to bind the owner parameters of
c′ to the owners in c. This gives us a type for f in c.

As is standard, we write for an uninteresting variable.

5.1.3 Method lookup

Method lookup is similar to the field lookup mechanism described above. For
any class c, Mc is a map from all names of all methods defined in c and all of
its superclasses to a tuple containing the argument types and return type of
the method.

Just as for field lookup, superclass owner parameters are bound to subclass
owners using σ-substitution. Thus, when looking up a method in class c, the
types returned will use owner names defined in c.

Method lookup is formalised as:

Mc(md) =

⊥, if c ≡ Object
(Ω, ti∈1..n → t′), if class c · · · { · · · 〈Ω〉 t′ md(ti xi∈1..n) · · · } ∈ P
σ(Mc′(md)), if class c〈 〉 extends c′〈σ〉 · · · ∈ P

where Ω = αj Rj pj∈1..m. (For the last case, we implicitly assume that md is
not in the body of class c.)

5.2 Well-formedness Rules

In this section, we present the static semantics of Joline. An overview of the
different judgements used is found in Table 2. In the type rules, P is the
complete program and a global constant for all rules except ` P . This reduces
the syntactic overhead necessary to thread P from the top level to all the rules
where it is required.

5.2.1 Static Type Environment

The type environment E records the types of free term variables and the
nesting relation on owner parameters:

E ::= ε | E, x :: t | E,α �∗ p | E,α ≺∗
⊔

{pi∈1..n}

Above, ε is the empty environment, x :: t is a variable to type binding and
α �∗ p means that owner parameter α is outside owner p. Conversely, α ≺∗

18

E ` 3 Good environment
E ` p Good owner
E ` p R q Owner p is R-related to q (R ∈ {≺∗,�∗})
E ` t Good type
E ` t ≤ t′ Type t is a subtype of type t′

E ` v :: t Value v has type t
E ` e :: t Expression e has type t
E ` lval :: t ref l-value lval has type t
E ` s;E′ Statement s is well-formed and extends E to E′

E ` meth Good method
` Class Good class
` P Good program

Table 2
Judgements used in the static semantics.⊔ {pi∈1..n} means α is inside all p ∈ {pi∈1..n}.

5.2.2 Good environment

(env-ε)

ε ` 3

(env-x)
E ` t x /∈ dom(E)

E, x :: t ` 3

(env-α �∗)
E ` p α /∈ dom(E)

E,α �∗ p ` 3

(env-α ≺∗)
E ` pi∈1..n α /∈ dom(E)
E,α ≺∗ ⊔

{pi∈1..n} ` 3

The rules for good environment are straightforward. (env-ε) states that the
empty environment, ε, is well-formed. (env-x) states that adding a variable
name to type binding, x :: t to a good environment E produces another good
environment provided x is not already bound to a type in E and t is a well-
formed under E. The rules (env-�∗) and (env-≺∗) deal with inside and outside
orderings of owners—(env-�∗) states that adding a α �∗ p ordering of two
owners to a good environment E produces a good environment if p is a good
owner under E and α is not in E. The (env-≺∗) rule states the same, but for
the ≺∗ relation and several owners.

5.2.3 Good owner

(owner-var)
α R ∈ E

E ` α

(owner-this)
this : t ∈ E

E ` this

(owner-world)
E ` 3

E ` world

The rules for good owners state that an owner is well-formed if it is defined
in the static environment. Also, if present in the environment, the special

19

variable this is also a good owner. The owner world is globally defined, and
thus always valid.

5.2.4 Owner Orderings

(in-env1)
α ≺∗ p ∈ E

E ` α ≺∗ p

(in-env2)
α �∗ p ∈ E

E ` p ≺∗ α

(in-world)
E ` p

E ` p ≺∗ world

(in-this)
this :: t ∈ E

E ` this ≺∗ owner

(in-refl)
E ` p

E ` p ≺∗ p

(in-trans)
E ` p ≺∗ q E ` q ≺∗ q′

E ` p ≺∗ q′

The inside and outside relations are derived from the owner orderings in E.
The relations are transitive and reflexive and each others’ inverses. Nesting
relations form a tree (since an owner can only be ordered inside one owner
by (in-env1)). From (in-world), we see that all owners are inside world.
Importantly, if this is a valid owner, it is always ordered inside owner, which
is the owner of the object denoted by this.

5.2.5 Program and Class

(program)
` class i∈1..n ` s ;E E ` e :: t

` class i∈1..n s; return e :: t

(root-class)

` class Object { }

By (program), a program is well-formed if all the classes it defines are well-
formed and all statements in the body of main, s;return e, are well-formed.
By (root-class), the empty root class Object is always well-formed.

(class)
E0 = owner ≺∗ world, αi Ri pi∈1..m E0 ` owner ≺∗ αi∈1..m

E0 ` owner :c′〈σ〉 E = E0, this : owner c〈αi∈1..m〉
{fi∈1..n} ∩ dom(Fc′) = ∅ E ` ei :: ti E ` methj∈1..s

∀md ∈ names(methj∈1..s) ∩ dom(Mc′). Mc(md) ≡ σ(Mc′(md))
` class c〈αi Ri pi∈1..m〉 extends c′〈σ〉 {ti fi = ei∈1..r methj∈1..s}

The rule for well-formed class, (class), is a little more complex. First, owner
must be inside all owner parameters of the class. Secondly, the supertype to
the class must be valid (remember σ is a map from owner names used in the
class header of c′ to the owner names αi∈1..m used in c). Shadowing fields is
not permitted as the names of the fields declared in c must not be in set of
fields declared by any superclass to c. Any expression initialising a field must

20

be valid under the class’ environment E, constructed from the owner class’
header, adding owner and the this variable. Finally, all methods declared
in the class must be well-formed under E and, notably, for all overridden
methods (a method with the same name as one defined in any superclass to
c), the types must be invariant modulo σ-substitution which binds the names
of the owner parameters of c′ into the corresponding names in c.

5.2.6 Good method

(method)
E′′ = E,αi Ri pi∈1..n, xj : tj∈1..m E′′ ` s; E′ E′ ` e : t0

E ` 〈αi Ri pi∈1..n〉 t0 md(tj xj∈1..m){ s return e; }

A method is well-formed under environment E if the statements and return
expression of its body are well-formed with respect to E extended with the
owner parameters declared in the method header and the regular parameter
variables. This considers the well-formedness of the arguments as E ′′ ` s;E ′

requires E ′′ ` 3.

5.2.7 Types

(type/unique-type)
class c〈αi Ri pi∈1..n〉 · · · ∈ P

σ = {owner 7→ q, αi 7→ qi∈1..n} E ` σ(αi Ri pi)i∈1..n

E ` q :c〈qi∈1..n〉 / E ` uniqueq :c〈qi∈1..n〉

A type is well-formed whenever the substituted owner arguments satisfy the
ordering on parameters specified in the class header.

5.2.8 Subtyping

Subtyping in Joline must care to preserve the owner to protect the contain-
ment invariant. A supertype is allowed to “forget” owners, which is governed
by (class). The subtyping rule states that the owner must remain the same.

(sub-class)
E ` p :c〈σp〉 class c〈. . .〉 extends c′〈p′i∈1..n〉 · · · ∈ P

E ` p :c〈σ〉 ≤ p :c′〈σ(p′i∈1..n)〉

Subtyping is derived from subclassing, modulo names of the owner parameters.
As this corresponds to the composition of two order-preserving functions, it
is order-preserving. This is required to preserve deep ownership, see Clarke’s

21

dissertation [5]. In particular, subtyping preserves the owner that is fixed for
life. Letting the owner vary, as in Cyclone [20], would be unsound in our
system, as observed by Clarke and Drossopoulou [17].

(sub-refl)
E ` t

E ` t ≤ t

(sub-trans)
E ` t ≤ t′ E ` t′ ≤ t′′

E ` t ≤ t′′

As expected, the subtype relation is reflexive and transitive.

5.2.9 Statements

(stat-local)
x /∈ dom(E) E ` e :: t

E ` t x = e; ;E, x :: t

(stat-local) describes the conditions for variable declaration. The variable
name must not be in use in the same environment and the initial expres-
sion must have the same type as the declared type of the variable (modulo
subsumption). The resulting environment is extended with a binding from
the variable name to its type to record the type information of the declared
variable.

(stat-skip)
E ` 3

E ` skip; ;E

(stat-expr)
E ` e :: t

E ` e; ;E

(stat-update)
E ` lval : t ref E ` e :: t

E ` lval = e; ;E

From (stat-skip), skip is a valid statement under any valid environment.
From (stat-expr), a well-formed expression can be treated as a statement.
The rule (stat-update) simply enforces that updates can be performed to
l-values only if the types match, modulo subtyping of e. Recall that lval is
either x or x.f .

(stat-sequence)
E ` s1 ;E′′ E′′ ` s2 ;E′

E ` s1 s2 ;E′

From (stat-sequence), statements can be sequenced in the standard fashion.

(stat-scoped-region)
E,α ≺∗ ⊔

{pi∈1..n} ` s ;E′ {pi∈1..n} ⊆ owners(E)
E ` (α) { s } ;E

The rule (stat-scoped-region) introduces a new owner variable that corre-
sponds to a block and is only defined for the scope of the block. The bounds

22

{pi∈1..n}, though unspecified in code, determine which objects may be accessed
by objects created in this scope. Statically, the owner is inside (a subset of)
all owners in the lexical scope of the block.

(stat-borrow)
E ` lval :: uniquep :c〈pi∈1..n〉 ref E,α ≺∗ p, x :: α :c〈pi∈1..n〉 ` s ;E′

E ` borrow lval :: uniquep :c〈pi∈1..n〉 as α : x { s } ;E

The rule (stat-borrow) states that any uniquely type l-value may be bor-
rowed. This is achieved by introducing a new owner variable which is restricted
to the scope of the borrowing block analogous to a scoped region, to act as the
owner of the temporary non-unique reference to the borrowed value. To ensure
that this reference or other references to the borrowed value do not escape this
scope, we require that this owner is inside the unique type’s movement bound.
The remainder of the type must correspond exactly to the type of the l-value,
so that the borrowed variable can be reinstated with a correctly typed value
when the borrowing ends.

To simplify the formalism, we require that the unique is first moved into a local
variable on the top frame of the stack. This does not affect the expressiveness
of the language, as borrowing from any variable or field can be simulated by
manually moving the unique into the appropriate variable and then manually
reinstate it.

5.2.10 l-values

(lval-var)

x :: t ∈ E x 6= this
E ` x :: t ref

(lval-field)
E ` e :: p :c〈σ〉 Fc(f) = t

this ∈ owners(t) ⇒ e ≡ this
E ` e.f :: σp(t) ref

(expr-lval)

E ` lval :: t ref
E ` lval :: t

The rules above give the types of l-values, which are variables (other than
this) and fields. Their type of a variable is its recorded type in the environ-
ment, and the type of a field is the declared type in its class modulo substitu-
tion of the owner parameters in the object where the field is accessed. l-values
may be updated or read.

The ref annotations on types in (lval-var) and (lval-field) prevent them
from taking part in subsumption. The rule (expr-lval) can be used to treat
an l-value as an expression.

The helper function owners is defined for types and static type environments.
When applied to a type, it returns a set of all owners used to form that type;
when applied to an environment, it returns a set of all owners defined in that
environment:

23

owners(p1 :c〈pi∈2..n〉) = {p1, . . . , pn}

owners(ε) = world

owners(E, x :: t) = owners(E)
owners(E,α �∗ p) = owners(E) ∪ {α}
owners(E,α ≺∗ p) = owners(E) ∪ {α}

The condition this ∈ owners(t) ⇒ e ≡ this, which was called the static
visibility test in the original ownership types system [4], ensures that types
that contain this in them, that is types of representation objects, can only
be accessed internally to the object. It amounts to saying that fields (and
methods) which yield, return or require that representation objects are private.
This is not essential; we could have used dynamic aliasing as in Joe1 [17], but
the resulting type system would have been too complex to present our ideas.

5.2.11 Expressions

(expr-this)
this :: t ∈ E

E ` this :: t

(expr-null)
E ` t

E ` null :: t

(expr-subsumption)
E ` e :: t E ` t ≤ t′

E ` e :: t′

From (expr-this), this has its declared type. From (expr-null), null can
have any well-formed type. By (expr-subsumption), an expression of type t
can be said to be of any type t′ such that t′ is a supertype of t.

(expr-call)
E ` e :: p :c〈σ〉 Mc(md) = (αi Ri pi∈1..n, tj∈1..m → t0)

this ∈ owners(Mc(md)) ⇒ e ≡ this σ′ = {αi 7→ qi∈1..n}
E ` σ′(σp(αi Ri pi∈1..n)) E ` ej :: σ′(σp(tj)) for all j ∈ 1..m

E ` e.md〈qi∈1..n〉(ej∈1..m) :: σ′(σp(t0))

The rule for method performs a static visibility test, just as for field access,
which restricts expressions containing this in their type (as declared in the
class) to being used only internally, that is, on this. The owners of the target
type forms a substitution to translate the owners in the method’s argument’s
types and return types into the corresponding types using the owners in scope.
The owner arguments of the target type and the owner arguments supplied
to the method form two substitutions to transform the method’s argument
and return types into types in terms of the owners in scope. The additional
substitution, σ′, translates the names of owner parameters used internally in
the method to the actual owners at the call-site. The helper function Mc for

24

looking up parameters and method bodies is extended in a straightforward
fashion to also include owner parameter lists.

As pointed out by Clarke [5], owner argument passing could be replaced by an
inference mechanism that infers the σ′ binding of owners to the parameters of
the method, just as in GJ [21] or Scala [22]. That would introduce unnecessary
complexity for our purposes here so we chose this way out for simplicity.
A possible inference mechanism would look at the owner parameters of the
method header and where these are used in the parameter types. It would
then match the types of the arguments with the types of the parameters to
derive the mapping.

(expr-lval)
E ` lval :: t ref ¬isunique(t)

E ` lval :: t

(expr-dread)
E ` lval :: t ref
E ` lval -- :: t

With unique values in the system, it is not possible to treat all l-values directly
as l-values as subsumption would allow them to be viewed as being of the cor-
responding non-unique type. This would allow method calls and field accesses
on unique references, which would break external uniqueness. The rules (expr-

lval) and (expr-dread) correspond to extracting the value within the l-value.
If the type is non-unique, then (the contents of) an l-value can automatically
be used as a value. If the type is unique, then a destructive read must be used
to convert its contents into an expression. Destructive reads can also safely
apply to non-unique l-values.

(expr-new)
E ` p :c〈σ〉

E ` new p :c〈σ〉 :: uniquep :c〈σ〉

By (expr-new), instantiating a class creates an externally unique object and
the owner of the non-unique type becomes the movement bound.

5.2.11.1 Uniqueness and Subsumption To simplify the formal account,
we chose to make loss of uniqueness explicit using a movement operation. Had
we not chosen this approach, the rules for subtyping and moving for unique
and non-unique types would have looked like this:

(sub-unique)
E ` uniquep :c〈σ〉

E ` uniquep :c〈σ〉 ≤ p :c〈σ〉

(sub-move)
E ` q ≺∗ p

E ` uniquep :c〈σ〉 ≤ uniqueq :c〈σ〉

Such rules would, however, allow the implicit conversion of objects from unique
to non-unique type. This would have to be taken into consideration at many

25

points in the formalism, complicating it further. Rather, we require conversion
to be explicit:

(expr-lose-uniqueness)
E ` e :: uniqueb :c〈σ〉 E ` p ≺∗ b

E ` (p) e :: p :c〈σ〉

The “owner-cast” expression moves the contents of a unique into a subheap
of some object or block (whatever the p owner corresponds to). This is well-
formed if the expression has a unique type and if the movement bound of the
type is outside the target owner.

5.3 Joline, Dynamically

Heaps in Joline are nested to model the ownership nesting of deep ownership
types. The store consists of a stack of frames, each frame corresponding to an
executing method. The bottom frame contains the heap nested inside world.
Nested inside this heap are all subheaps of all objects nested inside world.

Joline’s dynamic semantics are formulated as a big-step operational semantics.
This section presents the dynamic semantics of Joline, explaining as we go
along.

5.3.0.2 Syntax definitions Meta-variables n, m, p, q range over owners
and ids of objects or blocks. As in the static semantics, x is a variable, α is a
static owner name and t is a type, a class with its owner parameters bound.

The syntax for heaps, stacks and values are shown in Figure 5. We write S • to
mean S • nil. Stacks and store types have parallel structure. Stacks, S, consist
of ordered frames, F . Frames consist of variable mappings x 7→ v, owner
mappings α 7→ n, regions Rn[H; F] and borrowing blocks Bb

n[H; F] with id n,
bound b and nested frame and subheap. The bound on the borrowing block
controls what objects may be stored in the block to make sure reinstatement
does not break containment. Figure 5 describes the syntax for stacks and
stores. The syntactic category V denotes zero or more fields, f 7→ v. The
region construct models the region world, with a nested subheap. The symbol
H denotes zero or more objects, n 7→ cσ[V ; H], in a nested subheap. The
⊕ operator pushes its right-hand side to the innermost compartment of the
left-hand side, just as in the store-type. Thus, Rn[H; nil]⊕F is equivalent to
Rn[H; F]. Values are null , ↑n, which denotes pointer (we will sometimes omit
the ↑) and Un[v; H], which denotes a unique value with id n and subheap H
where v is the pointer into v obtained by dereferencing the unique.

26

S ::= F | S •F Stack
F ::= nil | x 7→ v, F | α 7→ n, F | Rn[H; F] | Bb

n[H; F] Frame
H ::= nil | n 7→ o,H Subheap
V ::= nil | f 7→ v, V Field
o ::= cσ[V ; H] Object
v ::= null | ↑n | Un[v; H] Value

Figure 5. Syntax for stacks, heaps and values.

Γ ::= nil | n :: T [Γ], Γ′ | x :: t, Γ | α 7→ n, Γ | Γ •Γ′ Store type
T ::= c〈σ〉 | U | R | B Owner-less type

Γ〈 〉 ::= 〈 〉 | n :: T [Γ〈 〉], Γ
′ | n :: T [Γ], Γ′

〈 〉 | Holed store type
x :: t, Γ〈 〉 | α 7→ n, Γ〈 〉 | Γ〈 〉 •Γ′ | Γ •Γ′

〈 〉

Figure 6. Store type. We write Γ • to mean Γ • nil.

We sometimes refer to a stack frame as a generation. Owners introduced by
borrowing blocks are tied to a stack frame, and thus, objects that have such
owners can never become visible to earlier stack frames. Thus, each stack frame
really becomes a root in the object graph. When a stack frame is destroyed,
all the objects in the heap belonging to the stack frame can this be destroyed.
This is somewhat similar to generational garbage collection [23].

We now describe the rules for well-typed configurations roughly in the same
order as the syntactic definitions in Figure 5. An overview of the judgements
is found in Table 3.

Additional syntax for the store type is shown in Figure 6.

5.4 Store Type

The store type is consists of stack frames separated by •, where each stack-
frame contains owner bindings and variable typings. The store type and the
stack have parallel structures. Objects, variables and owners on a frame are
ordered by ⊕ which is an order-preserving concatenation operator.

As is standard, we assume that variable names, owner names and object ids
are unique.

Note that the owner of an object is not encoded in its type but is implicit in
the nesting. Thus, an object of class c with owner parameters σ nested inside
some object m will have the “owner-less type” c〈σ〉 in the store type. However,
we can derive its “complete type” m :c〈σ〉 from the nesting. The types R, B,
and U denote a region, a borrowing block and a unique type respectively. They
are all containers for a store-type corresponding to a nested subheap.

27

o

q

m

p

n

Figure 7. An object graph. Its corresponding store-type, for some owner-less types
ci〈σi〉 for i = 1..5 is n :: c1〈σ1〉[m :: c2〈σ2〉, o :: c3〈σ3〉, p :: c4〈σ4〉[q :: c5〈σ5〉]]. As is
visible from the picture, the owner of objects m, o and p is n. This is mirrored by
the nesting structure of store-type.
Figure 7 shows a sample object graph and its corresponding store-type.

The syntactic category Γ〈 〉 describes a store type with a hole. The syntax
Γ〈· · ·〉m means the stack Γ extended by · · · inside the subheap of some object
m. We sometimes write Γ = Γ′〈H〉m to mean that Γ can be factored into some
stack Γ′ with a hole in m and H, which are part of the contents of m in Γ, or,
equivalent, that stack Γ′ can be extended by H inside m to yield stack Γ.

We now proceed by defining a few helper functions.

5.4.1 Definition of defs, owners and vars for Γ

We define the function defs(Γ) to be the set of all identities of objects typed in
Γ and names of variables typed in Γ. We define the function owners(Γ) to be
the set of all owner variables mapping to identities of objects on the topmost
stack frame Γ. We define the function vars(Γ) to be the set of all variable
names mapping on the topmost stack frame Γ.

5.4.2 Definition of ⊕ for Γ

As previously explained, ⊕ is an operator that pushes a Γ to the top of another
Γ. For example, (x :: t, α 7→ n)⊕ z :: t′ = x :: t, α 7→ n, z :: t′ and (Γ •x ::
t, n :: R[α 7→ n])⊕ z :: t′ = Γ •x :: t, n :: R[α 7→ n, z :: t′].

5.4.3 Rules for Well-formed Store Type

(store-type-empty)

nil ` 3

(good-owner)
Γ ` 3 p ∈ defs(Γ)

Γ ` p

By (store-type-empty), the empty store type is well-formed. By (good-

28

owner), p is a good owner under Γ if it is in the set defs(Γ), the set of all ids
of all objects, blocks and variables in Γ.

(store-type-owner)
Γ ` n α 6∈ owners(Γ)

Γ⊕α 7→ n ` 3

(store-type-var)
Γ ` t x 6∈ vars(Γ)

Γ⊕x :: t ` 3

By (store-type-owner), a static-name to actual owner binding α 7→ n may
be added to Γ, if Γ is well-formed, n is a good owner and α is not in the set
owners(Γ), the set of static owner names already in Γ.

By (store-type-var), a variable name to type binding x :: t may be added
to Γ if Γ is well-formed, t is good type under Γ and x is not in the set vars(Γ),
that is the set of variable names used in Γ.

(store-type-region)
Γ ` 3 n 6∈ defs(Γ) T ∈ {R,B}

Γ⊕n :: T ` 3

(store-type-object)
Γ ` m :c〈σ〉 n 6∈ defs(Γ)

Γ〈n :: c〈σ〉〉m ` 3

By (store-type-region), a region without a nested subheap can be pushed
onto Γ if Γ is well-formed and n is not in use in Γ.

(store-type-unique)
Γ ` m n 6∈ defs(Γ)

Γ〈n :: U〉m ` 3

(store-type-borrow)
Γ ` m n 6∈ defs(Γ)

Γ〈n :: B〉m ` 3

By (store-type-unique) and (store-type-borrow), a uniqueness wrapper
or borrowing block n in the subheap of some object (or unique, region or
borrowing block) m is well-formed if m is a good owner (that is, m is defined
in Γ) and n is not used in Γ. Borrowing blocks can also be pushed onto the
store-type, much like regions.

By (store-type-object), an object n of class c with owner parameters σ can
be added to a subheap of some object (or region or borrowing block) m in Γ,
if the type m : c〈σ〉 (m must be the owner of n’s type as n is nested directly
inside m) is well-formed under Γ, and n is not in use in Γ.

(store-type-generation)
Γ ` ↑n :: σp(t)

Γ •σp
n⊕ this :: t⊕ this 7→ n ` 3

The (store-type-generation) rule governs the well-formedness of genera-
tions in Γ. A new generation corresponds to a stack frame created by method
invocation on some reference ↑n. It contains the owners of type of ↑n, the static

29

type of this, and a variable to ↑n binding to make the receiver accessible on
the frame.

5.4.4 Owner Orderings

Owner orderings are crucial to keeping the strong containment invariant of
ownership types. Naturally, we can derive some of the orderings directly from
the nesting of owners in Γ. However, in presence of generations this becomes
a little more complicated.

(in-outside)
Γ ` p ≺∗ q

Γ ` q �∗ p

(in-refl)
Γ ` p

Γ ` p ≺∗ p

Trivially, by (in-outside), outside and inside are inverse relations; if owner p
is inside q then q is outside p. By (in-refl), the inside relation is reflexive.

(in-owner)
Γ ` 3 Γ = Γ′〈Γ′′〉q p ∈ defs(Γ′′)

Γ ` p ≺∗ q

(in-generation)
Γ ` q Γ •Γ′ ` p p ∈ defs(Γ′)

Γ •Γ′ ` p ≺∗ q

By (in-owner), every owner p nested inside some owner q is ordered inside
q. Trivially, the owners corresponding to objects in a subheap of some object
n are inside n. By (in-generation), any owner in a generation is inside an
owner of any previous generation.

(owner-equal)
Γ ` 3 Γ(α) = n

Γ ` α = n

(in-owner-equal)
Γ ` p = p′ Γ ` p′ ≺∗ q′ Γ ` q′ = q

Γ ` p ≺∗ q

The last two rules are special and deal with the conversion between static
owner names and actual owners without overly complicating the formalism.
By (owner-equal), If α is a static owner name bound to the actual owner
n on the top generation in Γ, then we can consider α and n as equal. The
rule (in-owner-equal) simply applies this equality to the inside ordering. For
example, if Γ(α)=n, Γ(β)=m and Γ ` n≺∗ m, then, by (in-owner-equal),
Γ ` α ≺∗ β.

5.5 Configurations

As we saw in Figure 5, heaps are nested inside stacks. Starting configurations
have the form 〈S | s〉, where S is a stack and s is a statement, and resulting

30

Γ ` 〈S〉 Configuration is well-formed under store-type Γ
Γ ` 〈S | v〉 :: t Configuration is well-formed and v has type t under

store-type Γ
Γ ` 〈S | e〉 :: t Configuration is well-formed and e has type t under

store-type Γ
Γ ` 〈S | s〉 Configuration is well-formed and s produces store-type

Γ
Γ ` S Stack S is well-formed and its contents are typed by Γ
Γ ` F � Γ′ Frame F is well-formed under Γ, and is parallel with Γ′

Γ;n ` H � Γ′ Heap H with owner n is well-formed under Γ, and typed
by Γ′

Γ `n v :: t Value v has type t in Γ; if v is unique, n is its owner
Γ ` t Type t is well-formed under Γ
Γ ` t = t′ Types t and t′ are equal under Γ
Γ ` p p is a good owner
Γ ` α = p Static owner α and dynamic owner p are equal under Γ

Table 3
Table over judgements

configurations are either 〈S | v〉, where v is the resulting value of evaluating
an expression, or 〈S〉, a single stack. The initial configuration where s;e is the
“main method” of the program is:

〈 Rworld [nil; nil] | s;e 〉

The rules for well-formed configurations are slightly unorthodox. To the left
of the turnstile is the store-typing for the entire store. To the right of the �
operator is a subset of said store-typing, namely the subset that exactly corre-
sponds to the structure which the judgement is typing. This will be used later
to deal with types in the store-type changing due to movement. Commonly,
store-types are only extended, never changed, which is why we are forced to
resort to less orthodox mechanisms here.

5.5.1 Definition of ⊕ for Ss and F s

The ⊕ operator works on stacks and frames just as for Γ’s. It pushes a F
into the innermost F on the top of the stack. For any stack, this is a unique
position.

5.5.2 Configurations

(config-final)
Γ ` S

Γ ` 〈S〉

(config-stat)
Γ ` S Γ ` s; Γ′

Γ′ ` 〈S | s〉

31

By (config-final), a final configuration is well-formed if its stack is well-
formed under the current store type. For (config-stat), the statement s must
be well-formed under the current store-type and result in a store type possibly
extended by the variables declared in s. The configuration’s stack must also
be well-formed, without the extension to the store type from s.

(config-expr)
Γ ` S Γ ` e :: t

Γ ` 〈S | e〉 :: t

(config-val)
Γ ` S Γ `free v :: t

Γ ` 〈S | v〉 :: t

The rule (config-expr) is straightforward. For configuration with a value
compartment, a unique value will not have an owner that corresponds to a
variable as such a value will be free. The special owner free is introduced to
denote a free value and (config-val) is extended by a free subscript to denote
that the resulting value, if unique, must be free.

5.5.3 Stacks

(stack-empty)

nil ` nil

(stack-gen)
Γ ` S Γ •Γ′ ` F � Γ′

Γ •Γ′ ` S •F

By (stack-empty), the empty stack is typed by the empty store type. By
(stack-gen), the store type must correspond to the ‘sum’ of the store type
for each generation in the stack. Every generation has access to the store type
of all previous generations plus itself. Note that Γ and S are constructed in
parallel.

5.5.4 Frames

(frame-empty)
Γ ` 3

Γ ` nil � nil

(variables)
Γ ` F � Γ′ Γ `x v :: t

Γ ` F ⊕x 7→ v � Γ′⊕x :: t

(owners)
Γ ` F � Γ′

Γ ` F ⊕α 7→ n � Γ′⊕α 7→ n

By (frame-empty), an empty frame is valid and is parallel to an empty piece
of the store type. The rules (variables) and (owners) control variable and
owner bindings on the stack. The uniqueness of the names x and α respectively
are guaranteed by the well-formedness of Γ in both cases. A variable with type
t is well-formed if its value also has type t. Note that the structures on the

32

left and right side of the � are parallel.

(frame-region)
Γ ` F � Γ1 Γ;n ` H � Γ2 Γ ` F ′ � Γ3

Γ ` F ⊕Rn[H;F ′] � Γ1⊕n :: R[Γ2,Γ3]

The rule (frame-region) captures the well-formedness of adding a region to
a frame. The two subcompartments of the frame, that is, any objects owner
by the frame, n, must be well-formed, as must any nested frames, F ′.

(frame-borrow)
Γ ` F � Γ1 Γ′ = Γ〈n :: B[Γ2,Γ3]〉b Γ′;n ` H � Γ2 Γ′ ` F ′ � Γ3

Γ⊕n :: B[Γ2,Γ3] ` F ⊕Bb
n[H;F ′] � Γ1⊕n :: B[Γ2,Γ3]

The rule (frame-borrow) captures the well-formedness of adding a borrow-
ing block to a frame. The rule is similar to that for a region, but with one
important difference: the subheap of the borrowing block must be well-typed
at location b in the store-type. When reinstated, this guarantees that the sub-
heap is well-formed at b, which is the movement bound for unique values, see
(val-unique) below.

5.5.5 Heaps and objects

(heap-empty)
Γ ` m

Γ;m ` nil � nil

(heap-object)
Γ;m ` n 7→ o � Γ′ Γ;m ` H � Γ′′

Γ;m ` n 7→ o,H � Γ′,Γ′′

By (heap-empty), an empty subheap is valid in m if m is well-formed under
the current store type. By (heap-object), a subheap in m is well-formed
if its contents is well-formed in m under the current store type. Again, the
structures on the left and right side of the � are parallel.

(object)
Γ(n) = m :c〈σ〉 Γ;n ` H � Γ′ Γ `n V :: σm

n (Fc)
Γ;m ` n 7→ cσ[V ;H] � n :: c〈σ〉[Γ′]

By (object), an object is well-formed inside m under Γ if it has m as an owner
in Γ, its subheap is well-formed inside the object itself, and its fields have good
types. Just as in (variables), (object) is extended with a subscript on the
turnstile to capture the owner of the object.

(fields)
Γ `n.f v :: t Γ `n V � Γ′

Γ `n f 7→ v, V � f :: t, Γ′

33

Fields work like variables, but their order is insignificant. The turnstile of
the (fields) judgement it subscripted with the object’s own identity which
is extended by the current field name in (fields). If field f in object n has
unique value v of type t, the proof tree for the stack will contain the judgement
Γ `n.f v :: t for some store type Γ.

5.5.6 Values

The looking up of types in Γ is a recursive function that remembers the object
of the previous level of nesting and uses that for owner.

nil(n)p ::=⊥ no valid type for n

(Γ •Γ′)(n)p ::=
{

Γ(n)p if n ∈ defs(Γ)
Γ′(n)p otherwise

(α 7→ m,Γ)(n)p ::= Γ(n)p

(x :: t, Γ)(n)p ::= Γ(n)p

(m :: T [Γ],Γ′)(n)p ::=

p :c〈σ〉 if n = m where T = c〈σ〉
Γ(n)m if n ∈ defs(Γ)
Γ′(n)m otherwise

Γ(n) ::= Γ(n)world

A more informal definition of the same function that might be more easily
understood is Γ(n) = p : c〈σ〉 iff Γ = Γ′〈n :: c〈σ〉[]〉p, that is, if Γ can be
factored into a Γ′ with a hole in p (possibly world) such that the object n is
directly inside with (incomplete) type c〈σ〉, then the type of n in Γ is p :c〈σ〉.

(val-pointer)
Γ ` t Γ(m) = t

Γ `n ↑m :: t

(val-null)
Γ ` t

Γ `n null :: t

(val-subsumption)
Γ `n v :: t′ Γ ` t′ ≤ t

Γ `n v :: t

By (val-pointer), a pointer is well-formed if its type derived from looking its
id up in Γ is well-formed in Γ. By (val-null), null can have any well-formed
type. By (val-subsumption), a value can be viewed as having a supertype to
that of its actual type.

(val-unique)
Γ′′ = Γ〈n :: U[Γ′]〉b Γ ` uniqueb :c〈σ〉
Γ′′ `n ↑m :: n :c〈σ〉 Γ′′;n ` H � Γ′

Γ `n Un[↑m;H] :: uniqueb :c〈σ〉

Finally, a unique value is well-formed if its pointer compartment and nested

34

subheap are well-formed under an extended store type where the type infor-
mation from the unique is added in. As for borrowing blocks, the bound b of
the unique determines where the type information of the unique is inserted in
the store type. Also, the unique type must be well-formed under the original
store-type where the unique’s contents are not visible.

Here, it might look as if we are “pulling type information out of nowhere”, but
this is deceiving; note the definition of Γ′′ and the type information parallel to
H. As n :: U[Γ′] is “hidden from the rest of the store-type”, no other judgement
can depend on this information. This allows type information of uniques to
change without affecting other parts of the system.

5.5.7 Static and Dynamic Types

(type-equal)
Γ ` p1 :c〈pi=2..n〉 Γ ` pi = qi for i = 1..n

Γ ` p1 :c〈pi=2..n〉 = q1 :c〈qi=2..n〉

Again, due to the existence of both static and actual owners in our system,
we need rules to treat these as equal. Recall (owner-equal); basically, a type
with static owners is equal to a type with the equivalent actual owners.

(sub-type-equal)
Γ ` t′1 ≤ t′2 Γ ` t′1 = t1 Γ ` t′2 = t2

Γ ` t1 ≤ t2

(expr-type-equal)
Γ ` e :: t′ Γ ` t = t′

Γ ` e :: t

Similar to (type-equal) above, (sub-type-equal) defines subtyping relations
that take static and actual owner equality into consideration and (expr-type-

equal) does the same for types of expressions.

5.6 Operational Semantics for Joline

5.6.1 Variable lookup and Assignment

Variable lookup and update on a stack is written S(x) and S[x 7→ v] respec-
tively. Field lookup is written (S)n.f for lookup of the contents of field f in
the object with id n on stack S. Field update is written (S)n.f :=v. They all
have the obvious semantics (see Appendix A.1 and A.2 for the full story).

35

5.6.2 Dispatch

The help function Dt(md) returns a tuple with type information and method
body of the method that the message md is bound to when passed to an object
of type t. It also returns the type of the receiver as viewed by the method body.

Dp:c〈σ〉(md) =

⊥, if c ≡ Object
(Ω, t′ x 7→ t, b, p :c〈σ〉),

if class c · · · { · · · 〈Ω〉 t md(t′ x){b} · · · } ∈ P
Dp:c′〈σ(σ′)〉(md), if class c〈 〉 extends c′〈σ′〉 · · · ∈ P

where Ω = αi Ri pi∈1..n. Just as is the definition of Mc, we omit md not in the
body of c in the bottom case, for presentation reasons.

5.6.3 Expressions

(expr-this)
S(this) = ↑n

〈S | this〉 → 〈S | ↑n〉

(expr-null)

〈S |null〉 → 〈S |null〉

(expr-var)
S(x) = v

〈S |x〉 → 〈S | v〉

(expr-field)
S(x) = ↑n (S)n.f = v

〈S |x.f〉 → 〈S | v〉

Without loss of generality, we use “named form” for the expressions in order to
simplify the formal account of Joline. We only allow field lookup, field update
and method calls to be performed local variables and not directly on the result
of an expression. Thus, instead of writing e.f , we write x = e;x.f , where x is
a variable of the appropriate type. Clearly, the forms are equivalent. Given the
definitions of variable and field lookup above, (expr-field) is straightforward.
We lookup the value of x in S, which must be a pointer, and then perform
a field lookup on field f on the appropriate object using the helper function
(S)n.f .

(expr-dread-local)
S(x) = v

〈S |x--〉 → 〈S[x 7→ null] | v[free/x]〉

(expr-dread-field)
S(x) = ↑n (S)n.f = v

〈S |x.f --〉 → 〈(S)n.f :=null | v[free/n.f]〉

Unique local variables and fields must be read using the destructive read oper-
ation. The operational semantics for the destructive reads is similar to (expr-

field) and (expr-local), except that the field or variable is updated with
null. The unique value is also given the owner free, which corresponds to it
being a free value. This is denoted by the substitution of x or n.f for free.

36

As the destructive read operation is only allowed on unique variables or fields,
v above is either null or on the form Up[v; H], where p is x in (expr-dread-

local) and n.f in (expr-dread-field). Thus, if variable x is destructively
read when S(x) = Ux[v; H], it results in the stack S[x 7→ null], where x is
null . The result of the operation is Ufree[v; H[free/x]], the unique value “moved
to free”.

(expr-new)
V = f 7→ null for all f ∈ dom(Fc) n is fresh

〈S | new p :c〈σ〉〉 → 〈S〈n 7→ cσ[V ; nil]〉p | ↑n〉

On creation, the object is given a fresh id, the owner p, an empty subheap,
and all its fields are initialised with null . The object is then stored in the heap
in the subheap of its owner. The result of the expression is a pointer to the
object.

(expr-call)
〈S | e〉 → 〈S1 | v〉 S1(x) = ↑n S1 = S′〈n 7→ cσ[]〉m

Dm:c〈σ〉(md) = (α R , y → , s;return e′,m :c2〈σ2〉)
〈S1 •σ2

m
n ⊕ this 7→ ↑n⊕α 7→ p⊕ y 7→ v | s〉 → 〈S2〉 〈S2 | e′〉 → 〈S3 •F | v′〉

〈S |x.md〈p〉(e)〉 → 〈S3 | v′〉

The dynamic semantics for the method call is pretty straightforward. A new
stack frame is created with the owner parameters of the receiver’s type and
the receiver as this. The reference argument is pushed onto the stack as well.

The Dt(md) function returns the actual method body invoked by the message
md when sent to the type t and the type of this in that method body.
Informally the type is the most specific supertype p : c〈σ〉 of t such that
t ≤ p :c〈σ〉 and c defines method md and the method body of that definition.
Note that we write σ2

m
n for σ2 ∪ {owner 7→ m} ∪ {this 7→ n}.

Last, the method body is evaluated; the resulting value v′ is returned and the
top-most frame is removed.

(expr-lose-uniqueness)
〈S | e〉 → 〈S′ |Ufree[v;H]〉

〈S | (p) e〉 → 〈S′〈H[p/free]〉p | v〉

(expr-lose-uniqueness2)
〈S | e〉 → 〈S′ |null〉
〈S | (p) e〉 → 〈S′ |null〉

(expr-lose-uniqueness) is a “cast” from the free owner to another. The
uniqueness wrapper is discarded and the subheap compartment of the unique
is moved into the subheap of the target owner. The pointer compartment of
the unique is the resulting value of the expression.

37

5.6.4 Statements

(stat-local)
〈S | e〉 → 〈S′ | v〉

〈S | t x = e〉 → 〈S′⊕x 7→ v[x/free]〉

(stat-update)
〈S | e〉 → 〈S′ | v〉

〈S |x := e〉 → 〈S′[x 7→ v[x/free]]〉

Local variable declaration and initialisation is straightforward: a binding from
the variable name to its value is appended to the stack. Local variable update
is equally trivial and works as expected. If a free value is assigned to the local
variable, the local variable becomes the owner of the unique reference, which
is captured by the owner substitution [x/free].

(update-field)
〈S | e〉 → 〈S′ | v〉 S′(x) = ↑n S′′ = (S′)n.f :=v[n.f/free]

〈S |x.f := e〉 → 〈S′′〉

Field update works as expected, using the previously described (S)n.f := v
helper function. As for variables, owner substitution captures the case when
capturing a free value in a field.

(stat-skip)

〈S | skip〉 → 〈S〉

(stat-expr)
〈S | e〉 → 〈S′ | v〉
〈S | e〉 → 〈S′〉

(stat-sequence)
〈S | s1〉 → 〈S′′〉 〈S′′ | s2〉 → 〈S′〉

〈S | s1;s2〉 → 〈S′〉

The skip statement is trivial and (stat-expr) just evaluates an expression
and discards the resulting value. From (stat-sequence), statements can be
sequenced in an unsurprising fashion.

(scoped-region)
〈S⊕Rn[nil;α 7→ n] | s〉 → 〈S′⊕Rn[H;F]〉 n is fresh

〈S | (α) { s }〉 → 〈S′〉

Evaluating scoped regions creates a new region and pushes it to the top of the
stack. The region also acts as an owner. Initially, the heap is empty except for
a mapping from the static owner name introduced by the region to the id of
the region itself, in this case α 7→ n. After the region is created, its statement
is evaluated. Then, the region is destroyed along with its contents.

(stat-borrow)
〈S⊕x 7→ null ,Bb

n[H[n/x];α 7→ n⊕ y 7→ v] | s〉 →
〈S′⊕x 7→ v′′,Bb

n[H ′;α 7→ n⊕ y 7→ v′, F]〉 where n is fresh
〈S⊕x 7→ Ux[v;H] | borrow x :: uniqueb :c〈σ〉 as 〈α〉 y in { s }〉 →

〈S′⊕x 7→ Ux[v′;H ′[x/n]]〉

(stat-borrow) show the operational semantics for our borrowing operation.

38

The borrowed variable is nullified and its contents is moved into a newly
created block Bb

n[. . .] pushed on top of the stack frame. The block contains a
mapping from the static name of the borrowed owner and the actual owner,
the identity of the borrowing block. The unique’s pointer compartment is
moved to the borrowing variable in the block, and the subheap compartment
is moved (the substitution of x for n above) into the subheap compartment of
the borrowing block. The statement of the borrowing block is then evaluated.
When the block is exited, the uniqueness wrapper is recreated, the entire
subheap of the borrowing block is moved back into it, along with the pointer
in the borrowing variable. The unique value is stored in x and the remainder
of the borrowing block is popped of the stack.

Having described Joline’s dynamic semantics, we move on to the showing
the soundness of our system and, in particular, that it enjoys the owners-as-
dominator property.

6 Soundness of Joline

This section shows subject reduction and progress theorems for the Joline lan-
guage, as well as the structural properties given by ownership types and exter-
nal uniqueness respectively: owners-as-dominators and external-uniqueness-
as-dominating-edges. We begin, however, by defining a few necessary helper
functions.

6.1 Helper Functions

6.1.1 Definition of ;

The symbol ; describes the relation between store-typings of different config-
urations. We only define ; for well-formed store-typings, thus well-formedness
of the store-types on both sides of the ; symbol is implicit below.

Γ ; Γ Γ ; Γ〈n :: c〈σ〉〉 Γ ; Γ′ if ∃Γ′′ s.t. Γ ; Γ′′ and Γ′′ ; Γ′

6.1.2 Definition of ≤

The symbol ≤ describes the how a store-typing may grow during the evalua-
tion of a configuration.

Γ≤Γ

39

Γ≤Γ′, if Γ ; Γ′

Γ≤Γ⊕x :: t

Γ≤Γ⊕α 7→ n

Γ≤Γ⊕n :: R

Γ≤Γ⊕n :: B

Γ≤Γ •n :: R

Γ≤Γ •n :: B

Γ≤Γ′, if there exists Γ′′ s.t. Γ ≤ Γ′′ and Γ′′ ≤ Γ′

Again, we only define ≤ for well-formed store-typings, so Γ ≤ Γ′ implies Γ ` 3

and Γ′ ` 3 in our system. We omit this for brevity.

Soundness is proven as a standard subject reduction theorem that states that
types are preserved under evaluation.

Theorem 6.1 (Subject Reduction)

(1) If Γ ` 〈S | e〉 :: t and 〈S | e〉 → 〈S′ | v〉, then there exists a Γ′ such that Γ ; Γ′

and Γ′ ` 〈S′ | v〉 :: t.

(2) If Γ ` 〈S | s〉 and 〈S | s〉 → 〈S′〉, then there exists a Γ′ such that Γ ; Γ′ and
Γ′ ` 〈S′〉.

By structural induction over the shapes of e and s. The key problems of
proving the theorem are movement and visibility. To preserve space, we omit
this proof and direct the interested reader to the author’s dissertation [14] for
the full story. Key to dealing with movement is shown in the (val-unique)
rule where the type information of the subheap nested in the unique is not
included in the global store-type information. This allows movement to be
formulated as an owner substitution operation on the nested store-type that
is not visible to the rest of the program.

2

Lemma 6.2 (Canonical Forms) If Γ ` S and Γ ` v :: t, then the following
holds for the possible forms of v:

(1) If t = p :c〈σ〉, then either

(a) v = null , or
(b) v = ↑n and, Γ(n) = p :c′〈σ′〉, dom(Fc) ⊆ dom(Fc′), S(n) = c′σ

′
[V ;H] and

f ∈ dom(V) for all f ∈ dom(Fc), dom(Mc) ⊆ dom(Mc′) and
arity(Mc(md)) = arity(Mc′(md)) for all md ∈ dom(Mc)

(Arity is trivially defined as arity(ti∈1..m → t) = m).

40

(2) If t = uniquep :c〈σ〉, then either,

(a) v = null , or
(b) v = Un[v;H].

From the syntax of v, there are three cases corresponding to the ones above.
1.a) and 2.a,b) are immediate from (val-null) and (val-unique). For 1.b), by
(val-pointer) and (val-subsumption), Γ(n) = p : c′〈σ′〉 and Γ ` p : c′〈σ′〉 ≤
p :c〈σ〉.

From Γ ` S and Γ(n) = p :c′〈σ′〉, clearly S(n) = o, for some o, as Γ and S are
parallel. From Γ ` S and Γ ` ↑n :: p :c′〈σ′〉 we can derive (full details in [14])
Γ; p ` n 7→ o � Γ′ for some Γ′. By (object), f ∈ dom(V) for all f ∈ dom(Fc′)

where o = c ′σ
′
[V ; H].

By (class) and definition of F, dom(Fc) ⊆ dom(Fc′). Similarly, (class) and
def. of M implies dom(Mc) ⊆ dom(Mc′) and arity(Mc(arity)) = md(Mc′(md)).

2

6.2 Progress

In this section, we present the progress lemma. Additional evaluation rules
for the dynamic semantics that deal with trapping and propagating errors in
the system are found in Appendix A.3. We trap only one kind of errors, null-
pointer errors. Most of the error trapping rules are straight-forward and work
as someone fluent in Java would expect.

Following Ernst et. al [24], we define a finite evaluation relation thus:

Definition 6.1 (Finite Evaluation) An evaluation relation →k, which is a
copy of the rules in the operational semantics (including the ones for error han-
dling), where each occurrence of → in a premise is replaced by →k−1. For axioms
and conclusions, replace → with →k and add the following axioms:

(stat-kill)

〈S | s〉 →0 〈S | ERROR〉

(expr-kill)

〈S | e〉 →0 〈S | ERROR〉

This means that the evaluation will return with a “kill error”, if the derivation
is more than n derivations deep [24]. This allows us to state a progress lemma
for a finite n and thus need not account for diverging evaluations due to infinite
loops, which would terminate with a kill error when the number of derivations

41

exceeded n. We can thus describe progress:

Lemma 6.3 (Progress)

(1) If Γ ` 〈S | s〉, then for all natural numbers n, there exists a S′ such that either
〈S | s〉 →n 〈S′〉 or 〈S | s〉 →n 〈S′ | ERROR〉.

(2) If Γ ` 〈S | e〉, then for all natural numbers n, there exists a S′ such that either
〈S | e〉 →n 〈S′ | v〉 or 〈S | s〉 →n 〈S′ | ERROR〉.

Following Ernst et al., a terminating expression is one for which there is an n
such that the evaluation does not result in a kill error. If the application does
not result in a kill error, then it cannot have used (expr-kill) or (stat-kill)
(the kill error would have been propagated), and thus, the derivation in →n

can be translated to a derivation in →.

By mutual induction over the possible shapes of s and e. The key property
is the completeness of the rules, that is, capturing all possible errors during
evaluation and propagating them properly.

2

6.3 Structural Invariants

In this section, we formalise and prove that the owners-as-dominators (OAD)
property holds for our system. In a well-formed configuration, all external
aliasing of an object comes from its owner or siblings. We model this fact
using holes—in a well-formed configuration that can be factored as a stack
with a hole containing an object, there are no references from objects outside
the hole on the same or previous frame to the contents of the object in the
hole. Following OAD, we also formulate the containment invariant of external
uniqueness, external-uniqueness-as-dominating-edges.

6.3.1 Helper Functions

The helper function uses denotes the set of all ids of all objects referenced by
fields and variables in a stack. Its formal definition can be found in Appendix
A.5.

Similarly, we define defs(S) to be the set of all identities of all objects, re-
gions, borrowing blocks and uniques in S. Its formal definition can be found
in Appendix A.5.

Last, we define the binary relation # for sets to mean that they are disjunct.
For sets A and B are, A # B is defines to be A ∩B = ∅.

42

We now define the structural invariants in terms of uses, defs, and #.

6.4 Owners-as-Dominators

To recapitulate, the owners-as-dominators property states that all paths from
the root of the object graph to an objects must pass through the object’s
owner.

Let ι denote an object and r the root of an object graph. Paths have the shape
r → ι1 → ι2 . . . → ιn. Thus, all paths start with r. In a system satisfying the
owners-as-dominators property, all paths from r to any object always goes
through the object’s owner. For example, if ιj is the owner of ιi, ιj will be on
all paths from r to ιi. Furthermore, for all objects ιk with a reference to ιi, ιj
will be on all paths from x to ιk. The latter assures that only objects internal
to the representation to which ιi belong, ιj in our example, can reference ιj.
Consequently, for an object to manipulate ιi, it must either be internal to ιi’s
owner, or invoke the change through ιj’s protocol.

We now prove owners-as-dominators for Joline using a slightly different formu-
lation than the one found in Clarke’s thesis [5]. We believe that our formulation
is easier to understand as it is more clearly based on what parts of a stack or
heap may reference an object.

Theorem 6.4 (Owners-as-Dominators) If Γ ` S •F 〈n 7→ cσ[V ; H]〉, then
defs(H) #(uses(S) ∪ uses(F)).

We prove this in two steps; 1) defs(H) # uses(S) and 2) defs(H) # uses(F).
Note that we do not consider the case when n is nested inside a unique, as
this case is covered by the stronger external-uniqueness-as-dominating-edges
property.

(1) By contradiction. Assume the existence of a pointer ↑m to an object of
type t in H.

By (stack-gen), Γ1 ` S and Γ1 •Γ2 ` F 〈n 7→ cσ[V ; H]〉 � Γ2 where
Γ = Γ1 •Γ2. Note that as Γ2 and S •F 〈n 7→ cσ[V ; H]〉 have parallel struc-
ture, n ∈ defs(Γ2)

Without loss of generality, we consider only the top-level of H. Thus,
owner(t) = n. There are two possible cases, either a) Γ1 ` ↑m :: t, or
b) Γ1〈Γ3〉 ` ↑m :: t for some Γ3. The latter covers the case when ↑m
originates from within a unique, in which case additional type informa-
tion is available where the pointer is typed. In case a), n ∈ defs(Γ1), by
well-formed construction (omitted here, see [14] for the full story), which
contradicts the unique names assumption as n ∈ defs(Γ2). Case b) gives
rise to a similar contradiction as it requires n ∈ defs(Γ1〈Γ3〉). Thus, the

43

Root

u

r

s

q

d

f

mn

Figure 8. Possible paths. The 〈 〉 denotes a hole in the store with n and its subheap
as its contents. n is an object or a uniqueness wrapper.

pointer ↑m cannot exist as it cannot be well-typed.
(2) By contradiction. Assume a) some x on F points into H or b) a field f

in some object on F points into H.
Without loss of generality, we consider only objects on the top-level of

H. Let ↑m be a pointer to such an object. By (object), the type of ↑m
has owner n.

Case a) F 〈 〉(x) = ↑m. For x to hold ↑m, the owner of the type of x must
be n. By (stack-gen), Γ1 ` S and Γ1 •Γ2 ` F 〈n 7→ cσ[V ; H]〉 � Γ2

where Γ = Γ1 •Γ2 and Γ2 = Γ3〈n :: c〈σ〉[]〉. Thus, n ∈ defs(Γ2). It
is clear from the static semantics that the only owners accessible on
a stack frame are i) the owners of the type of the receiver or owner
parameters (denoted Σ) and ii) owners of blocks created on the frame.
Then:

i) By (expr-call), the type of the receiver and any owner param-
eters must be well-formed on the previous frame. Thus, n ∈ Σ
implies Γ1 ` n, i.e., n ∈ defs(Γ1). As n ∈ defs(Γ2), and object
identities are unique, we have a contradiction.

ii) By (frame-borrow) and (frame-region), either Γ2 =
Γ4〈n :: R[]〉 or Γ2 = Γ4〈n :: B[]〉 which contradicts Γ2 =
Γ3〈n :: c〈σ〉[]〉.

Clearly, the reference of kind a) cannot exist as x cannot be well-
typed.

Case b) Let ↑n1 of type p : c1〈σ1〉 be the id of the object that contains f .
By (object) and (fields), owner(t) ⊆ rng(σ1) ∪ p ∪ n1 ∪ {world}
where t is f ’s type. Clearly, Γ ` p : c1〈σ1〉. By (class) and (type),
Γ ` n1 ≺∗ p and Γ ` p ≺∗ q for all q ∈ rng(σ1). Thus, by (in-trans)
and (in-refl), Γ ` n1 ≺∗ q for all q ∈ owners(t). This means that if t
has owner n, then n1 must be nested inside n. By (in-*), this implies
that either n1 = n, n = world (which is clearly not the case), or that
n1 is defined in H which contradicts that n1 is defined in F . Thus,
an object with such a field f cannot exist.

2

44

As an example, consider the picture in Figure 8. There are three possible paths
to the grey object from the root: q → u → r, q → d → s → r and q → d → f .
By the structural invariant, there may be no pointers to objects inside n from
outside of n and thus, the path q → d → f is invalid. As all other paths to the
grey object go via n, n is a dominating node for it, meaning that the property
is satisfied.

In a stack that satisfies the owners-as-dominators-property, any path to an
object from the root of the object hierarchy must contain the object’s owner.
This means that the owner is a dominating node for all objects nested inside
it [5].

We express that in the theorem as no fields or variables on the stack outside
an object (outside the hole) can hold a reference to the contents of the object.
The theorem does not deal with subsequent generations, as they are allowed
full access to the object.

We believe that this formalisation of the containment invariant is easier to
understand than the original containment invariant from Clarke’s thesis [5]:
ι → ι′ ⇒ ι ≺∗ owner(ι′), that is, “if object ι references the object ι′, then ι
is inside the owner of ι′. It is not trivial to understand what this means in
terms of valid aliases in a system. Additionally, our system also deals with
stack variables on previous generations, whereas the original formulation only
considered paths from the root object in the system.

Theorem 6.5 (External-Uniqueness-as-Dominating-Edges)

If Γ ` S〈Un[v; H]〉, then (defs(H) ∪ {n}) # uses(S).

The theorem states that if S is a well-formed stack with a hole and a unique
Un[v; H] in the hole, then there are no pointers to n or H from any object in S.
Thus, v is the only reference into H outside H and is therefore a dominating
edge, that is an edge that appears on all paths from the root of the system
to the object, as all paths into H from outside must contain it. (Observe that
v ∈ dom(H) by (val-unique).)

We prove this in two steps: a) defs(H) # uses(S) and b) n 6∈ uses(S).

First note that Γ ` S〈Un[v; H]〉 implies n 6∈ defs(Γ) by (val-unique).

Case a) By contradiction. Assume the existence of a pointer Γ′ ` ↑m :: p :c〈σ〉
such that m ∈ uses(S) s.t. m ∈ dom(H) Without loss of generality,
assume that ↑m points to a top-level object in H.

If ↑m is stored in a field or value nested inside a unique in S, then
Γ′ = Γ〈Γ′′〉 where Γ′′ is the additional type information visible inside the
unique. If not, then Γ′ = Γ, the type information for the whole stack.

By (unique-val), (heap-nested) and (object), Γ′ ` p ≺∗ n (as p is

45

the owner of some object in H) and consequently, Γ′ ` n, by (in-*), the
rules for owner orderings. The case Γ′ = Γ contradicts n 6∈ defs(Γ). The
case n ∈ defs(Γ′′) contradicts the unique names assumption, as n will be
introduced a second time in Γ when typing the contents of the hole.
Thus, the pointer ↑m cannot exist.

Case b) Similar reasoning applies to proving the absence of uses of the unique
itself. The existence of a well-formed pointer Γ′ ` ↑n :: t implies Γ′ ` n
which was shown to be a contradiction above. If some field or variable
in S contained Un[v; H], this would contradict the unique names
assumption.

2

7 Related Work

Alias encapsulation schemes (a large body of which are ownership types sys-
tems) have been employed for reasoning about programs, e.g., Clarke and
Drossopoulou [17] and Müller and Poetzsch-Heffter [25]; for alias manage-
ment, e.g., Clarke et al.[4], Noble et al.[3]; and in program understanding in
the presence of aliasing [6]. Boyapati and Rinard [11] and Boyapati et al.[26]
use ownership types as the basis for a system to eliminate data-races respec-
tive deadlocks from concurrent programs. Boyapati, Liskov and Shrira [27] use
ownership types to enable safe lazy updates in object-oriented databases. In
this thesis, we use alias encapsulation to overcome the abstraction problem
inherent in extant proposals for unique pointers.

Good examples of alias encapsulation schemes are Islands [9], Confined Types
[28], Universes [25] and Ownership Types [4]. Most other approaches are either
reminiscent of these, or just weakened versions.

Islands was defined for Smalltalk [29] as a set of annotations guaranteeing that
objects inside an island, a connected subgraph of the object graph, were not
referenced from objects outside the island, except for the bridge object, which
would then become a single entry point to the island. Via methods in the
bridge object, objects could move in and out of an island. The encapsulation
provided by Islands is among the strongest proposed. However (or, perhaps,
subsequently), the practical usefulness of islands is questionable.

Confined types uses Java packages [30] as the protection domain: instances
of classes that are package scoped may not be referenced from outside the
package (i.e., by instances of classes not defined in the package). Arguably,
confined types is a more lightweight approach to alias encapsulation with a
coarse grained level of protection. Studies by Grothoff, Palsberg and Vitek
[31] of the structure of existing applications in the Purdue Benchmark Suite,

46

a large selection of programs, suggest that a quarter of all of classes satisfy the
confinement properties of confined types. However, it is not clear what that
means in practise, except that confined types may be quite compatible with
existing ways of constructing object-oriented programs.

Universes [25] is basically an extended subset of ownership types for a Java-like
language. The representation of an object conceptually belongs to a “universe”
and references may not cross the universe boundary in any direction. Its only
extension to ownership types is the introduction of a read-only pointer that
may be used for cross-universe aliasing, but not for changing the referenced
object (or, indeed, any object in the entire system). The read-only references
can be used to implement iterators, which for long was problematic in own-
ership types. Read-only references is a form of alias control—allowing aliases
while controlling their effect on a program. The concept is as basic as unique-
ness, a read-only reference may not be used to change the referenced object.
Read-only references have been used to either extend alias encapsulation pro-
posals [9,25], or as stand-alone alias control schemes [32,33]. In the last case
it is however unclear what practical gains stand from using them.

Ownership Types was proposed by Clarke, Noble and Potter [4]. In its original
form, every object has an owner and references to representation objects are
not allowed to be passed out of its owning object. In contrast to Islands,
Balloon Types and Universes, aliases from internal objects to objects that own
them are allowed; classes are parameterised with “permissions” to reference
external objects. Ownership types can be used to enable both shallow and
deep encapsulation.

While not primarily being a system for fortifying abstractions, DeLine and
Fähndrich’s work on Fugue [34] and typestates [13] is close in spirit to our
work. Fugue implements the notion of typestates on an object-oriented lan-
guage and allows checking that the protocol of an object is used correctly.
For example, a socket’s address and port must first be set before trying to
establish a connection. Fugue relies heavily on uniqueness to track typestate
through a program. The formalisation of Fugue [13] also uses adoption [12],
a construct for mediating between unique and non-unique. Key differences is
that our system uses destructive reads, and that type changes of a unique in
our system can be witnessed by several objects internal to the object itself.

7.1 Comparison

Table 4 on page 48 presents a comparison between different proposals in the
literature that include uniqueness, alias encapsulation and borrowing. Notably,
external uniqueness is the only system that provides the strong encapsulation

47

Uniqueness Encapsulation Borrowing

This paper External Deep Orthogonal
PRFJ a Conventional Deep Parameter
Flexible Alias Protection b Free Deep n/a
Vault c ∼Conventional Shallow Orthogonal
AliasJava d Conventional Shallow Parameter
Pivot Uniqueness e(c) <Conventional Shallow Parameter
Capabilities for sharing f (d) ∼Conventional ∼Shallow ∼Parameter
Islands g(e) Conventional Full ∼Parameter
Balloons h Conventional Full Parameter
OOFX/Alias Burying i Conventional None Parameter
Eiffel∗ j Conventional None Parameter
Virginity k Free None Parameter

Table 4
Comparison of related work. (a-k see text.)

of deep ownership and orthogonal borrowing. The italicised letters in the table
are keys that are explained on page 50.

First we give short explanation of the various kinds of uniqueness, ownership,
encapsulation and borrowing that we consider in our comparison.

7.1.1 Kinds of Uniqueness

We consider three kinds of uniqueness, all of which have been mentioned earlier
in the thesis:

free values can be unique (e.g., from object construction; cannot regain free-
ness once lost.).

conventional uniqueness fields and variables may contain unique refer-
ences to an object. Such a reference is the only one stored in the heap,
and possibly the stack, modulo any borrowing.

external uniqueness fields and variables may contain externally unique ref-
erences into an aggregate. Internal references to the unique object are per-
mitted.

Both forms of uniqueness subsume free. Freedom without uniqueness means
that the freeness is lost as soon as the value is stored in a field or variable and
cannot be regained. Commonly used synonyms for uniqueness include linear
[35] and unsharable [1].

48

7.1.2 Kinds of Ownership and Encapsulation

We consider three kinds of ownership/encapsulation:

shallow direct access to certain objects is limited. This is similar to tradi-
tional uniqueness; moving a unique pointer from one object to another is
effectively giving the receiving object shallow ownership over the unique.

deep the only access to the internal, transitive state of an object is through
a single entry point. The entry point may be multiply referenced and refer-
ences to external state is possible.

full same as deep ownership, except that no references to objects outside
the encapsulating boundary from within the encapsulating boundary are
permitted.

While shallow ownership prevents direct access to its representation objects,
proxy objects may be created (internally or externally) which access the en-
capsulated objects and may escape the encapsulation boundary. This makes
the encapsulation provided by shallow ownership intransitive.

Deep ownership goes further than shallow ownership by lifting the nesting of
objects into the type system and ensuring that no references to deeply nested
objects pass through their enclosing boundary. This is also called flexible alias
encapsulation [3].

Full alias encapsulation, a term coined by Noble, Vitek and Potter [3] to
describe e.g., Hogg’s Islands, offers a stronger, less flexible encapsulation than
deep ownership since references to external objects are not permitted from
within the encapsulation boundaries.

In graph theoretic terms, deep ownership imposes that owners are dominators
which break path connectivity when removed, whereas full alias encapsulation
imposes that bridge objects are cut points which break graph connectivity
when removed. For a more in-depth, graph-based comparison between differ-
ent models of encapsulation, see a recent paper by Noble, Biddle, Tempero,
Potanin and Clarke [36].

In addition to the ones considered above, other forms of encapsulation exist,
such as the package level confinement found in Confined Types [28]. These are
however too coarse-grained to enable external uniqueness and are therefore
not further discussed.

Kim, Bertino and Garza [37] define semantics for references capable of ex-
pressing a shallow form of ownership and traditional uniqueness for composite
references. This system is however not statically checked nor does it provide
deep ownership or external uniqueness. The machinery seems however to be
in place to implement external uniqueness via dynamic checks.

49

7.1.3 Kinds of Borrowing

We consider two kinds of borrowing of unique references:

borrowed parameters method parameters, this, and/or local variables may
borrow a unique reference. Borrowed references may not be assigned to
fields.

orthogonal borrowing references are either unique or non-unique. Scope
restrictions apply to a borrowed unique reference to ensure that the unique-
ness invariant can be regained.

Other names for borrowing are limited [38], temporary [39], lent [40], uncon-
sumable [1] and unique [9]. None of these however use orthogonal borrowing.

Several proposals’ implementations of borrowing weaken uniqueness by not
preventing the original reference from being accessed during the borrowing.
These proposals include Eiffel∗ [1], AliasJava [6], Balloon Types [41], Pivot
Uniqueness [42] and Capabilities for sharing [10].

By using nullification or scope restrictions, this can be avoided at the price
of race conditions and additional null-pointers as is done in PRFJ [11], Vault
[34] and in Alias Burying [2].

Checking the constraints underlying alias burying modularly leads to an inter-
dependence between uniqueness and read effects identified by John Boyland
[19]. Guava [40] also uses lent parameters to avoid capturing of objects in a
system for avoiding data races in Java.

7.1.4 Comments to the table

a) Parameterised Race-Free Java [11] permits object graphs which violates
deep ownership, but it uses an effects system to prevent access through the
offending references. The result is effectively deep ownership. In addition, to
increase flexibility, PRFJ allows unique to be used even as a non-owner pa-
rameter.

PRFJ [11] was the first proposal to combine uniqueness and deep ownership
types. PRFJ uses a straight-forward combination of uniqueness and ownership
types in a single system, relying on traditional mechanisms to protect unique-
ness of references instead of introducing a unique owner. Thus, PRFJ requires
special borrowed pointers that cannot be stored safely on the heap and can-
not support mediating between unique and non-unique as in Joline. While
enabling unique pointers to entire aggregates PRFJ sadly proposal perpetu-
ates the abstraction problem in the way we have described for method-level
annotations. Additionally, PRFJ allows the unique keyword to appear in any

50

position of a class header, which violates parametricity [43], as the internal
behaviour of a class in terms of e.g., destructive reads, is affected by its owner
parameters. Furthermore, PRFJ requires additional clauses to prevent certain
owner parameters from being bound to unique in a type, which is effectively
a kind of class-level annotation, breaking abstraction a second time due to
uniqueness.

b) Flexible Alias Protection [3] was the starting point for ownership types.
Its encapsulation model is slightly stronger since objects inside a protected
boundary may not rely on mutable state of objects external to it.

c) The Vault system [34,12] gives a practical linear type system for a non
object-oriented, imperative language. Our borrowing is similar to an adopt
operation found in Vault that allows a linear (unique) reference to become non-
linear (non-unique) temporarily by storing it into a non-unique object. While
the scope of our borrowing is restricted to a certain block, the scope of adoption
is the lifetime of the adopting object storing the previously linear pointer.
Vault also provides a focus operation that enables a non-linear reference to be
treated linearly and access to linear components in non-linear objects. This is
achieved by a form of “aggressive alias burying” in the sense that the focus
operation will not allow operations on any aliases to the focused object during
the scope of the focus. This elegantly avoids destructive reads, but does not
scale to multi-threaded class-based object-oriented programs since all valid
pointers of the focused object must be accounted for in order for the focus
operation to work.

d) AliasJava [6] only provides shallow encapsulation which does not suffice to
implement external uniqueness since internal objects that may contain non-
unique references to an externally unique object may escape. For a more de-
tailed description, see Aldrich’s dissertation [44].

e) Pivot Uniqueness [42] enables unique fields that can only be assigned with
newly created objects or null. Pivotal encapsulation is shallow, guaranteeing
only that the contents of a pivot field is never exported from an object, it may
only be borrowed.

f) Capabilities for sharing [10] offers primitive and dynamic constructs that
can be combined to enable various kinds commonly proposed constructs—
uniqueness, read-only references etc., though no one specific policy is enforced.
It presents an elegant unification of many popular constructs; two sets of
access rights, one “base set” and one “exclusive set” are used to model the
various mechanisms. Notably, uniqueness is the strongest, and the uniqueness
capability includes the owner capability. Its constructs are shallow with the
intention that systematic application of shallow mechanisms can be used to
achieve deep versions. No static type system exists.

51

g) Islands [9] allow borrowing through read-only references.

h) Balloon Types [45,41] is discussed in more detail in [46].

i) OOFX/Alias Burying [47,2] avoids destructive reads by allowing violations
of actual uniqueness as long as these violations are never witnessed. The alias
burying solution to maintaining a strong uniqueness invariant would work well
with external uniqueness, but would require an effects system to be modular.
Alias burying is discussed throughout the thesis.

j) Eiffel∗[1] is an early system bringing traditional uniqueness into object-
oriented programming using method-level annotations to deal with subjective
treatment of this.

k) Virginity [18] is basically free values obtained by object creation whose
freeness is lost once assigned to a field or variable.

7.2 Region-based Memory Management

Our scoped region construct is similar to the lexically scoped letregion con-
struct used in region-based memory management [48,49]. There are a number
of differences. Firstly, our construct is under programmer control, as in Cyclone
[20], whereas the regions calculus is the basis for a compiler’s intermediate lan-
guage. Secondly, the principal aim of region-based memory management differs
from ours, which is to limit the aliasing between objects. The final difference
is the technical machinery used to achieve safety: our approach is structural,
maintaining a specific nesting relationship between objects to ensure that no
references into a deleted region remain (see also Clarke’s dissertation [5]),
whereas the regions calculus uses effects to determine that references into a
deleted region are never dereferenced.

Both Cyclone [20] and Gay and Aiken’s RC [50] manage a nesting relationship
which captures when one object outlives another, very similar to how our sys-
tem works. While some attempts to explicitly add region-based memory man-
agement to Java exist (see e.g., [51,52]), they require interfaces to be extended
with effects annotations to ensure modular checking, whereas our structural
approach uses ownership and owner annotations. Recent work by Boyapati et
al.add regions and ownership to Java to address the problems of Real-time
Java [53]. (Other styles of effects system also exist for Java [47,17,11,26].) Al-
though the structural approach lacks the delicacy of the regions calculus, we
believe that it is closer to the spirit of object-oriented programming. Indeed,
real-time Java [54] includes ScopedMemory objects which behave similarly to
our scoped regions, without guarantees of static safety. All regions systems
lack the deep ownership and unique references.

52

Deep ownership enables an object to be seen as having a region (referred to
using this) containing the objects it owns, revealing an interesting duality:
in the region calculus, the lifetime of objects depends upon the lifetime of
regions; in deep ownership types, the lifetime of regions depends upon the
lifetime of objects.

A number of systems in the literature combine linearity and regions [55,56],
using linearity to track the use of regions to avoid the lexical scoping or region
allocation and deallocation in the regions calculus.

7.3 Uniqueness and Linearity

Girard’s linear logic [57] created the opportunity for stronger control of re-
sources in programming languages. However, a number of researchers have
realised that programming with uniqueness or linearity in its strictest form is
painful [58,35]. Wadler’s let! construct, quasi-linear types [59], and Vault’s
adoption and focus [12], for example, introduce means for alleviating this pain.
Our notion of external aliasing and to a lesser extent our borrowing construct
were designed for a similar goal in an object-oriented setting.

Furthermore, we believe that the common linear typing restriction of prevent-
ing linear objects inside non-linear ones is not well-suited to object-oriented
programming due to the inflexible nature of classes.

8 Conclusion

As we have previously stated, in a system with deep ownership types, adding
unique pointers through the concept of unique owners is virtually for free as
all the relevant mechanisms for dealing with owners are already in place. In
addition to the unique owner, the only necessary additions are the borrowing
statement and destructive reads. On the level of formalising external unique-
ness and proving its soundness, the price is steeper.

As movement and borrowing causes change of owners and owners are recorded
in types, movement and borrowing effectively change the type of an object.
This change can be witnessed by several inside objects as well as the singular
external owner. This complicates the formalisation, for example as movement
changes what parts of the heap the unique aggregate may reference. We are
not aware of the existence of any other formalisms with these properties, nor
of any formalism of the dynamic semantics of uniqueness and destructive reads
in an object-oriented programming language.

53

External uniqueness gives strong aliasing guarantees, and, as we have shown,
can be achieved in a programming language with ownership types, virtually
“for free”. To us, external uniqueness is better suited to object-oriented pro-
gramming than traditional uniqueness for several reasons:

(1) It considers aggregates—it is not possible, as it is with traditional unique-
ness, to have a unique pointer to an object who’s representation is shared.

(2) It does not break abstraction—an object is only active when it is bor-
rowed, and thus non-unique, it is not possible for purely internal changes
of an object to preclude it being referenced uniquely.

(3) It allows internal back-pointers, which allows more object structures to
be used with external uniqueness than with traditional uniqueness.

Even though external uniqueness on the surface looks like a violation of the
essence of uniqueness, external uniqueness is “unique enough”: as there can
be only one active pointer to a unique object at any time, external uniqueness
is effectively unique.

We have presented a formal account of external uniqueness in our Joline lan-
guage, outlined its soundness proof (the full details are available in the au-
thor’s dissertation [14]), as well as formally proven owners-as-dominators and
external-uniqueness-as-dominating-edges. The key difficulty of our formal sys-
tem is the changing types of objects due to movement and borrowing, which
required a slightly unorthodox, but perfectly sound and reasonable, use of store
types. For the future, we hope to extract a more minimal “core calculus” of
external uniqueness, to further explore its properties.

References

[1] N. Minsky, Towards alias-free pointers, in: Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), 1996.

[2] J. Boyland, Alias burying: Unique variables without destructive reads,
Software — Practice and Experience 31 (6) (2001) 533–553.

[3] J. Noble, J. Vitek, J. Potter, Flexible alias protection, in: E. Jul (Ed.),
ECOOP’98—Object-Oriented Programming, Vol. 1445 of Lecture Notes In
Computer Science, Springer-Verlag, Berlin, Heidelberg, New York, 1998, pp.
158–185.

[4] D. Clarke, J. Potter, J. Noble, Ownership types for flexible alias protection,
in: Proceedings of the OOPSLA Conference on Object-Oriented
Programming, Systems, Languages and Applications, 1998.

[5] D. Clarke, Object ownership and containment, Ph.D. thesis, School of
Computer Science and Engineering, University of New South Wales, Sydney,

54

Australia (2001).

[6] J. Aldrich, V. Kostadinov, C. Chambers, Alias annotations for program
understanding, in: Proceedings of the OOPSLA Conference on
Object-Oriented Programming, Systems, Languages and Applications, 2002.

[7] C. Boyapati, Safejava: A unified type system for safe programming, Ph.D.
thesis, Electrical Engineering and Computer Science, MIT (February 2004).

[8] D. Clarke, T. Wrigstad, External uniqueness is unique enough, in: L. Cardelli
(Ed.), Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), Vol. 2473 of Lecture Notes In Computer Science,
Springer-Verlag, Darmstadt, Germany, 2003, pp. 176–200.

[9] J. Hogg, Islands: Aliasing protection in object-oriented languages, in:
Proceedings of the OOPSLA Conference on Object-Oriented Programming,
Systems, Languages and Applications, 1991.

[10] J. Boyland, J. Noble, W. Retert, Capabilities for Sharing: A Generalization of
Uniqueness and Read-Only, in: Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), Vol. 2072, 2001.

[11] C. Boyapati, M. Rinard, A parameterized type system for race-free Java
programs, in: Proceedings of the OOPSLA Conference on Object-Oriented
Programming, Systems, Languages and Applications, 2001.

[12] M. Fähndrich, R. DeLine, Adoption and focus: Practical linear types for
imperative programming, in: Proceedings of the ACM Conference on
Programming Language Design and Implementation, 2002.

[13] R. DeLine, M. Fähndrich, Typestates for objects, in: M. Odersky (Ed.),
Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), Vol. 3086, 2004.

[14] T. Wrigstad, Ownership-based alias management, Ph.D. thesis, Department of
Computer and Systems Science, Royal Institute of Technology, Kista,
Stockholm, submitted (May 2006).

[15] J. Noble, A. Potanin, Checking ownership and confinement properties, in: 4th
Workshop on Formal Techniques for Java Programs, Malaga, Spain, 2002.

[16] D. Clarke, T. Wrigstad, External uniqueness, in: 10th Workshop on
Foundations of Object-Oriented Languages (FOOL), New Orleans, LA, 2003.

[17] D. Clarke, S. Drossopolou, Ownership, encapsulation and the disjointness of
type and effect, in: Proceedings of the OOPSLA Conference on
Object-Oriented Programming, Systems, Languages and Applications, 2002.

[18] K. R. M. Leino, R. Stata, Virginity: A contribution to the specification of
object-oriented software, Information Processing Letters 70 (2) (1999) 99–105.

[19] J. Boyland, The interdependence of effects and uniqueness, in: 3rd Workshop
on Formal Techniques for Java Programs, 2001.

55

[20] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, J. Cheney,
Region-based memory management in Cyclone, in: Proceedings of the ACM
Conference on Programming Language Design and Implementation, 2002.

[21] G. Bracha, M. Odersky, D. Stoutamire, P. Wadler, Making the future safe for
the past: Adding genericity to the Java programming language, in:
Proceedings of the OOPSLA Conference on Object-Oriented Programming,
Systems, Languages and Applications, 1998.

[22] M. Odersky, The Scala Language Specification 2.0, Programming Methods
Laboratory, EFPL, Switzerland, 2006.

[23] H. G. Baker, Infant mortality and generational garbage collection, SIGPLAN
Notices 28 (4) (1993) 55–57.

[24] E. Ernst, K. Ostermann, W. R. Cook, A virtual class calculus, in: Proceedings
of Principles of Programming Languages (POPL), Charleston, South
Carolina, USA, 2006.

[25] P. Müller, A. Poetzsch-Heffter, Universes: A type system for controlling
representation exposure, in: A. Poetzsch-Heffter, J. Meyer (Eds.),
Programming Languages and Fundamentals of Programming, Fernuniversität
Hagen, 1999.

[26] C. Boyapati, R. Lee, M. Rinard, Ownership types for safe programming:
Preventing data races and deadlocks, in: Proceedings of the OOPSLA
Conference on Object-Oriented Programming, Systems, Languages and
Applications, 2002.

[27] C. Boyapati, B. Liskov, L. Shrira, Ownership types and safe lazy upgrades in
object-oriented databases, Tech. Rep. MIT-LCS-TR-858, Laboratory for
Computer Science, MIT (July 2002).

[28] J. Vitek, B. Bokowski, Confined types in Java, Software Practice and
Experience 31 (6) (2001) 507–532.

[29] A. Goldberg, D. Robson, Smalltalk-80: The Language and its Implementation,
Addison-Wesley, 1983.

[30] J. Gosling, B. Joy, G. Steele, The Java Language Specification,
Addison-Wesley, 1996.

[31] C. Grothoff, J. Palsberg, J. Vitek, Encapsulating objects with confined types,
in: Proceedings of the OOPSLA Conference on Object-Oriented
Programming, Systems, Languages and Applications, 2001.

[32] G. Kniesel, D. Theisen, JAC—access right based encapsulation for Java,
Software — Practice and Experience 31 (6) (2001) 555–576.

[33] M. Skoglund, T. Wrigstad, Alias control with read-only references, in: Sixth
Conference on Computer Science and Informatics, 2002.

56

[34] R. DeLine, M. Fähndrich, Enforcing high-level protocols in low-level software,
in: Proceedings of the ACM Conference on Programming Language Design
and Implementation, 2001, pp. 59–69.

[35] H. G. Baker, ‘Use-once’ variables and linear objects – storage management,
reflection and multi-threading, ACM SIGPLAN Notices 30 (1) (1995) 45–52.

[36] J. Noble, R. Biddle, E. Tempero, A. Potanin, D. Clarke, Towards a model of
encapsulation, in: D. Clarke (Ed.), International Workshop on Aliasing,
Confinement and Ownership in Object-oriented Programming,
UU-CS-2003-030, Utrecht University, 2003.

[37] W. Kim, E. Bertino, J. F. Garza, Composite objects revisited, in: Proceedings
of the 1989 ACM SIGMOD International Conference on Management of Data,
Portland, Oregon, 1989, pp. 337–347.

[38] E. C. Chan, J. T. Boyland, W. L. Scherlis, Promises: Limitied specifications
for analysis and manipulation, in: IEEE International Conference on Software
Engineering (ICSE), 1998.

[39] G. Kniesel, Encapsulation = visibility + accessibility, Tech. Rep.
IAI-TR-96-12, Universiät Bonn, revised March 1998 (November 1996).

[40] D. F. Bacon, R. E. Strom, A. Tarafdar, Guava: a dialect of Java without data
races, in: Proceedings of the OOPSLA Conference on Object-Oriented
Programming, Systems, Languages and Applications, 2000, pp. 382–400.

[41] P. S. Almeida, Control of object sharing in programming languages, Ph.D.
thesis, Department of Computing, Imperial College of Science, Technology,
and Medicine, University of London (June 1998).

[42] K. R. M. Leino, A. Poetzsch-Heffter, Y. Zhou, Using data groups to specify
and check side effects, in: Proceedings of the ACM Conference on
Programming Language Design and Implementation, 2002.

[43] J. C. Reynolds, Towards a theory of type structure, in: B. Robinet (Ed.),
Programming Symposium, Vol. 19 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 1974, pp. 408–425.

[44] J. Aldrich, Using types to enforce architectural structure, Ph.D. thesis,
University of Washington (August 2003).

[45] P. S. Almeida, Balloon Types: Controlling sharing of state in data types, in:
Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), Vol. 1241, 1997.

[46] T. Wrigstad, External uniqueness: A theory of aggregate uniqueness for
object-orientation, licentiate Thesis, Department of Computer and Systems
Sciences, Stockholm University. (September 2004).

[47] A. Greenhouse, J. Boyland, An object-oriented effects system, in: ECOOP’99
— Object-Oriented Programming, 13th European Conference, no. 1628 in
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, New York,
1999, pp. 205–229.

57

[48] J.-P. Talpin, P. Jouvelot, Polymorphic type, region, and effect inference,
Journal of Functional Programming 2 (3) (1992) 245–271.

[49] M. Tofte, J.-P. Talpin, Region-Based Memory Management, Information and
Computation 132 (2) (1997) 109–176.

[50] D. Gay, A. Aiken, Language support for regions, in: ACM SIGPLAN 2001
Conference on Programming Language Design and Implementation (PLDI),
Snowbird, Utah, 2001.

[51] B. N. Yates, A type-and-effect system for encapsulating memory in Java,
Master’s thesis, Department of Computer and Information Science and the
Graduate School of the University of Oregon (August 1999).

[52] M. V. Christiansen, P. Velschrow, Region-based memory management in Java,
Master’s thesis, Department of Computer Science (DIKU), University of
Copenhagen (May 1998).

[53] C. Boyapati, A. Salcianu, W. Beebee, M. Rinard, Ownership types for safe
region-based memory management in real-time java, in: ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation (PLDI),
2003.

[54] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, M. Turnbull, The
Real-Time Specification for Java, Addison-Wesley, 2000.

[55] D. Walker, K. Watkins, On regions and linear types, in: International
Conference on Functional Programming, 2001, pp. 181–192.

[56] K. Crary, D. Walker, G. Morrisett, Typed memory management in a calculus
of capabilities, in: 1999 Symposium on Principles of Programming Languages,
1999.

[57] J.-Y. Girard, Linear logic, Theoretical Computer Science 50 (1987) 1–102.

[58] P. Wadler, Linear types can change the world!, in: M. Broy, C. B. Jones
(Eds.), IFIP TC 2 Working Conference on Programming Concepts and
Methods, North-Holland, Sea of Gallilee, Israel, 1990, pp. 561–581.

[59] N. Kobayashi, Quasi-linear types, in: 26th ACM Symposium on Principles of
Programming Languages, 1999.

A Appendix

A.1 Variable Look-up and Assignment

The look-up-function used in (expr-this) and (expr-var), looks up the vari-
able on the top-frame in the stack and is defined thus (⊥ denotes that the
look-up or update was unsuccessful):

58

nil(x) ::=⊥
(S •F)(x) ::= F (x)

(F ⊕Bm
n [S;F ′])(x) ::= F (x) where x ∈ vars(F)

(F ⊕Bm
n [S;F ′])(x) ::= F ′(x) where x ∈ vars(F ′)

(F ⊕Rn[S;F ′])(x) ::= F (x) where x ∈ vars(F)
(F ⊕Rm[S;F ′])(x) ::= F ′(x) where x ∈ vars(F ′)

(F ⊕α 7→ n)(x) ::= F (x)
(F ⊕ y 7→ ↑n)(x) ::= F (x) x 6= y

(F ⊕x 7→ ↑n)(x) ::= ↑n

We write S[x 7→ v] to mean the stack S where the variable x in the topmost
frame is updated with the value v.

nil[x 7→ v] ::=⊥
(S •F)[x 7→ v] ::= S •(F [x 7→ v])

(x′ 7→ v′, F)[x 7→ v] ::= x′ 7→ v′, (F [x 7→ v])
(x 7→ v′, F)[x 7→ v] ::= x 7→ v, F

(α 7→ n, F)[x 7→ v] ::= α 7→ n, (F [x 7→ v])
Rn[H;F][x 7→ v] ::= Rn[H;F [x 7→ v]]

Bb
n[H;F][x 7→ v] ::= Bb

n[H;F [x 7→ v]]

A.2 Field Look-up and Assignment

The helper functions (S)n.f and (S)n.f :=v are shorthands for reading respec-
tive updating the field f in the object with id n in stack S with null . They
are formally defined thus:

(nil)n.f ::=⊥

(S •F)n.f ::=
{

(S)n.f if n ∈ defs(S)
(F)n.f otherwise

(F ⊕x 7→)n.f ::= (F)n.f

(F ⊕α 7→)n.f ::= (F)n.f

(Rm[H;F])n.f ::=
{

(H)n.f if n ∈ defs(H)
(F)n.f otherwise

(Bb
m[H;F])n.f ::=

{
(H)n.f if n ∈ defs(H)
(F)n.f otherwise

59

(n′ 7→ cσ[V ;H],H ′)n.f ::=

V (f) if n = n′

(H)n.f if n 6= n′ and n ∈ defs(H)
(H ′)n.f otherwise

respective (for field update):

(nil)n.f :=v ::=⊥

(S •F)n.f :=v ::=
{

(S)n.f :=v •F if n ∈ defs(S)
S •(F)n.f :=v otherwise

(F ⊕x 7→ v′)n.f :=v ::= x 7→ v′, (F)n.f :=v

(F ⊕α 7→ m)n.f :=v ::= α 7→ m, (F)n.f :=v

(n′ 7→ o,H)n.f :=v ::=
{

n′ 7→ o, (H)n.f :=v if n 6= n′ and n ∈ defs(H)
(n′ 7→ o)n.f :=v,H otherwise

(n′ 7→ cσ[V ;H])n.f :=v ::=
{

n′ 7→ cσ[V [f 7→ v];H] if n = n′

n′ 7→ cσ[V ; (H)n.f :=v] otherwise

A.3 Error Trapping Rules

The additional, error trapping rules for Joline.

(expr-this)

S(this) = null

〈S | this〉 → 〈S | ERROR〉

(expr-field-err)

S(x) = null

〈S |x.f〉 → 〈S | ERROR〉

(update-field-err-1)

S(x) = null

〈S |x.f := e〉 → 〈S | ERROR〉

The rule (expr-this) captures an attempt to look-up this is a context where
this is not defined. The rules (expr-field-err) and (update-field-err-1) trap
looking up, or updating, a field on a null-pointer.

(expr-dread-field-err)

S(x) = null

〈S |x.f --〉 → 〈S | ERROR〉

(expr-call-err-1)

S(x) = null

〈S |x.md〈 〉(e)〉 → 〈S | ERROR〉

60

The rule (expr-dread-field-err) traps destructively reading a field on a
null-pointer. Similarly, (expr–call-err-1) traps invoking a method on a null-
pointer receiver.

(stat-borrow-err-1)

S(x) = null

〈S | borrow x t as 〈p〉 y { s }〉 → 〈S | ERROR〉

By (stat-borrow-err-1), borrowing a null value will not be successful.

A.4 Error Propagating Rules

The error propagating rules capture errors occuring in subexpressions or sub-
statements, and propagate them.

(expr-call-err-2)

〈S | e〉 → 〈S | ERROR〉

〈S |x.md〈 〉(e)〉 → 〈S | ERROR〉

The rule (expr-call-err-2) states that errors occuring in the evaluation of
the argument expressions will be propagated and the call not dispatched.

(expr-call-err-3)

〈S | e〉 → 〈S1 | v〉 S1(x) = ↑n S1 = S ′〈n 7→ cσ[]〉m
Dm:c〈σ〉(md) = (α R , y → , s;return e′, m :c2〈σ2〉)

〈S1 •σ2
m
n ⊕ this 7→ ↑n⊕α 7→ p⊕ y 7→ v | s;return e〉 → 〈S2 | ERROR〉

〈S |x.md〈p〉(e)〉 → 〈S2 | ERROR〉

The rule (expr-call-err-3) states that errors occuring in the evaluation of a
method will be propagated.

(stat-sequence-err)

〈S | s〉 → 〈S ′ | ERROR〉 ∨ 〈S | s〉 → 〈S ′′〉 ∧ 〈S ′′ | s′〉 → 〈S ′ | ERROR〉

〈S | s;s′〉 → 〈S ′ | ERROR〉

61

The rule (stat-sequence-err) states that errors occuring in sequences of
statements will be propagated.

(expr-lose-uniqueness-err)

〈S | e〉 → 〈S ′ | ERROR〉

〈S | (p) e〉 → 〈S ′ | ERROR〉

(stat-scoped-err)

〈S | s〉 → 〈S ′ | ERROR〉

〈S | 〈p〉 { s }〉 → 〈S ′ | ERROR〉

By (expr-lose-uniqueness-err) and (stat-scoped-err), errors occuring in
the subexpressions or body of the scoped region will be propagated.

(stat-borrow-err-2)

〈S⊕x 7→ null ⊕Bp
n[H[n/x]; y 7→ v] | s〉 → 〈S ′ | ERROR〉 where n is fresh

〈S⊕x 7→ Ux[v; H] | borrow x t as 〈p〉 y { s }〉 → 〈S ′ | ERROR〉

By (stat-borrow-err-2), errors occuring inside a borrowing block will be
propagated.

(update-field-err-2)

〈S | e〉 → 〈S | ERROR〉

〈S |x.f := e〉 → 〈S | ERROR〉

(stat-update-err)

〈S | e〉 → 〈S | ERROR〉

〈S |x := e〉 → 〈S | ERROR〉

(stat-local-err)

〈S | e〉 → 〈S | ERROR〉

〈S | t x := e〉 → 〈S | ERROR〉

The rules above propagate errors occuring in the evaluation of the RHS ex-
pression.

A.5 Helper Functions for Structural Invariants

uses denotes the set of all ids of all objects referenced by fields and variables
in a stack and is defined thus:

uses(nil) = ∅

62

uses(S •F) = uses(S) ∪ uses(F)

uses(F ⊕α 7→ n) = uses(F)

uses(F ⊕x 7→ v) = uses(F) ∪ uses(v)

uses(F ⊕Rn[F ′; H]) = uses(F) ∪ uses(F ′) ∪ uses(H)

uses(F ⊕Bb
n[F ′; H]) = uses(F) ∪ uses(F ′) ∪ uses(H)

uses(n 7→ cσ[V ; H], H ′) = uses(V) ∪ uses(H) ∪ uses(H ′)

uses(f 7→ v, V) = uses(v) ∪ uses(V)

uses(Un[↑m; H]) = {m} ∪ uses(H)

uses(↑n) = {n}
uses(null) = ∅

defs denotes the the set of all identities of all objects, regions, borrowing blocks
and uniques on a stack and is defined thus:

defs(S •F) = defs(S) ∪ defs(F)

defs(x 7→ v, F) = defs(F)

defs(α 7→ n, F) = defs(F)

defs(Rn[H; F]) = {n} ∪ defs(H) ∪ defs(F)

defs(Bn[H; F]) = {n} ∪ defs(H) ∪ defs(F)

defs(n 7→ cσ[V ; H], H ′) = {n} ∪ defs(V) ∪ defs(H) ∪ defs(H ′)

defs(f 7→ Un[v; H]) = {n} ∪ defs(H)

defs(f 7→ ↑n) = ∅
defs(f 7→ null) = ∅

defs(nil) = ∅

63

