
Tobias Wrigstad

Department of Computer and Systems Sciences

Stockholm University/KTH, Stockholm, Sweden

External Uniqueness

— A Theory of Aggregate Uniqueness

for Object-Oriented Programming

August 9, 2004

Submitted to Stockholm University in partial fulfillment of

the degree of Licentiate of Philosophy





Summary. Unique pointers is a simple and powerful concept. In an object-oriented

programming language, they facilitate reasoning about the state of an object formally

and informally, make resource management and memory management easier, and can

void the need for synchronisation in the presence of multiple threads.

However, existing implementations of uniqueness are not properly suited to object-

oriented programming. A unique pointer to a bridge object in an aggregate only con-

siders the bridge object and not the rest of the aggregate. More importantly, we identify

a problem with existing implementations that leads to a violation of one of the ground

principles of object-orientation, the principle of abstraction. The problem stems from

the fact that in existing implementations of uniqueness, uniqueness is a property of

the referenced object, or even the object’s class—not a consequence of how the object

is being used externally; whether or not an object can be uniquely referenced (and

the semantics of a methods invoked on a unique receiver) must be considered when

designing a class.

To this end we propose a different form of uniqueness, external uniqueness, where

all objects can be referenced uniquely, regardless of how they are implemented. An

important consequence of our proposal is also the incorporation of innocuous internal

pointers in the uniqueness definition. There may be an arbitrary number of references

to a unique object, but only one of these may be visible externally. The resulting lan-

guage is more powerful, in our opinion better suited to object-oriented programming,

and also cleaner since it avoids the introduction of second-class constructs necessary

in previous proposals to deal with the volatile nature of uniqueness which complicates

the languages.

We base our proposal on ownership types, a system for enforcing encapsulation

and provide a strong notion of aggregate. The symbiosis of external uniqueness and

ownership types is mutually beneficial in that enabling external uniqueness in the pres-

ence of ownership types is virtually free, and lifts some of the restrictions in ownership

types systems.

We present the design of external uniqueness along with a static semantics to

guarantee the proper use of the constructs as well as a dynamic semantics as a basis

for proving the important properties and soundness of our systems. We state the proofs

and provide proof sketches, but save the complete technical account for the final PhD

thesis.

This thesis is typeset in LATEX, the best thing since sliced bread (and sticky tape).





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Object-Oriented Programming and Object Sharing . . . . . . . . . . . 4

1.2 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Uniqueness and Object-oriented Programming . . . . . . . . . 7

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Aliasing, Uniqueness and Object-Oriented Programming . . . . . . . . 13

2.1 Coping with Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Maintaining Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Inherent Problems with Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Unique Pointers to Aggregates . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Uniqueness and a Problem with Abstraction . . . . . . . . . . . 26

2.3.3 Problem Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Problem Analysis: Distinguishing Between Internal and

External References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Ownership Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 What is Alias Encapsulation, Anyway? . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Ownership Types and Insides and Outsides of Objects . . . . . . . . 30

3.2.1 Shallow Ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Deep Ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Combining Uniqueness and Ownership Types . . . . . . . . . . . . . . . . 40

3.3.1 Motivation for Chosing Ownership Types . . . . . . . . . . . . . 40

4 External Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Tour de External Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Fields and Blocks as Owners . . . . . . . . . . . . . . . . . . . . . . . . 43



VIII Contents

4.1.2 Owners are Dominating Edges . . . . . . . . . . . . . . . . . . . . . . 44

4.1.3 Externally Unique is Effectively Unique . . . . . . . . . . . . . . . 44

4.1.4 Operations on Externally Unique References . . . . . . . . . . 45

4.1.5 Movement Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Owner-Polymorphic Methods . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Generational Ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.3 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.4 Shallow Ownership does not Suffice . . . . . . . . . . . . . . . . . 54

5 Formalising External Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Introducing Joline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.2 Joline’s Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.3 Joline’s Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.4 Well-formed Store Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.5 Well-formed Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Proof Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Dominance Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Applications and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 Applications for External Uniqueness . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.1 Transfer of Ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.2 Merging Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1.3 Simulating Borrowing and Orthogonality of Concepts . . 91

6.1.4 Movable Aliased Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.5 The Initialisation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

7.1 External Uniqueness for Object-Orientation . . . . . . . . . . . . . . . . . 101

7.2 How External Uniqueness Overcomes the Abstraction Problem . 102

7.3 Facilitating Reasoning about Objects . . . . . . . . . . . . . . . . . . . . . . . 105

7.4 External Uniqueness in the Presence of Multiple Threads . . . . . . 106

8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

8.1 Alias Encapsulation: Containment, Ownership, etc. . . . . . . . . . . . 109

8.1.1 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.2 Region-based Memory Management . . . . . . . . . . . . . . . . . . . . . . . . 115

8.3 Uniqueness and Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.4 Originality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



Contents IX

8.4.1 Hogg’s Islands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.4.2 Almeida’s Balloon Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.4.3 Parameterised Race-free Java . . . . . . . . . . . . . . . . . . . . . . . 119

8.4.4 Flexible Alias Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.2 Critique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.2.1 Weaknesses Inherited from Ownership Types . . . . . . . . . . 122

9.2.2 The Joline System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.2.3 The Price of External Uniqueness . . . . . . . . . . . . . . . . . . . . 123

9.2.4 Lack of Practical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133

A.1 Elaborating Movement Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133





List of Figures

1.1 Three characteristics not present in uniqueness. . . . . . . . . . . . . . . 10

2.1 Alias problem examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Actual uniqueness via destructive reads. . . . . . . . . . . . . . . . . . . . . . 18

2.3 Effective uniqueness via alias burying . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Class-level annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Using method-level annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Aggregate uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Example of shallow ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Reference permissions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Using a proxy object to circumvent protection . . . . . . . . . . . . . . . . 33

3.4 A linked list and links using ownership types . . . . . . . . . . . . . . . . . 37

3.5 Object graph for linked list example in Figure 3.4 . . . . . . . . . . . . . 37

3.6 Comparing uniqueness and deep ownership . . . . . . . . . . . . . . . . . . 38

4.1 Uniqueness vs. Ownership vs. External uniqueness . . . . . . . . . . . . 42

4.2 Mediating between external uniqueness and borrowing . . . . . . . . 46

4.3 Violation caused by movement in the presence of subtyping . . . . 50

4.4 Movement that violates deep ownership. . . . . . . . . . . . . . . . . . . . . 51

4.5 A problem with using owner in the extends-clause . . . . . . . . . . . . 51

4.6 Generational ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Possible supertypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Possible paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 A Token ring implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Transfer of ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Merging two doubly-linked lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 Passing a borrowed object as argument to a method. . . . . . . . . . . 92



XII List of Figures

6.5 Storing a borrowed reference on the heap. . . . . . . . . . . . . . . . . . . . 93

6.6 Movable aliased objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.7 The object graph for the doubly-linked code list in Figure 6.3 . . . 96

6.8 Object graph for the doubly-linked list with head and tail. . . . . . . 96

6.9 Head and tail pointers using movable aliased objects . . . . . . . . . . 97

6.10 Overcoming the initialisation problem . . . . . . . . . . . . . . . . . . . . . . . 98

7.1 The Server class example from Figures 2.4 and 2.5 encoded

with external uniqueness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



List of Tables

5.1 Syntax of Joline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Helper function definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Judgements used in the static semantics. . . . . . . . . . . . . . . . . . . . . 62

5.4 Judgements for well-formed store typing. . . . . . . . . . . . . . . . . . . . . 77

5.5 Judgements for well-formed configurations. . . . . . . . . . . . . . . . . . . 78

5.6 Definition of uses; the set of pointers used in a store/stack. . . . . . 83

5.7 Definition of defs; the set of ids of all objects defined in a

store/stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.1 Comparison of related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112





Preface

Where man has not been to give them names,

objects on desert islands do not know what they are.

Taking no chances, they stand still, and wait.

Quietly, excited.

For hundreds of thousands of years.

Ivor Cutler

Too many people close to me have died during the completion of this disser-

tation (albeit not as a consequence of this work), most notably all my grand

parents and also my first supervisor, Terttu Orci, to whom I am forever grate-

ful; for getting me enrolled in the PhD programme, for teaching me about re-

search and formalisms, and for being a (still) inspiring person to have known.

This work is for all of you.

I’m also hugely indebted to Dave, for being the super supervisor, not only

on my thesis work but on life itself (“eat your food” and “don’t you know the

laws of drying things on racks?”) and for sharing some of his inner thoughts

(“It strikes me as highly unlikely that the solar system ever occurred” and “I

guess there are things you cannot do without breaking the laws of physics”).

I believe everyone should be given a shortcut to essential knowledge such as

the one I’ve gotten from him. I leave the rest of my praise for the PhD thesis.

I hope you know I’m grateful.

I also want to thank Associate Professor Louise Yngström for pushing me

forward when I needed it; Beatrice Åkerblom for letting me talk constantly

about type systems and for treating me to that beer when my mind was about

to blow; and to Henrik Bergström for doing some last-minute proof-reading.

My parents and my brother have probably seen less of me than they de-

serve (not necessarily a bad thing), and so has Emma (sometimes it is good



2 Preface

that you too cannot stop working). Finally, I want to thank Anders N, Anders

S, Jan, Jenny, Jocke, Fredrik, Linus, Martin, Olle, Robin, Thomas, Thorbiörn,

Wille et al. (forgetting someone, I’m sure), who constantly kept talking to me

about other things.

Tobias



❖ 1

Introduction

A unique pointer is the single pointer to an object in a system. The holder

of the unique pointer is the only object in the system that can access the

referenced object which has many powerful consequences: it makes it easier

to reason about the state of that object between invocations which facilitates

various static analyses and proofs of properties of a program; it can void the

need for synchronisation in a multi-threaded setting; it also makes it easier to

handle resources and manage memory since for example the effect of deleting

an object referenced by a unique pointer is localised.

We believe, however, that current implementations of uniqueness are de-

signed at the wrong level of abstraction for object-oriented programming:

objects are viewed as “flat entities” rather than as black boxes, i.e., aggregates

built up by complex collections of objects with arbitrary internal composi-

tion. Also, as it turns out, existing approaches to uniqueness display a severe

problem—changes to implementation might leak out into the interface break-

ing the principle of abstraction, thus making software evolution more difficult

as these might propagate throughout the system.

This thesis introduces external uniqueness, which we believe is a better,

more natural way of adding uniqueness to an object-oriented programming

language. Not only does external uniqueness allow unique pointers to black

boxes or aggregates, it also overcomes the abstraction problem inherent in

traditional uniqueness proposals and results in a cleaner system with fewer

and orthogonal concepts.

We identify and describe the abstraction problem with traditional unique-

ness as well as problems with weakening uniqueness, unnecessary complex-

ity due to the introduction of non-orthogonal constructs and unnecessary re-

strictions due to design issues or weak type systems and show how external

uniqueness overcomes these problems. We include a formal semantics of ex-

ternal uniqueness along with outlines and proof sketches of the most impor-



4 1 Introduction

tant theorems and discuss the virtues and implications on programming in

comparison with traditional uniqueness. We also show a number of applica-

tions of external uniqueness that were not possible to implement in earlier

systems.

Interestingly enough, our system displays many properties of the early

proposals for alias encapsulation, namely Hogg’s Islands and Almeida’s Bal-

loon types. Our system is however less restrictive, allows uniqueness to black

boxes and overcomes the abstraction problem.

This thesis is an extension of the results of previous work (Clarke and Wrigstad

2003a; Clarke and Wrigstad 2003b); most notably, the inclusion of a dynamic

semantics of Joline as well as proof statements and a number of extensions and

deeper discussions not present in the abovementioned papers.

Missing from this thesis are the proofs, which we save for the final PhD

thesis. However, we include static and dynamic semantics, statements of the most

important proofs and proof sketches.

1.1 Object-Oriented Programming and Object Sharing

Objects often need to interact in complex ways to perform useful operations.

As systems become more complex and intricate, it makes less sense to speak

about single objects—instead we talk about aggregates, collections of (possi-

bly shared) objects that act together to form a whole.

The sharing of objects is a necessity for efficient software systems. Com-

mon programming idioms such as the observer pattern (Gamma, Helm, John-

son, and Vlissides 1994) or data structures as the doubly-linked list require

sharing to work. Sharing is also necessary if we want the structure of our pro-

grams to model real-world entities, which has been a major selling point of

object-orientation.

On the downside, sharing of objects makes it hard to reason about pro-

grams. To prove an invariant in compile-time, or even to be able to say some-

thing about the state of an object between method invocations, we need to

track the use of pointers in a program. This is either tricky or impossible, de-

pending on the nature of our analysis and whether or not we can analyse the

entire code or just a portion of it, such as an individual class or module. Re-

gardless of that fact, such analyses suffer from a combinatorial explosion of

assertions that state whether or not an object is aliased. This usually makes

the results weak or simply unobtainable.

Generally, to be able to say something about the behaviour of a program

or to check whether a particular class invariant is satisfied, we need to be able

to reason about pointers. For example, if pointers to an object’s internal state



1.2 Uniqueness 5

can be obtained by other objects, we must look beyond the object in point

to understand how its state can be manipulated. Since pointers are generally

unbounded and may flow from any part of the program to any other part,

reasoning involving pointers is a complex and delicate matter.

To aid both formal and informal reasoning, several alias management ap-

proaches have been suggested. For example, by restricting the number of

aliases to an object, we can more easily reason about the effects of changes

to that object since the effects become more localised (pointer restrictions); by

restricting what parts of an object may be referenced (and from what parts

of a program), we can formulate properties that hold invariantly of external

aliasing (alias encapsulation).

Recent years have seen a dramatic increase in research on object shar-

ing, pointer restriction and alias encapsulation, starting with Hogg’s Islands

(1991) and the Geneva Convention on the Treatment of Object Aliasing

(Hogg, Lea, Wills, de Champeaux, and Holt 1992). Today there are Balloon

Types (Almeida 1998), Confined Types (Bokowski and Vitek 1999) and Own-

ership Types (Clarke, Potter, and Noble 1998), to name a few, and numerous

proposals for unique pointers (see below).

An object’s representation is the objects that an object is constructed from,

i.e., its aggregatees (not necessarily all objects it has pointers to). The gen-

eral principle behind the proposals above is that an object’s representation

should be encapsulated inside the object and pointers to representation objects

should not escape to untrusted objects. By employing any of these schemes,

we achieve greater control of the pointers in our system, for the price of addi-

tional syntactic burdens, behavioural restrictions etc. Different proposals offer

different levels of protection, flexibility and reasoning power, mostly depend-

ing on their definition of trusted object.

1.2 Uniqueness

Originally introduced in functional programming, unique pointers, or unique-

ness, is a pointer restriction scheme based on a very simple idea: a unique

object is an object to which there is only one pointer in the entire system. A per-

haps more descriptive name would be uniquely referenced object, but we chose

to follow convention. A unique pointer is an unaliased pointer, i.e., points to

a unique object.

The principle underlying a uniqueness system is equally simple, any vari-

able or field annotated with the keyword unique contains the single refer-

ence in the system to an object or null (Hogg 1991; Minsky 1996; Boyland



6 1 Introduction

2001a; Boyland, Noble, and Retert 2001; Boyapati and Rinard 2001; Aldrich,

Kostadinov, and Chambers 2002).

Uniqueness can be used to aid reasoning, see for example its use in en-

forcing software protocols in Deline and Fähdrich’s Vault (2001) and Fugue

(2003). In Fugue every class corresponds to a state-machine, methods trig-

ger state transitions and a static type system verifies that methods are not

invoked unless the object is in the corresponding state. Without uniqueness,

such a system would not work since state transitions could be triggered via

aliases unaware to the static checker. In general, there is no way that one

location could be made aware of a state transition induced at some other lo-

cation; the first location would still believe the object to be in the previous

state.

In addition to aiding reasoning, unique pointers have other virtues that

make them useful to encode certain applications. For example, unique point-

ers enable essential idioms in concurrent programming such as the transfer

of ownership pattern (Lea 1998) and also make alias-free initialisation possi-

ble. Some widely used interface definition languages such as Microsoft’s MIDL

even contain a unique keyword attribute to specify unique pointers, with sim-

ilar semantics.

Motivating example

Concretely, the following five lines of code neatly illustrate the problem with

aliasing and the benefits of a unique pointer:

void example(File file1, File file2)

{

file1.close(); // puts file1 in closed state

file2.read(); // requires file2 to be in open state

}

If the variables file1 and file2 could be aliases for the same object, for ex-

ample if example was invoked like this: example(file,file). In the code

above, even if the origin of the file variables is a little clearer, statically deter-

mining whether this piece of code is sensible is tricky.

If one or both of the file variables contained a unique pointer, deter-

mining that the variables are not aliases is trivial. Thus, we can infer that

file1.close() will not close the file pointed to by file2.

Trivially, object creation (modulo aliases introduced via constructors which

we will address later) results in a unique object. Maintaining the uniqueness

of an object, i.e., making sure that no additional aliases to the object is cre-

ated, is a little trickier and requires additional machinery. Hogg (1991) and

Minsky (1996) both make use of a destructive read, an atomic operation that



1.2 Uniqueness 7

returns the contents of a variable and subsequently updates the variable with

null. The beauty of destructive reads is its immediate simplicity. On the other

hand, a major drawback is the addition of null-pointers to the program, im-

plicitly stored in unique variables after reading their contents, forcing addi-

tional checks to avoid null-pointer errors. This phenomenon is called “slipper-

iness” and will be discussed in more detail later.

As an alternative to destructive reads, Boyland (2001a) proposes alias

burying, basically a technique that guarantees the effective uniqueness of a

unique variable. When a unique variable is read, all aliases to the same value

must be “dead”, i.e., they must inaccessible to active parts of the code. For

example, when returning a unique local variable from a method there is no

need to nullify the local variable, since it will become inaccessible immedi-

ately after the return and therefore not invalidate uniqueness.

1.2.1 Uniqueness and Object-oriented Programming

Uniqueness in combination with object-orientation is powerful. However, due

to the inflexible nature of classes and objects not being flat entities, but rather

aggregates, extant implementations of uniqueness in object-oriented systems

suffer from some inherent problems which we now present briefly.

An Abstraction Problem

Extant implementations of uniqueness in object-oriented settings suffer from

an abstraction problem first identified by Clarke and the author (2003a).

The problem is due to the presence of a this (or self) pointer in meth-

ods. When invoked on a unique reference, this will hold a unique value and

thus, assigning this or passing this as an argument (including as an im-

plicit receiver argument) must invalidate any external pointer to the object in

order to keep a strong notion of uniqueness. Thus, invoking a method on a

unique variable might consume its contents, meaning that the nature of the

invoked method (whether or not it assigns or passes its receiver argument)

must be tracked in order to produce a sound system. It is the machinery used

to track the subjective treatment that breaks abstraction—programs that use

unique pointers are forced to change their interfaces as a result of purely in-

ternal changes to a class’ implementation. This causes changes to propagate

through a program which makes software evolution and maintenance increas-

ingly complex. In conclusion, unique objects are hence not the black boxes

that we want them to be.



8 1 Introduction

Raising the Level of Abstraction

Consider a list object that implements a linked list. The list object is an ag-

gregate constructed from links that hold references to a data object and to its

next link in the chain. Conceptually, we regard the list aggregate as a single

entity.

Uniqueness is a shallow property; a pointer to the list aggregate does not in

any way effect the list’s transitive representation. While its presence precludes

any aliasing of the list object, there is nothing to prevent its representation,

the links, from being aliased (not necessarily a bad thing, if it is intentional),

neither from inside the aggregate nor from outside the aggregate.

As the increasing complexity of software makes it less useful to talk about

single objects instead of aggregates, we believe that uniqueness must be com-

bined with a strong notion of aggregate. Because of its shallowness, unique-

ness in itself is not enough to enable unique pointers to aggregates unless the

representation objects are all uniquely referenced which might not be desir-

able let alone possible if the design requires internal sharing.

We believe that uniqueness should reflect how an object is used externally.

In Minsky’s (1996) version of uniqueness and subsequent proposals based

on it, whether an object can be uniquely referenced or not is controlled by

the object (or rather by its class). In Hogg’s (1991) and Boyland’s (2001a)

respective proposals, an object can always be referenced uniquely, but certain

methods cannot be invoked if we want to keep the unique receiver to the

object.

Moreover, if uniqueness was truly how an object is viewed externally, an

aggregate’s internal sharing should be able to involve the uniquely referenced

object, i.e., it should be possible to have internal back-pointers to an object that

is externally viewed as unique. This is not possible in any extant proposal, as it

turns out, for the same reason that leads to the abstraction problem described

above. In systems following Minsky’s proposal it is prevented statically (such

a program would not compile); in systems following Hogg’s and Boyland’s

proposals the creation of such an internal reference would require that the

unique external reference is given up, possibly detaching the object from the

object graph.

Fusing the statements of this and the previous section, we want unique

references to be able to reference black boxes, regardless of any internal aliasing

inside the aggregate. Under the current approaches, this simply is not possible.



1.3 Contributions 9

Unnecessary Restrictions Impose Additional Complexity

As we will detail in later sections, unique pointers are slippery in extant im-

plementations, meaning that invocations of methods on unique variables may

consume their contents and that unique pointers passed as arguments will

also be consumed by the receiving method, regardless of its desired semantics.

Thus, unique pointers that are only to be used temporarily must be explicitly

returned and reinstated. This is complex and at the very least cumbersome,

especially in the presence of several unique arguments and a unique receiver.

To this end, several proposals for unique pointers include a mechanism

for temporarily borrowing a unique pointer to a method. The method must

not make any static aliases of any borrowed pointers that are still accessible

when the method exits and at the end of a borrowing method, all borrowed

values are reinstated. This way, the uniqueness invariant is preserved between

method invocations.

However, due to the complex nature of statically tracing pointers, the re-

strictions on the borrowed pointers become unnecessarily hard. Basically, bor-

rowed pointers may not be stored on the heap regardless of the lifetime of the

object storing them. This makes them a third class of pointers that are neither

unique nor non-unique. This makes systems using borrowing less clean and

therefore more complex.

In this thesis, we propose a collection of orthogonal concepts for our ex-

ternally unique pointers that lift these restrictions. The result is a language

that is both cleaner and more powerful.

To summarise, we identify three problems with uniqueness: the breaking of the

principle of abstraction, the problem with being a shallow property that does

not view uniqueness as an external attribute and the presence of third-class,

non-orthogonal entities that complicates programming languages and impose

unnecessary restrictions. In addition to relieving the unnecessary restrictions

that further complicates programming with unique pointers, we want unique-

ness to have the three characteristics shown in Figure 1.1.

1.3 Contributions

This thesis makes the following contributions (roughly in order of appear-

ance):

1. The design of a notion of uniqueness that is a property of how the object

is referenced externally and not a property of the object itself that enables

pointers to black-box aggregates and overcomes the abstraction problem.



10 1 Introduction

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

Im
plementatio

n: U
nknown

Fig. 1.1. Three characteristics not present in uniqueness. Leftmost: reference to a black
box (abstraction). Center: the black box should not be just a shallow object and there-
fore, the external alias denoted by the dotted line should not be allowed (strong notion
of aggregate). Rightmost: the aggregate should be able to have arbitrary internal alias-
ing, even of the “bridge object”, i.e., the entry point (denoted by the slightly thicker
pointer), and these references should be ordinary references.

2. The design of orthogonal language constructs to support programming

with the abovementioned unique pointers. These language constructs in-

clude a few novelties such as generational ownership and a borrowing

construct that avoids third-class pointers.

3. A static semantics of the proposed constructs to guarantee proper usage

of the constructs.

4. A formalisation of our system via a novel operational semantics inspired

by Trees with pointers (Cardelli, Gardner, and Ghelli 2003).

In addition, we show several applications for external uniqueness, that

cannot be encoded by traditional uniqueness, such as a unique pointer to the

set of links in a doubly-linked list.

Also, by basing our solution on Clarke, Noble and Potter’s (1998) owner-

ship types (indeed, the solution relies on ownership types to work), we also

make an important contribution to the theory of ownership types in that we

enable transfer of ownership which allows many previously impossible pro-

grams to be encoded. We also introduce generational ownership, in which

blocks or frames may act as temporary owners for objects.

1.4 Outline

This thesis is organised as follows: Chapter 2 presents our problem, the prob-

lem background and some of the technical preliminaries necessary for the

understanding of the chapters to come. In particular, it introduces uniqueness

and the abstraction problem mentioned above. It also discusses alias encap-

sulation, and shallow and deep ownership types.

Chapter 3 explains ownership types is additional detail, since ownership

types is at the heart of our proposal. Both shallow ownership and deep own-

ership are explained and we show why shallow ownership cannot be used as



1.4 Outline 11

a basis for external uniqueness. We also introduce some necessary ownership

terminology that we use in later chapters.

Chapter 4 introduces our proposal—external uniqueness. It describes how

external uniqueness differs from deep ownership types, the properties it en-

ables and what additional machinery it requires to be maintained.

Chapter 5 introduces Joline, a class-based Java-like language that we use

to formalise our ideas. The chapter includes Joline’s static and dynamic se-

mantics as well as statements of the most important theorems for external

uniqueness and proof sketches.

Chapter 6 shows applications for external uniqueness, in particular some

that cannot be dealt with using traditional uniqueness.

Chapter 7 discusses the applicability of external uniqueness to object-

orientation, show how external uniqueness overcomes the abstraction prob-

lem, and why related approaches do not. It also discusses various side effects

our our proposal, such as localised reentrancy and elimination of unnecessary

constraints resulting in a more powerful and cleaner language. It also con-

tains a discussion of external uniqueness in the presence of multiple threads,

weaknesses and limitations and how external uniqueness can help simplifying

reasoning.

Chapter 8 presents related work and compares and relates similar existing

approaches with external uniqueness and each other.

Chapter 9 summarises and criticises our findings, as well as gives direc-

tions for future work.





❖ 2

Aliasing, Uniqueness and Object-Oriented

Programming

This section presents our problem together with the background necessary to

understand it. It introduces and outlines aliasing, general problems due to

aliasing and various approaches for dealing with such problems. It introduces

uniqueness in additional detail, in particular slipperiness, borrowing and how

to maintain a strong uniqueness invariant in non-sequential programs with

shared state. It then details the abstraction problem inherent in extant unique-

ness proposals and presents a problem analysis that stresses the need to be

able to distinguish between the internals and externals of an object.

2.1 Coping with Aliasing

The sharing of objects is fundamental to object-oriented programming. In-

deed, Noble, Vitek and Potter (1998) go as far as saying that aliasing (shar-

ing) is endemic in object-oriented programming. Feature, flaw or bit of both,

it is a necessary component in widely used patterns and data structures and

is also a requirement if we want the structures of object-oriented programs to

model the real world.

Arguably, the mere existence of two or more pointers to the same object

does not constitute an aliasing problem. Rather, problems occur when the

pointers are treated (or viewed) inconsistently. A good example can be stolen

from the Geneva Convention on the Treatment of Object Aliasing (Hogg, Lea,

Wills, de Champeaux, and Holt 1992). Consider the simple Hoare formula:

{x=true} y:=false; {x=true}

If x and y are aliased, this formula is not valid. Sadly, proving that x and y

are not aliases is generally not straightforward as we have previously stated.

Although not possible in most object-oriented programming languages, since



14 2 Aliasing, Uniqueness and Object-Oriented Programming

personList

add(newcar)

carList

(Person) get() delete(var)

var

⇒

var
null

?

method(...)

Fig. 2.1. Leftmost picture: Rôle confusion. Rightmost picture: Creating a dangling
pointer due to invalid treatment of the var reference.

variable names generally cannot be aliases for each other, this example clearly

shows the problem with aliasing (just consider x.f and y.f).

Another trivial but not entirely uncommon example of this is treating an

aliased pointer as unique and delete its referenced object causing dangling

pointers in other parts of the program. In the presence of garbage collec-

tion, similar situations could lead to a memory leak since references to an

object that should be deleted exist unbeknownst to the programmer preclud-

ing deallocation of the object. Other examples of aliasing problems due to

inconsistent treatment of pointers include conflicting updates, where several

updates induced from several location (or the same location) via different

pointers overwrite each other or put the updated object in an inconsistent

state; rôle confusion, i.e., when the same object is viewed as having different,

perhaps conflicting rôles via different pointers, which might very well lead to

the aforementioned situations etc. Figure 2.1 shows two examples of problem

situations due to aliasing.

The leftmost picture, albeit perhaps slightly contrived for brevity, shows

rôle confusion—a non-generic Java list used to store both cars and persons.

This is fine as long as no-one reads from the list, believing the object obtained

to be something it is not (e.g., casting a car into a person). In Java, the error

will manifest itself as a ClassCastException, but this is just the symptom of

the problem; the source is the inconsistent view of the list object due to shar-

ing. The rightmost picture shows the creation of a dangling pointer. Deleting

the contents of var, a dangling pointer is created, causing a failure when in-

voking method() at a later stage. Ultimately, as the examples show, aliasing

errors are design errors—either the list should not be shared at all, or the

implementation of its clients account for the possibility of mixed elements,

etc.

Even though programmers may claim to have learned to live with aliasing,

or software defects that stem from aliasing and related problems (Skoglund

2003), when trying to reason about a program (especially formally), aliasing

is a severe obstacle.



2.1 Coping with Aliasing 15

Attempts at Dealing With Aliasing

The simple example of the two file variables on Page 6 showed that the ab-

sence or presence of aliasing can control whether a piece of code is sensible

or insensible; if the two variables were aliases, the code makes no sense since

it closes the file and then immediately tries to read from it. It also shows how

hard it can be to deduce whether two variables are aliases when the contents

of both variables are supplied via methods arguments.

void example(File file1, File file2)

{

// file1 == file2 ???

file1.close();

file2.read();

}

Keeping track of the file variables throughout the program to verify that they

are not aliases, or that no other alias to any of them is created some place

else that can be used to close the file or violate protocol in some other part of

the program, might not be trivial, let alone possible; library code might not

be distributed with sources, or the code that initiates the files might not even

have been written yet1. In the presence of multiple threads, manually tracking

pointer manipulations might be even more difficult.

The Geneva Convention on the Treatment of Object Aliasing (Hogg, Lea,

Wills, de Champeaux, and Holt 1992) states that aliasing is a problem in

both formal verification and practical programming. It outlines several ap-

proaches to dealing with aliasing, namely detection, advertisement, prevention

and control. We now describe these four approaches briefly. See The Geneva

Convention on the Treatment of Object Aliasing for the full-blown discussion.

Alias detection — tries to detect the aliasing patterns of a program, either at

compile-time or at run-time. Successful static detection facilitates com-

piler optimisation and allow formalists to discover cases where aliasing

may lead to the invalidation of a program predicate. As is duly noted

by Hogg et al., statically detecting aliasing is an NP-hard problem (Landi

1992). Thus, static alias analysis is likely to produce an abundance of

may-alias results, which are then forced to be conservatively (and in many

cases incorrectly) treated as must-aliases.

1 Of course, making a note of this non-aliasing requirement into design documents
or code documentation might avoid the bug, but there is still the opportunity for
human errors, especially since the only documentation of the code that is updated
or read during a software’s lifetime tends to be the code itself.



16 2 Aliasing, Uniqueness and Object-Oriented Programming

Alias advertisement — tries to localise alias information to aid the analysis

and make modular analysis possible. Methods can be annotated with key-

words describing their aliasing properties, such as whether they create

static aliases to an argument or require arguments not to be aliases etc.

The program annotations should be enforced by the compiler or run-time

system.

Alias prevention — means statically guaranteeing that aliasing will not occur

in a particular context. Again, the nature of aliasing will require static

constructs to be conservative and perhaps require changes to the ways

programs are constructed, in order to obey the rules of the constructs

or maintain certain invariants. The non-presence of aliases in a certain

context will allow the formalist to prove formulas about the code, and

help the programmer avoid writing code that may be rendered insensible

due to the presence of aliases (for example, the code snippet with the file

variables just shown).

Alias control — takes into consideration the run-time state of the system. It is

necessary since there will be situations where aliasing is required in a way

that makes static control impossible or impractical. An example of aliasing

control is run-time assertions that certain objects are not aliases or that

(certain parts of) their representations do not overlap, e.g., Leavens and

Antropova’s ACL (1999).

In practice, two different approaches to alias management in object-

oriented programming exist—uniqueness or alias-free references and alias en-

capsulation. Systems with uniqueness are often a mix of advertisement, pre-

vention and control whereas alias encapsulation systems have a tendency to

be more statically oriented dealing (almost) only with prevention strategies.

We now detail our discussion of those categories, focusing only on the systems

immediately relevant to our proposal. Other systems for dealing with, or con-

trolling the effects of, aliasing in object-oriented programming are discussed

further in related work, Chapter 8.

2.2 Uniqueness

As stated in Section 1.2, the principle underlying uniqueness is a very sim-

ple one: A variable or field with a uniqueness annotation contains the only

reference to an object in the system, or it contains null. In the example be-

low, the file stream connected to the file example.java is declared unique.

Thus, whatever code is executed at ... in the following code fragment, the



2.2 Uniqueness 17

file variable will hold the single pointer to the file object when passed as an

argument to the Lexer constructor.

unique File file = new File("./example.java");

... // Arbitrary (but sensible) code

Lexer lex = new Lexer(file);

It is quite possible that uniqueness (whether or not enforced by the language

in point) of the file stream is desirable in the example above. By only allowing

unique pointers to the file object as arguments to the constructor, the imple-

mentor of the lexer can be sure that the file stream will not be tampered with

by some other object, which makes the lexer easier to implement, avoiding the

need for checks and providing easier reasoning about the result of operations

on the file stream inside the lexer.

This is the basic realisation of a unique pointer in an object-oriented pro-

gramming language. Various treatments of unique pointers or unsharable ob-

jects have been proposed by Wadler (1990), Hogg (1991), Baker (1995), Min-

sky (1996), Almeida (1997), Boyland (2001a), Boyland et al. (2001), Boyap-

ati et al. (2001), Aldrich et al. (2002) and Clarke and Wrigstad (2003b).

At a first glance, it might seem that a uniqueness construct is an overly

restrictive one. However, an optimistic study by Noble and Potanin (2002)

suggests that uniqueness as a concept fits well with the current ways of con-

structing object-oriented software: inspection of heap dumps of running pro-

grams from the Purdue Benchmark Suite has shown that as much as 85% of

all objects are uniquely referenced in a program. Even though this study is

optimistic, since uniqueness violations could occur in between the snapshots

and go undetected by the analysis, more fine-grained, less optimistic studies

of smaller programs have shown similar results, suggesting that the optimistic

results are correct.

2.2.1 Maintaining Uniqueness

In most programming languages object creation results in a unique reference

to an object. However, if the object is able to refer to itself in a constructor

(for example via this in Java), it can create an alias to itself in a constructor

argument or a global variable. If that is the case, the reference to the instan-

tiated object returned from the operation will not be unique. As is discussed

below, different proposals deal with this problem in different ways.

Moving Unique’s Around

Maintaining the uniqueness of a pointer requires some additional machinery.

There are two main approaches in the literature: preventing a unique value



18 2 Aliasing, Uniqueness and Object-Oriented Programming

class List

{

unique Link head;

void prepend(Object o)

{

unique Link temp = new Link(o); // o is stored in link

temp.next = head--; // move head into temp.next

head = temp--; // move temp into head

}

}

class ListClient

{

unique List l1;

void add(unique Object o)

{

l1.prepend(o);

}

}

Fig. 2.2. Actual uniqueness via destructive reads. The unique links in the list are moved
using destructive reads.

from being aliased at all (actual uniqueness), or preventing the existence of

two or more visible aliases to the same value (effective uniqueness).

Hogg (1991) uses destructive reads to implement an actual uniqueness

scheme for his Islands, i.e., reading the value of a unique variable implicitly

updates the variable with null. Another way of maintaining actual unique-

ness is by always returning a copy when reading a unique value. A perhaps

more drastic approach is to replace the assignment operator with a “swapping

operator” (Harms and Weide 1991), that swaps the values of two variables.

However, neither copying nor swapping alone works well with method in-

vocation if an implicit alias is created for the method to be able to refer to

its receiver which is common-place in object-oriented systems. Other systems

that use destructive reads include Minsky’s Eiffel∗ (1996) and the Joline sys-

tem described in this thesis.

Destructive reads is a simple and intuitive approach to maintaining the

uniqueness of a value. On the downside, it has some undesirable side-effects,

such as methods (implicitly) consuming values of argument objects as is dis-

cussed in the upcoming section on borrowing on Page 15. As argued by Boy-

land (2001a), destructive reads may make a method appear to have more

side-effects than it conceptually performs. Thus, in spite of its elegant and

simple semantics, destructive reads may increase the complexity of a program,



2.2 Uniqueness 19

class List

{

unique Link head;

synchronized prepend(Object o) anonymous

{

unique Link temp = new Link(o); // o is stored in link

temp.next = head; // no need to nullify head

head = temp; // since it will immediately

// be overwritten

}

}

class ListClient

{

unique List l1;

synchronized add(Object o)

{

l1.prepend(o); // l1 cannot be used simultaneously

// because of synchronization

}

}

Fig. 2.3. Effective uniqueness via alias burying. Synchronisation and anonymous meth-

ods (see text) are used to maintain uniqueness.

especially if no extra constructs are added to ease the pain of programming

with them, due to the implicit addition of null-pointers to the program and

the inherent slipperiness of uniques (reading them consumes them).

Figure 2.2 shows a simple list implementation and a client class. The list

contains a set of uniquely referenced links. When prepending, the contents

of head is moved into the new link, which is then moved into the head field.

Both moves uses destructive reads, indicated by --.

An equally powerful alternative to actual uniqueness is effective unique-

ness. The key of achieving effective uniqueness is to verify that two aliases to

the same “unique” value are never visible/used simultaneously. An example

of such a system is Boyland’s alias burying (2001a), essentially a lightweight

live variable analysis that requires all aliases to a unique variable to be “dead”

when that variable is read. For example, if it can be determined that a vari-

able will not be accessed again before it becomes invalidated (for example,

goes permanently out of scope) or updated (overwriting the value that breaks

uniqueness), it does not matter if it contains an alias to a unique object since

it will never be used in a way that can witness the violation. To enable modu-

lar checking, some form of effect annotations are necessary to indicate which



20 2 Aliasing, Uniqueness and Object-Oriented Programming

unique fields are read by a method (Boyland 2001b). To use alias burying in

a multi-threaded setting, locking objects before unique values are accessed is

necessary since there is no destructive read. Other systems that use a simi-

lar approach to maintain uniqueness include Fugue (DeLine and Fähndrich

2003), Parameterised Race-Free Java (Boyapati and Rinard 2001) and Alias-

Java (Aldrich, Kostadinov, and Chambers 2002).

Figure 2.3 revisits the same example of list and client as was used to illus-

trate destructive reads. To maintain uniqueness, prepend() is annotated as

anonymous, meaning (roughly) that it may not use this2—even though there

may be other aliases to the contents of l1, these are not used (i.e., effective

uniqueness). The add() method is synchronized to prevent simultaneous ac-

cess to the unique l1 variable. More complex programs might require that l1

was copied to a stack variable and subsequently updated with null , even in

the case of alias burying, to prevent reentrant methods from reading l1 and

thus break the uniqueness invariant.

In the prepend() method, there is no use for destructive reads or nullifi-

cations, since the method is synchronized (no other thread can access head)

and both the contents of head and temp are either immediately overwritten or

invalidated after being used on the left hand side of an assignment, meaning

that their respective contents are never used to invalidate effective unique-

ness.

In addition to actual uniqueness and effective uniqueness, we distinguish

between week and strong forms of uniqueness:

Definition 2.1. Strong uniqueness invariant — A strong uniqueness invariant

never allows uniqueness to be compromised. At any time, there may be only

one pointer to a unique object anywhere in the program, including contents

of variables on the stack.

Definition 2.2. Weak uniqueness invariant — A weak uniqueness invariant al-

lows uniqueness to be slightly compromised. A pointer may still be regarded

as unique, even if there are stack based aliases to it.

Borrowing and the Case Against Slipperiness

Uniqueness can be used to tackle some of the aforementioned aliasing prob-

lems. Knowing that an object is uniquely referenced, it can safely be deleted

without the risk of dangling pointers and there is no risk of rôle confusion.

An object’s class may even be changed if possible (see e.g., Fickle (2001), or

2 An anonymous method may not store this, pass this as an argument or use this

as a receiver of non-anonymous methods.



2.2 Uniqueness 21

later in this thesis for a change of type) without risking inconsistencies due to

several conflicting views of the same object.

Consider the following method, a revisit to our previous example with the

two file variables3:

void example(unique File file1, unique File file2)

{

file1.close();

file2.read();

}

Now, because of the unique annotations in the method head, the variables

cannot be aliases. (Naturally, only one of the arguments need to be a unique

pointer to preclude aliasing in this particular example.) On the downside, an

invisible side effect of the method above is that it consumes the pointers to

both files in order to maintain the uniqueness invariant. In many cases, this

is undesirable, e.g., if the method only wishes to use the file pointer for the

duration of its execution (i.e., borrow it) to perform some operations and not

create a static alias to it that will be reachable after the method returns. To bat-

tle unwanted consuming, the method must explicitly return any non-captured

unique value to be manually reinstated at the call-site, which, especially if the

programming languages does not allow multiple return values (e.g., Java), is

cumbersome and prone to errors (Baker 1995).

To this end, many systems introduce a borrowed or lent pointer that en-

ables automatic reinstating of non-captured unique arguments and receivers.

Concretely, borrowed pointers are temporary stack-based aliases that never

move to the heap. By this constraint, as soon as the method that borrowed the

pointer returns, all the stack-based aliases become invalid, and thus, the bor-

rowed value is again unique. The borrowed pointer may be treated as unique

or not, depending on the implementation (for example, if the content of the

original variable is invalidated during the borrowing, the borrowed pointer

will be unique). The only requirement is that once the method returns, all

aliases must be invalidated, which in all extant systems require that it must

never be stored on the heap.

Depending on its implementation, borrowing might have different effects

on the uniqueness invariant. If the original value is unreachable during the

borrowing, we retain a strong uniqueness invariant. This might be the case

if only borrowing of stack-based variables is allowed, unless for example the

3 On a side-note, ACL (Leavens and Antropova 1999), uses dynamic dispatch to solve
this problem—the programmer provides two separate implementations of methods,
one where the arguments may not be aliases, and one where they may. Upon in-
vocation, a simple identity comparison between the arguments is carried out and
method selection is based on this result.



22 2 Aliasing, Uniqueness and Object-Oriented Programming

same variable may be borrowed twice, or the invoked method runs in another

thread and thus returns immediately etc. If a unique value may have sev-

eral simultaneous borrowings, or if the original value is reachable during the

existence of the borrowed aliases, uniqueness is broken, and we get a weak

uniqueness invariant consistent with Definition 2.2.

A downside of borrowing in a language is that borrowed objects be-

come second-class citizens: a borrowed object may be treated as an ordinary

(shared or unique) value in any way, but it may not be stored on the heap. This

restriction is unnecessary to maintain soundness, but is imposed because the

underlying type systems are not strong enough to allow it. The introduction

of a third pointer category (ordinary/shared, unique and borrowed) makes

the programming language less clean and therefore more complicated.

Treating the Self

The presence of a this pointer (or equivalent) increases the complexity when

adding unique references to an object-oriented programming language since

one must consider how a class treats its instances internally. For example,

if a method assigns this to a variable or field, invoking the method on a

unique variable should consume the variable’s contents to maintain a strong

uniqueness invariant4. In addition, if a constructor saves this in a global

field or in a field of an argument object (or in a subobject to itself), the new

operation invoking the constructor will not return a unique reference.

Approaches in the literature reflect the treatment of this in a class’ inter-

face in one of two ways:

via class annotation — classes are divided into two kinds, those whose in-

stances may assign this internally, and those whose instances may not.

Only instances of the latter may be referenced uniquely (Minsky 1996).

via method annotation — methods are annotated to indicate that they may

consume this (Hogg 1991; Boyland 2001a). Calling such a method re-

quires that its target be destructively read (or equivalent, in the presence

of an effective uniqueness scheme).

We now detail the description of these approaches to show how this creates a

problem with abstraction.

4 In the presence of borrowed pointers, methods that are receiver-consuming, i.e.,

stores a reference to this, must not be invoked on borrowed values, introducing
additional complexity.



2.2 Uniqueness 23

unique class Server extends Object

{

int no_connections = 0;

void connect(Client client)

{ // Invalid method

client.setManager(this); // -- won’t compile.

}

int getConnections()

{ // Good method

return this.no_connections;

}

}

Fig. 2.4. Using class-level annotations to control how this is treated internally.

Class-level Annotations

Class-level uniqueness annotations, proposed by Minsky (1996) in Eiffel∗,

decorates class declarations and controls whether instances of a particular

class can or cannot be uniquely referenced.

In the example in Figure 2.4, a class Server is annotated with the unique-

ness keyword allowing its instances to be uniquely referenced. The unique

annotation requires that no method in the server class assigns this, or passes

this as an argument to a method. Methods can be invoked on this, since any

such method will obey the same rules by virtue of the class-level annotations.

A drawback of this solution is that whether or not uniqueness is possible

becomes a property of the class and neither how the object is viewed (exter-

nally or internally), nor even a property of the object. It is also quite inflexible,

since consuming and non-consuming methods cannot be mixed in the same

object.

An additional drawback is that instances of classes not annotated with the

unique keyword cannot be uniquely referenced, even if the class’ implementa-

tion would allow it. Also, the uniqueness property must be preserved through

subclassing which makes extension via subclassing harder or less powerful

since the annotation of the superclass must be respected by all subclasses.

Otherwise, if a unique class was extended by a non-unique class, subsumption

would allow an easy circumvention of uniqueness (just cast the non-unique

to the unique super class and invoke a method) unless we only use static

binding.



24 2 Aliasing, Uniqueness and Object-Oriented Programming

class Server extends Object

{

int no_connections = 0;

void connect(Client client) consumes

{

client.setManager(this);

}

int getConnections() borrows

{

return this.no_connections;

}

}

Fig. 2.5. Using method-level annotation to control subjective treatment of this

Method-level Annotations

Method-level annotations, used by Hogg (1991) and Boyland (2001a) offer

a more flexible solution than the class-level approach above. With method-

level annotations, an object can be uniquely referenced regardless of its class’

implementation. Rather than classes, methods are annotated to reflect how

this is treated. Using consumes and borrows keywords, similar to those used

by Boyland, Figure 2.5 shows the Server class from Figure 2.4 using method-

level annotations.

The getConnection() method is now annotated with the borrows key-

word, meaning that it does not store this on the heap (which can be con-

trolled by a simple compile-time check). The connect() method is annotated

with consumes meaning that it will consume its receiver object if invoked on

a unique pointer (depending on the implementation, it might not be possible

to invoke it on a non-unique pointer).

Method-level annotations allow mixing of consuming and non-consuming

methods in the same class. As with class-level annotations, some additional

constructs are required to make it work, either we need destructive reads to

ensure the nullification of the variables used to invoke a consuming method,

or we need something like alias burying (Boyland 2001a) to make sure that

uniqueness is maintained (or we can simply weaken the uniqueness invariant

if sensible).

Concluding remarks

Any of the two approaches above can be used to deal with constructors and

when they do or do not return unique references. With class-level annota-

tions, if all constructors of a class assign this, instances of the class may



2.3 Inherent Problems with Uniqueness 25

Fig. 2.6. Revisiting Figure 1.1, desirable properties of uniques. The unique reference
should be the single entry-point to an entire aggregate, not just the bridge object.

never be unique. The method-level approach allows for some more flexi-

bility; either the constructor will return null (which may be argued to be

counter-intuitive), or constructors may not consume this at all, whereas nor-

mal methods may.

In both cases, and for methods and constructors alike, a problem surfaces

when the implementation of a class changes the way it uses this which leads

to a violation of the principle of abstraction. We will now examine this prob-

lem in more detail.

2.3 Inherent Problems with Uniqueness

We now detail the description of the problems with uniqueness. We do not

revisit the issue of non-orthogonal concepts, since that problem was recently

discussed (see Page 2.2.1 and following), or the unnecessary restrictions on

borrowed references turning them into second-class citizens and further com-

plicating the language.

2.3.1 Unique Pointers to Aggregates

As previously stated, the shallowness of uniqueness weakens the usefulness

of unique pointers since the uniqueness only applies to the referenced object,

and there is nothing to prevent a representation object of the unique from

being multiply referenced.

If uniqueness is used to avoid unnecessary synchronisation, moving a

unique object from one thread to another might result in the representation

objects becoming shared between threads, meaning that synchronisation is

still necessary with the opportunity for deadlocks etc. It would appear that

uniqueness is less useful as objects becomes more complex.

Figure 2.6 shows the “aggregate uniqueness” that we would like, espe-

cially if the objects in the aggregate can reference objects external to the ag-

gregate (i.e., outgoing references are allowed). Clearly, a strong notion of

aggregate carefully integrated into the definition of uniqueness is necessary

to support this.



26 2 Aliasing, Uniqueness and Object-Oriented Programming

2.3.2 Uniqueness and a Problem with Abstraction

For concreteness, assume that we have the following class with a single

method,

class BlackBox

{

void xyzzy()

{

... // unknown implementation

}

}

and at some other place in the program, a unique variable or field:

unique BlackBox bb;

When we change the implementation of the BlackBox class so that the

xyzzy() method assigns this internally, the existing proposals force us to

change BlackBox’s interface. The consequences of this vary depending on

whether we are using class-level annotations or method-level annotations, as

we will see in the following sections.

With Class Annotations

Since treatment of this is shown in the class declaration, we run into trouble

when our treatment of this changes.

Using class annotations BlackBox would have been annotated unique

to show that its instances can be uniquely referenced. After the changes,

we would have to modify BlackBox to indicate that its instances cannot

be referred to uniquely, e.g., neverunique class BlackBox. As a conse-

quence, all variable declarations of type unique BlackBox, e.g., such as

unique BlackBox bb; above would no longer be valid in the program, and

must have their uniqueness stripped in order to compile. Depending on the

system, it may also be the case that all destructive reads of BlackBox ob-

jects throughout the entire program would have to be changed to ordinary

reads, perhaps with destructive reads implemented manually. Obviously, these

changes could propagate through the entire program.

With Method Annotations

Since treatment of this is shown in each method declaration, we run into

trouble when our treatment of this changes.

When using method annotations, we would have to modify the xyzzy()

method to indicate that it now consumes this, such as void xyzzy() con-

sumes { ... }. Although forcing potentially fewer propagating changes in the



2.3 Inherent Problems with Uniqueness 27

code than if we were using class-level annotations since BlackBox instances

may still be uniquely referenced in the program, the call bb.xyzzy() may

create an internal reference to its target, requiring that the bb variable be

consumed to preserve uniqueness. Apart from being akward and unintuitive,

the consequence here is even more drastic, as the semantics of method call

changes: calls to this method suddenly consume their target, whereas in the

original program they did not.

Concluding remarks

In both cases, a purely internal change to the implementation of BlackBox

forces changes to its interface, which propagate through the program—either

statically or dynamically. Not only does this introduce the opportunity for

errors, since the behaviour of a program changes, it means that objects cannot

be treated like black boxes, because:

Software evolution which changes the uniqueness aspects of an object’s

implementation can force changes in the object’s interface, which then

propagate changes throughout the program.

Thus extant uniqueness proposals break abstraction.

2.3.3 Problem Summary

We have described three problems:

1. Extant uniqueness proposals break abstraction making the task of main-

taining and updating software more complex and fragile. How an object

treats itself internally is visible in the interface causing purely internal

changes to an object’s implementation to trigger interface changes.

2. The usefulness of a unique object is hampered by the fact that an object’s

internals are not properly encapsulated. For example, moving a unique

object to a different thread might cause the object’s representation to be

split between several threads which is likely to be opposite to the desired

semantics. We desire unique references to aggregates—not just to flat ob-

jects.

3. To relieve the pain of programming with unique pointers, extant propos-

als use borrowing. Extant borrowing constructs suffer from unnecessary

restrictions and further complicate the language by adding an additional,

third-class pointer to the programming language.

We now present an analysis of these problems and a solution.



28 2 Aliasing, Uniqueness and Object-Oriented Programming

2.4 Problem Analysis: Distinguishing Between Internal and

External References

The abstraction problem occurs, we believe, because the distinction cannot

readily be made between internal and external references. For example, tra-

ditional object-oriented programming languages cannot distinguish the refer-

ences between the links of a linked list, which are internal to the data struc-

ture, from references that go into a data structure from outside of it, such as

the reference from a link to the data object it holds.

A purely internal reference to an object which has only one external refer-

ence cannot be used by objects other than the holder of the external reference.

This means that no changes to the object via the internal reference which

would violate the “uniqueness” of the external reference can be triggered by

any object other than the one holding the externally unique reference. In a

sense, purely internal references are innocuous and their existence should

not affect how an aggregate is viewed externally. Instead, they ought to be

preserved to maintain the internal consistency of an aggregate. Otherwise,

knowledge of internal reference behaviour exposes an object’s implementa-

tion details and thus violates abstraction, as we have shown.

Fortunately, the desired distinction can be made in a programming lan-

guage with Ownership Types, as originally proposed by Clarke, Potter and No-

ble (1998). This form of ownership types provides strong protection against

external aliasing of an object’s internals, enabling a strong notion of aggregate

object. Thus, it seems that our issue with uniqueness being a shallow property

will be addressed by bringing in ownership types as well.

Relying on ownership types, we propose external uniqueness, which al-

lows innocuous internal pointers and is effectively unique in a sense similar

to alias burying. But first, let’s have a look at the second approach to alias

management, alias encapsulation, and in particular ownership types, since

we rely heavily on ownership types to make our system work.



❖ 3

Ownership Types

This section details ownership types, a particular form of alias encapsulation,

the other main approach to alias management in object-oriented program-

ming languages (the first was uniqueness). A more general discussion of alias

encapsulation is deferred to Chapter 8, Related Work, in order to cut to the

chase a little quicker.

We first describe shallow ownership and its drawbacks. While deep owner-

ship is an ancestor to shallow ownership, we present them in the inverse order

for pedagogic reasons. Having described shallow ownership, we describe deep

ownership and its famed owners-as-dominators property. The primary goal of

this chapter is to bring the reader up to speed on ownership types, enough to

understand our extension to implement external uniqueness later.

3.1 What is Alias Encapsulation, Anyway?

Name-based encapsulation, present in, for example, C++ (Ellis and Strous-

trup 1990) and Java (Gosling, Joy, and Steele 1996), hides names of variables

and methods annotated private. Private variables and methods are not vis-

ible outside the object and are only accessible via this. However, there is

nothing to prevent the contents of a private field from being exported by a

public method and then modified externally. When formulating class invari-

ants, and making sure they are preserved, not only the methods of a class

need be considered, but also all possible manipulation of all aggregate ob-

jects, even if these objects are stored in private fields.

Rather than just preventing the names of fields storing aggregate ob-

jects from being used external to the object, alias encapsulation imposes a

form of object-level privacy by preventing objects from being accessed out-

side of their enclosing encapsulation boundaries (Hogg 1991; Almeida 1997;

Clarke, Potter, and Noble 1998; Müller and Poetzsch-Heffter 1999; Clarke



30 3 Ownership Types

2001; Boyapati and Rinard 2001; Boyapati, Lee, and Rinard 2002; Clarke and

Drossopolou 2002; Aldrich, Kostadinov, and Chambers 2002; Banerjee and

Naumann 2002). Typically, aliasing protection schemes impose some kind of

restriction on the flow of references to achieve a stronger encapsulation than

is given by just restricting access to names. In particular, references to internal

objects may escape their owners, but not to objects outside a given protection

domain. We defer the general discussion on alias encapsulation and its use-

fulness to Chapter 8 and go straight for ownership types.

3.2 Ownership Types and Insides and Outsides of Objects

In ownership types objects have owners and can be owners of other objects.

The objects owned by object a are called a’s representation. The key idea be-

hind ownership types is to prevent representation objects from being exposed

outside of the object that owns them1. While external objects are may not read

fields or invoke methods that export references to representation objects, the

object itself may pass its representation to trusted objects. Depending on the

definition of trusted objects, different levels of encapsulation can be achieved.

Shallow ownership lets the programmer decide which objects are trusted

and which are not. This is a powerful and flexible solution, but presents a

problem since there is nothing to prevent a trusted object being passed a

reference to pass that reference on to an untrusted one (this will be explained

in more detail shortly). The trusted object need not do so with malicious

intent, but might simply be unaware of the desires of the first object (since

the system lacks the mechanisms to express them). Deep ownership avoids this

with an even more powerful system by recording nesting relations between

objects and only allowing internal objects to be trusted. Thus, representation

can only be exported to (transitive) representation.

When the nesting relations of deep ownership are in place, it can be de-

termined whether an object is internal to another just by inspecting their re-

spective types. This makes it possible to distinguish between the internal and

external of an object. Internal references that never crosses this boundary (i.e.,

never flow to an external object) are purely internal in the sense we described

earlier. We have argued that such purely internal references should be viewed

as part of an aggregate’s implementation and not preclude the existence of an

external, unique references to an object.

1 The problem of representation exposure is well known, see e.g., Abstraction and
Specification in Program Development (Liskov and Guttag 1986) or “Wrestling With
Rep Exposure” (Detlefs, Leino, and Nelson 1998).



3.2 Ownership Types and Insides and Outsides of Objects 31

A full-blown theory of ownership types is described in Clarke’s disserta-

tion (2001). It also contains a more in-depth comparison between various

alias management schemes than what is presented here. For ownership types

systems presented in the context of Java-like languages, see e.g., Clarke’s and

Drossopoulou’s Joe1 paper (2002) or Boyapati et al. Parameterised Race-Free

Java (2002) or Boyapati’s dissertation (2004).

3.2.1 Shallow Ownership

Shallow ownership prevents direct access to an object. Again, name-based

encapsulation, e.g., Java’s private, public and protected annotations on

variables and methods, is easily circumvented by just returning a reference

to a private object in a public method (or indeed, the private object may be

inserted via a public method and external references kept)2.

In shallow ownership, all objects have an associated owner that is some

other object. The owner is the necessary permission to reference the object

and an object must be given an explicit permission to reference an object

that is not part of its representation. Classes are parameterised and types are

created by instantiating the owner parameters of a class with actual objects—

giving the instance of the type permission to reference any objects owned

by the parameters. The first parameter is written before the class name and

denotes the owner; subsequent parameters are permissions.

Shallow ownership is per object instead of per class, since what other ob-

jects the object may reference is specified independently for each instance.

With shallow ownership, an object must be given an explicit permission to

reference another object (or instantiate it itself). Figure 3.1 shows an imple-

mentation of a simple linked list using shallow ownership as present in Alias-

Java (Aldrich, Kostadinov, and Chambers 2002). Variables annotated this

hold references to representation objects3. Figure 3.2 shows what instances

have the necessary permissions to reference what other instances.

However, as there are no relationships between permissions, the encapsu-

lation of shallow ownership may be broken by escaping proxy objects which

access the encapsulated objects. This is shown in Figure 3.3. Since there is no

information in the Proxy class whether or not objects owned by owner1 can

2 Stronger forms of name-based encapsulation exist, for example Eiffel’s (Meyer
1992) ability to only allow access/invocation of a feature to/from certain classes.
This encapsulation is stronger than Java’s, but lacks the precision of ownership
types. For an enlightening text on Eiffel, Java and C++ that compares e.g., the
encapsulation and access control of the different languages, see Joyner (1999).

3 AliasJava uses the keyword owned instead of this, and also place the owner pa-
rameter inside the < and > bracets. We alter their syntax slightly to match ours for
uniformity.



32 3 Ownership Types

class List<dataowner>

{

this:Link<dataowner,this> head;

}

class Link<dataowner,linkowner>

{

dataowner:Object data;

linkowner:Link<dataowner,linkowner> next;

}

Fig. 3.1. Example of shallow ownership. Classes and types are parameterised with
permissions (owners) to reference certain objects. The identifiers dataowner and
linkowner are owners of the list data and the links in the list respectively. The owner
of an object is the permission necessary to reference the object.

Link

List

Data object

Fig. 3.2. Reference permissions for the code snippet in Figure 3.1. Arrow means “may
reference”, so List instances may reference both links and data objects. All objects
have the right to reference themselves, i.e., self-referential arrows are hidden.

reference objects owned by owner2 or vice versa, the code of the expose()

method is valid, and thus, any object with permission to reference an object

can create a proxy that breaks the encapsulation. To relate to the example

above, it would be possible to give objects external to the list, for example the

data objects, permission to reference individual links in the list, which clearly

should not be possible since the links belong to the list’s representation. As it

makes the type system very flexible, it is possible to view this as a feature.

Regardless of whether it is viewed as a feature or a flaw, the possibility

of Proxy objects makes the encapsulation of shallow ownership intransitive,

and, as we shall see, the invariants of shallow ownership are not as strong

as in deep ownership. In particular, they are not strong enough to support

our proposal since variables owned ty this cannot be viewed as purely in-

ternal for the reasons leading to the situation in Figure 3.3. Thus, we refrain

from discussing shallow ownership at length, and instead concentrate on deep

ownership in the next section.

Examples of shallow ownership include Aldrich et al.’s (2002) AliasJava

and Boyland et al.’s (2001) capabilities for sharing. Equally strong forms of

(shallow) encapsulation can be found in Vault (DeLine and Fähndrich 2001)

and in Leino et al.’s (2002) data groups.



3.2 Ownership Types and Insides and Outsides of Objects 33

class Proxy<owner1, owner2>

{

owner1:Untrusted<owner2> break;

owner2:Object o;

void set(owner1 Object o)

{

this.o = o;

}

owner1 Untrusted<owner2> expose()

{

break.set(o);

return break;

}

}

Fig. 3.3. Using a proxy object to circumvent protection. The Proxy object has per-
mission to reference objects owned by owner1 and owner2, but knows nothing about
whether such objects may reference each other.

3.2.2 Deep Ownership

Deep ownership enforces encapsulation, much like shallow ownership, but

emposes stronger restrictions on references and also avoids the proxy problem

mentioned above. While on the surface, deep ownership looks very similar to

its weaker, shallow version, there are fundamental differences in the level of

encapsulation achieved.

Deep ownership enable constraining of the object graph by capturing the

nesting of objects in the types in a simple and elegant manner. Representa-

tion objects are being thought of as inside their owning objects and references

may be from the inside to the outside. Local nesting information, i.e., whether

an object is inside another, is propagated through the program to restrict

the global structure of the object graph. The stronger encapsulation restric-

tions of deep ownership cannot be circumvented as is the case for shallow

ownership—representation objects cannot be exported outside the owning

object4.

Three components form the basis of an ownership types system, namely:

1. owners and permissions,

2. nesting relations, and

3. a containment invariant.

4 This restriction might be weakened for temporary, stack-based references. This was
presented as an optional feature in Joe1 (Clarke and Drossopolou 2002) to increase
the flexibility to enable iterators and track them in the type system.



34 3 Ownership Types

The existance of nesting relations is the big difference from shallow

ownership—they allow the formulation of a stronger containment invariant,

and thus additional restrictions of the object graph. Furthermore, they allow

us to distinguish between the outside and inside of an object. As long as we

only allow the flow of a reference to objects nested inside it, we know that it

will never escape, not even by proxy, and is therefore purely internal.

In Figure 3.3, shallow ownership could be broken because there is no

knowledge about whether or not certain objects could reference each other.

In deep ownership, the implementation of the expose() method is only valid

if we can deduce that owner2 is nested inside owner1, i.e., if owner1 already

has the necessary permissions (also see the owner-as-dominators property

below). To be able to statically determine ownership nesting, headers are ex-

tended with relations between owners to thread nesting information through

the program:

class Proxy<owner1 inside world, owner2 inside owner1>

{

...

}

When forming types from classes and owners in scope, the nesting require-

ments of the class header must be satisfied. Thus, the object graph becomes

well-constructed with respect to the nesting requirements specified in the

classes.

All objects have an owner (either some other object or some system-wide

accessible owner constant) and can be the owners of other objects. The own-

ership relation forms a directed acyclic graph, where an object is inside (writ-

ten ≺∗) the object which owns it (see Page 37 for a picture of an ownership

graph that shows nesting of objects). Owners other than objects are possible,

e.g., Boyapati et al. (2002) introduce threads as owners to enable thread-local

objects. Further on, we too shall make two simple yet powerful additions to

the domain of owners to enable external uniqueness.

An additional, system-wide accessible owner called world forms the root

of the ownership dag, placing all objects inside world. As is investigated by

Clarke (2001) in his dissertation, multiple roots are possible (e.g., a separate

root for each module, or layer in an arhictecture). A single root is however

enough for our purposes here.

Realising Ownership in Programming Languages

Realising deep ownership in a class-based object-oriented programming lan-

guage is not overly easy. Owners become a new syntactic category and are



3.2 Ownership Types and Insides and Outsides of Objects 35

included in an object’s type. Types now take on a form quite similar to generic

types in C++ (Ellis and Stroustrup 1990) and Java’s anticipated 1.5 “Tiger”

release (Austin 2004). Type are parameterised by owners:

p0 :c〈pi∈1..n〉

where p0 is the owner of all objects of that type, and each pi for i ≥ 0 is

an ownership parameter, a binding for the parameters of the class, allowing

references to outside objects with these owners. As stated above, ownership

parameters can be viewed as permissions to reference external objects5. Since

all permissions are ordered, we can prevent the circumvention possible in

shallow ownership by only allowing an object to reference objects external to

it (in addition to its own representation). As a consequence, the owner must

always be inside the other owner parameters. These important restrictions

enable the containment invariant described shortly. Importantly, ownership

is decoupled from “has a reference to”, which makes the system flexible and

powerful.

Within the body of a class, this is used as an owner parameter in the types

of all objects owned by the current instance, i.e., the “representation objects”.

These objects are directly inside the current instance and are inaccessible to

the outside. Objects inside representation objects are also inside the owner of

the representation (i.e., ≺∗ is a transitive relation), however inaccessible (i.e.,

ownership is not transitive)—an object’s representation may only be accessed

by the object itself, or by the objects inside the representation who’s types

were parameterised with the appropriate permission.

All objects have an owner, denoted owner within the class body. The class

parameters are named by the programmer to enable capturing semantic in-

terpretations of ownership; for example, the parameter for the owner of data

objects in a list could be labelled “listdata”. Figure 3.4, shows the code for a

simple linked list and links (omitting methods for brevity).

In addition to world and owner parameters, additional owners may be in-

troduced via owner polymorphic methods. Owner-polymorphic methods take

owners as arguments meaning that they can be given permissions to reference

objects that the receiver object would not normally be allowed to reference.

This allows the programmer to temporarily break the containment invariant

of deep ownership for the duration of the method call. As soon as the method

terminates all references using permissions received as arguments automati-

5 As argued by e.g., Noble et al. (1998) and others, allowing pointers to external
objects is not always a good thing, since that creates dependencies on externally
owned objects, over which there is potentially no control.



36 3 Ownership Types

cally become invalidated. Owner-introducing constructs will be described in

more detail later as we introduce the semantics of our proposal.

As already stated, all owners are inside world. Within a class body we have

this ≺∗ owner, and owner ≺∗ α for each of the class’ parameters α. These

are necessary requirements in order to circumvent the problem in shallow

ownership.

For subclasses, an entirely new class header is specified along with a map-

ping relation from the owners of the subclass to those of the superclass. Thus,

the number of owner parameters in a subclass may grow or shrink depend-

ing on the relations between the owners in the super class. The owner must

however be preserved through subtyping as it acts as the permission govern-

ing access to the object. Preserving it by subsumption is a key to achieving a

sound system.

A Simple Example

The list example in Figure 3.4 demonstrates some of the power of ownership

types. The list class is parameterised by an owner for the data that will be

contained in the list—this gives the list permission to reference the data ob-

jects. This permission is passed on to the links. The head and tail links are

owned by the list object itself and are thus part of the list’s representation.

Thus, the links cannot escape the list boundary (as shown in the picture of

Figure 3.5), not even by proxy—storing a reference to a link in a data object

is not possible since the data object cannot be given the appropriate permis-

sion (since the link’s owner is not external to the data object). This precludes

the possibility of any external object getting hold of a reference to the indi-

vidual links. Thus, it becomes impossible for any outside object to manipulate

the links other than via the protocol of the list object.

As the links are parameterised by the listdata owner, they have per-

mission to reference list data objects and data objects may be stored in and

retrieved from the list as long as they have that same owner.

Some Useful Ownership Terminology

Objects with the same owner are called siblings or sibling objects. In the ex-

ample in Figure 3.4, all links belonging to the same list are siblings. External

objects are objects owned by owner or some other owner parameter. In the ex-

ample in Figure 3.4, all data objects are external. Internal objects are objects

owned by this or some other owner inside this. In the example in Figure

3.4, the links are internal to the list.



3.2 Ownership Types and Insides and Outsides of Objects 37

class List<listdata outside owner>

{

this:Link<listdata> head, // remember: this is inside owner

tail;

}

class Link<data>

{

owner:Link<data> next;

data:Object obj;

}

Fig. 3.4. A linked list and links using ownership types

Owner of data objects
(not shown in code example)

Link

List

Data object

OwnershipInvalid refUnique refRef and Object

Fig. 3.5. Object graph for the linked list example in Figure 3.4. The dotted line indi-
cates the presence of zero or more boundaries between the list object and the data
objects in the list. As is required by the containment invariant, the list object is nested
inside the owner of the data objects.

Owners are Dominators

The containment invariant is the condition which governs whether one object

can refer to another. It can be stated as:

α → β ⇒ α ≺∗ owner(β)

where α and β are objects, → means “refers to”, ≺∗ is the nesting relation “is

inside” and ⇒ is a standard logical implication.

In plain text, the containment invariant states that an object α can only

access an object β whose owner is outside of itself, or alternatively, an object

cannot be accessed from outside of its owner. Thus, the owner is effectively,

as we have stated, the permission required to access an object, and an object’s

position in the inside relation determines whether the object has enough per-

mission. A nice theorem (Potter, Noble, and Clarke 1998; Clarke 2001) states

that if we have all of these conditions, then an object’s owner will be on all

paths from the root of the graph to that object, which is to say that an object’s



38 3 Ownership Types

Root

f

u

Root

e’

e
s

r

i f’

Uniqueness Deep ownership

OwnershipInvalid refUnique refRef and Object

Fig. 3.6. Comparing uniqueness and deep ownership. Reference kinds: u – (externally)
unique. f, f ′ – invalid (f breaks uniqueness, f ′ breaks deep ownership). s – sibling.
e, e′ – external to grey object. i – internal. r – representation.

owner is its dominator. This property is called owners-as-dominators, and type

systems which enjoy it are said to offer deep ownership.

Deep ownership is illustrated in the second picture in Figure 3.6. The ob-

jects an object owns are nested inside it, as is depicted by the rounded box.

The rounded box is the grey object’s ownership bound containing all its rep-

resentation. A third way of explaining the property of deep ownership can be

stated as references cannot pass through an object’s boundary from the outside

to the inside.

As owners are dominators, all paths from the root of the program to an

object must pass through the owner of that object. This means that if an object

is removed, its entire transitive representation becomes inaccessible since all

paths to any such object are broken. As is noted by Clarke in his dissertation

(2001), and Clarke and Drossopoulou (2002), this could have some positive

side effects on garbage collection, somewhat similar to region-based memory

management. This remains to be investigated, but see Boyapati et al. (2003)

where ownership types is used to elimiate run-time checks to avoid dangling

references when deleting regions in real-time Java.

The owners-as-dominators model can be argued too restrictive; for exam-

ple, in its basic form, it does not allow to objects to share a common represen-

tation (an object always have one owner). An example of the consequences

of this is that iterators to lists cannot be encoded unless the iterator is part of

the list’s representation, which is an unrealistic restriction is most cases since

not even the owner of the list is allowed to iterate over its contents.

Extensions to deep ownership types have relieved some of the abovemen-

tioned requirements, see e.g., Boyapati et al. (2003) for a system that weak-



3.2 Ownership Types and Insides and Outsides of Objects 39

ens the owners-as-dominators property for objects of inner classes to allow

the encoding of iterators. Another extension to ownership types that can be

used to perform external initialisation and iterators by allowing temporary,

stack-based references to break deep ownership can be found Clarke’s and

Drossopoulou’s Joe1 (2002).

Ownership and Every-day Programming

Experience with ownership types is growing, though not for large-scale ap-

plications. Noble and Potanin (2002) have made analyses of heap structures

of a number of Java programs to compare their aliasing structures with the

ones imposed by e.g., ownership types. For their ownership types metrics,

they have measured the average depth of objects on the heap, i.e., the aver-

age levels of encapsulation for an object. The average depth was found to be

5.47. Although it is not immediately clear what that means in practice, it does

suggest that there is a significant amount of object encapsulation present in

existing programs. It also indicates that the object graph restrictions imposed

by ownership types are to large extent compatible with how real programs

are structured. The optimistic nature of the study, analysing only a few heap

dumps during a program’s run might however have skewed the results. While

encouraging, finer graned results are probably necessesary.

Several systems have successfully used ownership types to implement

other schemes, such as the Parameterised Race-free Java of Boyapati et al.

(2002). As ownership types systems give additional benefits in program con-

struction, it might be the case that the structure of programs will change to

capitalise on the side-effect benefits of ownership types. To this end, empiric

studies of uses of ownership types in non-toy settings are necessary.

In all cases, we feel that it is not presently clear how the containment

invariant of deep ownership types interact with the structure of ordinary pro-

grams. In a strict sense, ownership types does not impose any restriction since

everything can be owned by world, but this would lose all potentional bene-

fits and in the worst case reduce ownership types to a bunch of annoying and

worthless annotations. Clearly, ownership types is powerful and applicable for

small parts of a program, such as the list example above. Investigating the us-

ability of ownership types for larger applications is clearly a future direction

that this research will take.

The integration of uniquness into ownership relieves some constraints that

ownership types imposes, even for very small structures. This is discussed

at more length in Section 6.1. Such increasing flexibility of ownership types

systems might perhaps lead to the fulfilment of Boyapati’s vision of ownership

types as the basis for future programming paradigms6.

6 From Boyapati’s presentation at OOPSLA 2002 (Boyapati, Lee, and Rinard 2002).



40 3 Ownership Types

3.3 Combining Uniqueness and Ownership Types

The marriage of uniqueness and alias encapsulation schemes that offer deep

ownership or deep encapsulation (i.e., encapsulation of an entire transitive

closure of objects of an aggregate) enables unique references to aggregates in

the sense of the middle picture in Figure 1.1. Unique references to aggregates

are possible AliasJava (Aldrich, Kostadinov, and Chambers 2002) in the pres-

ence of shallow ownership with its inherent weaknesses, and in Parameterised

Race-Free Java (Boyapati and Rinard 2001). These systems sadly perpetuate

the abstraction problem identified earlier, since they rely on method-level an-

notations (indeed, Parameterised Race-Free Java suffers from additional ab-

straction problems described in more detail in Section 8.4.3, page 119).

In our proposal, we enable internal back pointers to a unique object to be

part of an aggregate’s implementation. This avoids the abstraction problem

presented earlier and is also more natural to object oriented programming.

3.3.1 Motivation for Chosing Ownership Types

Ownership types is the most mature and flexible system that offers strong

encapsulation in a statically enforcable way. Its properties have been proven

sound (Clarke, Potter, and Noble 1998; Clarke 2001) and is the basis and

inspiration for many subsequent systems, e.g., Joe1 (Clarke and Drossopolou

2002) and the systems combining uniqueness and ownership types mentioned

above. Deep ownership enables us to distinguish between the inside and out-

side of an object in the necessary way (see also Section 4.2.4 for a short dis-

cussion of shallow ownership and external uniqueness). Also, an important

discovery led us to the insight that enabling a strong notion of uniqueness

was relatively cheap in the presence of ownership types further convincing us

that ownership types was a suitable base.

We now present our proposal, external uniqueness, and Joline, a class-

based object-oriented Java-like language that realises our ideas.

Throughout the remainder of this thesis, whenever we refer to ownership

types, we assume a deep model of ownership adding the appropriate

qualifiers either where required or for emphasis.



❖ 4

External Uniqueness

This chapter presents external uniqueness, a new form of uniqueness that

overcomes the abstraction problem inherent in traditional uniqueness. Techni-

cally, it is a minor extension to ownership types, but with major consequences.

For concreteness, we work in the context of a core programming language

called Joline, an extended subset of Java.

The chapter begins with description of external uniqueness and the oper-

ations required to support it. We then address a few technicalities required

to maintain soundness of the system. We save the formal account the Joline

programming language for the Chapter 5.

4.1 Tour de External Uniqueness

A reference to an object is externally unique if it is the only reference from out-

side an object to it. Aliasing from inside the object is still permitted, because

such references form a part of the aggregate object’s implementation. Thus,

external uniqueness takes uniqueness, but only applies it externally, relying

on the distinction between the inside and outside of an object given by own-

ership types. Once you understand ownership types, external uniqueness is

as simple an idea as traditional uniqueness, although maintaining it is a little

trickier.

Figure 4.1 illustrates the distinction between our key concepts so far,

uniqueness and deep ownership, and external uniqueness. The dotted edge

u in the rightmost diagram denotes an externally unique reference. As in-

ternal references to the grey object are still permitted, we argue that external

uniqueness is a more suitable form of uniqueness for object-oriented program-

ming languages; it considers aggregates, not just single objects, meaning that

external uniqueness enables a single entry point to an entire collection of ob-

jects that can be moved by just moving the single pointer.



42 4 External Uniqueness

Root

f

u

Root

e’

e
s

r

i f’

Root

f

u

r

i f’

s

Uniqueness Deep ownership External uniqueness

OwnershipInvalid refUnique refRef and Object

Fig. 4.1. Uniqueness vs. Ownership vs. External uniqueness. Reference kinds: u – (ex-
ternally) unique. f, f ′ – invalid (f breaks uniqueness, f ′ breaks deep ownership). s –
sibling. e, e′ – external to gray object. i – internal to the gray object. r – reference to
the gray object’s representation.

The formal property of external uniqueness is:

ι refers to ι′ uniquely ∧ ι′′ refers to ι′ non-uniquely ⇒ ι′′ inside owner(ι′).

Also, there may be only one unique pointer to an object at one time in the sys-

tem. This property states that all non-unique references to a unique object are

stored in objects internal to the object. In combination, the fact that there can

be only one unique reference to an object at one time in the system and the

fact that owners are dominating nodes (since the owners-as-dominators prop-

erty holds), we get that unique references are dominating edges (see Section

4.1.2).

Externally unique references are denoted using types syntactically com-

patible to types with ownership:

unique :c〈pi∈1..n〉

The unique annotation can only appear in the owner position; no pi for i ≥ 1

may be the keyword unique. We allow uniques to move—change ownership.

This means that uniquely referenced parts of an object’s representation can

be detached and become part of another object’s representation. In previous

systems with ownership types, owners have been fixed for life since chang-

ing an owner of an object requires that all aliases to the object update their

view of the object accordingly. This is generally not possible at compile-time

due to the difficulties of tracing aliases. To maintain the strong encapsulation

of deep ownership in the presence of ownership transfers, unique types need

an additional bit of information to govern what moves are valid. This is dis-



4.1 Tour de External Uniqueness 43

cussed further in Section 4.1.5. As ownership types maintain the dominators

property, to obtain external uniqueness we need only add a little machinery

to ensure the uniqueness of references of unique type whenever viewed ex-

ternally.

4.1.1 Fields and Blocks as Owners

As we have already identified, a unique object is effectively owned by its

holder. Intuitively, thus, it makes sense to have the uniqueness annotation

have a semantics similar to this when used in the owner position of a type.

However, this does not get us the entire way. Instead, as we promised in Sec-

tion 3.2.2, we make a small addition to the domain of owners and allow not

only objects, but variables, fields and blocks to be used as owners. This is ar-

guably an intuitive approach as it is not only the holder of a unique reference

that dominates an object, but more precisely the field containing the unique

reference (since the field must appear in all paths to the object).

To enable field and variable owners, the unique annotation simply means

“the field of this type is the owner of the object it holds”, i.e., unique:Object

obj is interpreted as obj:Object obj. By not allowing the programmer to use

the field names directly as owners, we prevent the use of obj several times

to own objects in other fields in the same object which is unsound in our

system. In this light, transfer of ownership really means changing the owner

of an object from the origin field name to the target field name. Note that it is

not the field name that is the owner (since there is no mechanism to prevent

several object of the same or different types to use the same field name), but

rather the field occurence itself.

Allowing blocks to be owners might be less intuitive. (Remember, a block

is a sequence of statements enclosed within {. . . } brackets.) Basically, we

define a temporary owner for the scope of a particular block, just as many

languages allow declaration of block-scoped variables within a block. This

allows the creation of very localised objects, since as the block exits, the owner

can no longer be named. Thus, the type of the object cannot be formed outside

the block and therefore no variables or fields can have the type necessary to

contain a reference to the localised object.

Uniqueness in the owner position of a type means that the field (or vari-

able or parameter) associated with the type is the owner of the object it holds.

Thus, we get a form of types that are “connected” to a certain field. Moving an

object from one field to another now requires a change of type of the moving

object, even when moving an object between fields or variables in the same

object or on the same frame.



44 4 External Uniqueness

Since objects may not share fields, each run-time type of a unique ob-

ject is a singleton type. The same is also true for variables, parameters and

blocks—even if the same method or block is entered twice, the stack frames

will be different, meaning that the variables etc. can be thought of as unique

instances for that particular frame. In our formal semantics, we use object id

plus field name as unique owners and consider variables uniquely named to

achieve unique run-time owners for run-time types. Note that a run-time rep-

resentation of owners is not necessary to maintain the ownership or external

uniqueness properties, neither in most ownership types systems nor in the

system presented here. We simply include it here to make the formal system

easier and to improve the presentation of the Joline system.

4.1.2 Owners are Dominating Edges

The graph-theoretic property of ownership types is that owners are domi-

nating nodes in the object graph. The corresponding property for external

uniqueness is a refinement of the owners-as-dominators property; an exter-

nally unique reference instead corresponds to a dominating edge in the object

graph. A dominating edge is an edge that must occur on all paths from the

root of the system to the target. This can be observed in the rightmost dia-

gram in Figure 4.1—the dotted edge labeled u is a dominating edge for the

grey object and its representation. This is the same property as is given by tra-

ditional uniqueness. However, without the strong encapsulation property of

deep ownership, the owners-as-dominating edges property becomes a lot less

powerful as the edge only dominates the target object, instead of the entire

representation of a target aggregate.

The dominating edge property implies that if the dominating edge u is

removed, then all internal objects (i.e., objects within the rounded box in

Figure 4.1) become inaccessible from the rest of the system. This is in contrast

to ownership typing, where the removal of the grey dominator object would

result in its internal objects becoming inaccessible.

4.1.3 Externally Unique is Effectively Unique

Effective uniqueness means that even though an object may have more than

one pointer to it, all but one pointer are somehow hidden or otherwise non-

accessible which means that the semantics are the same as if it were actually

unique (there is only one pointer). In this sense, external uniqueness is effec-

tively unique since any non-unique pointer to a unique object is internal to

the unique object and the internals of a unique object is never accessible. The

external, unique pointer, is in effect the only pointer to the object.



4.1 Tour de External Uniqueness 45

Effective uniqueness is enabled by the dominating edge property. While

in place, the dominating edge is the only way to access an externally unique

object. We cannot invoke a method on a unique reference, nor can we use

it to access fields of the object it refers. Thus, we cannot reach the possible

internal pointers that violate actual uniqueness.

In the presence of borrowing, some kind of mechanism is needed to pre-

vent a borrowed variable from being accessed while borrowed since other-

wise the uniqueness expectation of the second access would be violated and

uniqueness compromised. As was previously discussed on Page 48 there are a

number of ways to deal with this problem: simply weaken uniqueness, tem-

porarily nullify the value of the borrowed variable which introduces addi-

tional null-pointers and possible race conditions or we could employ alias

burying which could also cause deadlocks or race conditions.

Any of the second two, non-weakening, solutions, renders external unique-

ness effectively unique in the sense that was described above.

4.1.4 Operations on Externally Unique References

In our proposal, unique values (fields, variables and parameters) can only be

operated upon in two ways—by movement and by borrowing. Movement is

essentially a destructive read that involves changing the owner of the object;

borrowing is a construction that allows a unique object to temporarily become

a non-unique. To perform any other operation on a unique object, it must first

be borrowed after which the borrowed reference can be reinstated and again

become unique. This separation of operations and the borrowing mechanism

that allows a unique to be temporarily converted into a regular non-unique

and back again is a key to overcoming the abstraction problem. Also, as we

shall see, they also make the borrowing pointer along with its operations and

keywords unnecessary.

Movement

Movement is the transferring of a unique pointer from one field (or variable or

parameter) to another. This involves changing the type of the moving object1.

The target type may be non-unique, i.e., moving may mean losing uniqueness.

For simplicity, we choose destructive reads (described in Section 2.2.1)

as the scheme for maintaining uniqueness. This means that read access of a

unique field has the side-effect of nullifying the field.

A unique value, as opposed to a unique field, can be obtained through

object creation, by destructively reading a unique field or variable, or as the

1 Except in the case of the object moving from one field to the same field.



46 4 External Uniqueness

Root

u
s

r

i � � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

Root

Stack
b

f

s

r

i
b’

Heap

External Uniqueness Borrowing

Fig. 4.2. Mediating between external uniqueness and borrowing — b is the original
borrowed reference. b, b′ are only valid during the borrowing. (Stack grows down-
wards.)

result of a method call. To simplify the formal account of the Joline language,

destructive reads are made explicit. To a certain degreee, the explicit syntax

also has the benefit of making the semantics clearer, thus aiding the program-

mer in dealing with slipperiness. In Joline, a programmer writes x = y-- or

return y--, instead of x = y or return y, respectively when y is unique.

Ultimately, a unique value is consumed by assigning it to a field or variable,

or by passing it as an argument to a method.

Since the type of a moving object changes, the key to sound movement

is to make sure that no two aliases have conflicting views of the object si-

multaneously. In our system, the internal pointers have a different view of an

encapsulating, externally unique object, but as we shall see, these pointers

are never active at the same time as the unique. Thus, the problem is circum-

vented (see also Section 4.1.3). We achieve this by using a construct called

borrowing.

If an object moved inwards, that is, was moved into itself, it would detach

itself from the object graph and become its own owner which is unsound in

our system. Luckily, this is not possible. To move an object, you need a unique

reference to it. However, to be able to pass something into a unique object,

its unique reference must first be converted to a non-unique reference by the

borrowing construct (see below). Thus, moving an object into itself would

require us to have both a unique and a non-unique reference to the same

object simultaneously which is not possible. This means inwards movement is

not possible.

Borrowing

Performing an operation on a unique reference other than moving it, e.g.,

accessing a field or calling a method, requires that the reference first be bor-



4.1 Tour de External Uniqueness 47

rowed. This is done using a syntactic construct in the language called borrow-

ing. The borrowing construct creates a non-unique reference to the borrowed

entity for a limited lexical scope. Remembering the discussion in the para-

graph just above, this non-unique reference has the same view of the object

as any internal pointers to it. In the example below, lval is the entity being bor-

rowed, x is the variable to contain the non-unique reference to the borrowed

object and s is the scope of x.

borrow lval t as 〈α〉 x { s }

The borrowing construct moves lval (of type t) into x and gives it a new

owner, α also defined for scope s. Since the name α is visible, other types

using α as an owner parameter can be formed in s, enabling the creation of

siblings to the borrowed entity, etc. The reason for including t in the statement

is to simplify the formal account. Devising an elaboration function that instead

fills in the necessary information prior to the compilation is easy. For brevity,

we do not include the type information in our examples.

We now take a more concrete example: If we have a unique pointer to a

List instance in the variable unique:List list, to call its append method

we are required to do the following:

borrow list as <temp> borrowed { borrowed.append(...); }

Figure 4.2 shows what happens during the phases of a borrowing. The left-

hand picture indicates the state of the program before the borrowing occurs.

Initially, all access paths, including path originating from the stack, from the

root to the grey object and its representation contain the unique reference u

(list in our example). If the reference in list is in place, it is inactive; oth-

erwise, a previous borrowing would have consumed it. Thus the object and its

representation are also inactive. During the borrowing, depicted in the right-

hand picture, the original reference is placed in variable b (borrowed in our

example) which can be treated as an ordinary, non-unique variable. The type

of borrowed is not unique, having owner temp, which is a “fresh owner”, for

the duration of the borrowing. While in scope of the borrowing (i.e., between

the { and } brackets, and in methods called within the borrowing block) we

can access the fields and methods of the borrowed object, pass it to methods,

or even store it in subsequent stack frames or on locally created heaps (i.e.,

in objects owned by temp or objects inside such objects, see Section 4.2.2). At

the end of the borrowing, temp is invalidated (goes out of scope), and thus

there can be no valid or active references to objects with temp in its type even

if the borrowed object was referenced from the heap. Only internal aliases

remain, and the situation returns to the original inactive state.



48 4 External Uniqueness

The last thing to happen is that the value of borrowed is reinstated into

list. Since it is the only variable who’s contents is saved, whatever reference

it contains will be the only external reference into the set of objects owned

by the temporary owner (i.e., it is an externally unique pointer to the bor-

rowed aggregate). Since borrowed is a regular variable, it might have been

updated during the execution of the borrowing block meaning that the rein-

stated pointer is not necessarily the same as the borrowed pointer.

Maintaining External Uniqueness

Borrowing exists primarily to facilitate type checking by providing a construct

to convert between uniqueness and non-uniqueness. Ownership typing en-

sures that no reference escapes from the borrowing construct via some back

door and that an object’s internal references never escapes. Thus, when a

unique reference is in place, all internal references are inactive, meaning that

they cannot be used in a way that would violate uniqueness. When the unique

reference is borrowed, it is replaced by a non-unique reference of the same

kind as the internal references, and the object can be treated as a regular

non-unique object. However, the externally unique reference must be han-

dled correctly, and its uniqueness not be compromised.

We now consider how to maintain external uniqueness. There are essen-

tially three approaches (the same as introduced earlier in Section 2.2.1):

do nothing — rather than invalidate the contents of the borrowed variable,

we could simply weaken the definition of uniqueness, permitting both the

reference in the borrowed variable and the borrowed references, and even

allow movement of the borrowed value underfoot.

destructive — we could nullify the borrowed variable during borrowing, and

then either:

— simply restore the original contents of the borrowed variable when the

borrowing ceases;

— restore the final contents of the borrowing variable at the end of the

borrowing (this was done in our previous example). Restoring the

initial value is consistent with conventional uniqueness, whereas en-

abling a different reference into the same aggregate to be reinstated is

consistent with external uniqueness; or

— rather than simply nullify the borrowed variable, we could record the

state of its contents. There are three possible states: available, null, and

borrowed, indicating that the variable contains something, nothing, or

is disabled due to some currently active borrowing. In the presence of

multiple threads, additional states could be added to indicate whether

a different thread is borrowing the reference.



4.1 Tour de External Uniqueness 49

This solution would give the programmer full control, dynamically, of

the possible ways to handle an attempt to borrow an already borrowed

variable etc. If borrowing an empty variable, it might be desirable to

perform an initialisation first; if trying to borrow an already borrowed

variable, some extra cation or other fall-back action might be appro-

priate.

alias burying — the last possibility is to employ alias burying, as outlined

when introducing uniqueness; instead of requiring uniques to be destruc-

tively read, we can allow multiple references to a unique object as long

as all but one reference is buried, e.g., out of scope or otherwise invali-

dated. This would ensure that when the variable is read, all its aliases are

unusable (Boyland 2001a). Alias burying eliminates the need for destruc-

tive reads, but unfortunately is costly in other respects. As it is based on

program analysis, its strength is sensitive to the underlying analysis. To

achieve modular checking, interfaces must be further annotated to indi-

cate which unique fields are read by what methods (Boyland 2001b). This

may well reintroduce the abstraction problem, for example if a method’s

implementation is changed so that a previously borrowed variable is

stored on the heap or if synchronisation is employed to prevent simul-

taneous access of a borrowed field. For fields, Alias Burying requires that

borrowed fields be locked in order to prevent simultaneous accesses. This

is similar to the temporary nullification of destructive reads, but the se-

mantics and effects on practical programming are much nicer.

In case of destructive reads and alias burying, the equi-strong aliasing

properties given by both schemes ensures that there is no active reference

to the target object other than the reference extracted from the borrowed

variable. As was stated earlier, we choose the destructive reads approach to

maintain uniqueness. This keeps our formal system simple, while retaining a

strong definition of uniqueness.

A drawback of destructive reads is that it precludes simultaneous non-

conflicting operations on unique references, e.g., allowing read-only methods

on unique references even during a borrowing.

4.1.5 Movement Bounds

To enable subtyping in ownership types, subsumption is allowed to “forget”

owner parameters. Classes A and B in Figure 4.3 illustrate this. When appear-

ing as an instance of class A, an instance of class B may still hold aliases to

external objects owned by owners that are no longer visible in the type (e.g.,

in field data2). Due to dynamic binding, methods may be called that operate



50 4 External Uniqueness

class A<a>

{

this:Something<a> data1;

}

class B<b outside owner, a inside b> extends A<a> // (**)

{

this:Something<b> data2;

}

// o1 inside o2

unique:B<o1,o2> ok = new unique:B<o1,o2>();

o2:A<o2> notok = ok--; // (*)

Fig. 4.3. Violation of the external uniqueness invariant caused by movement in the
presence of subtyping. After line (*), the object in notok is moved outside of o1 while
still retaining a reference to it, breaking the owners-as-dominators property.

on data2 but since b is not visible in the interface, its type cannot be named

and thus, the contents of the variable cannot be returned. Thus, the contain-

ment invariant is preserved.

Movement introduces another problem since movement changes the types

of objects. Moving what appears to be an instance of class A could lead to a

violation of the external uniqueness invariant if the instance was really of

some other type. Consider the lines of code at the bottom of Figure 4.3.

As the example shows, moving an object to a new location could result

in residual aliasing of the internals of its original location, thus violating the

invariants of deep ownership and external uniqueness. When moving an in-

stance of class B, we are aware of the relation between the owner and the

parameters a and b. In order to preserve the invariants which come as a con-

sequence of the type of data2, b must be outside this. In the line marked

(*), an instance of B is moved to owner o2 which is outside o1. This and

breaks the strong encapsulation since o1-owned objects can still be referred

to from inside of the moved object. Since the moved object is now owned by

o2, an object external to o1, this breaks the owners-as-dominators property.

An example of this is shown in Figure 4.4.

To avoid movement such as in Figure 4.4, all occurrences of unique have an

associated movement bound which appears in the formal system as uniquep

(written unique[p] in code). The movement bound is a regular owner that

bounds the outwards movement of a unique reference—a unique reference

may only be moved to variables with owners inside its movement bound.

In addition to limiting movement, the movement bound also ensures safety



4.1 Tour de External Uniqueness 51

o2

o1

o2

o1

Valid—before move Invalid—after move

Fig. 4.4. Movement that violates deep ownership. In the leftmost figure, encapsulation
is preserved. In the rightmost, after moving the gray object from o1 to o2, encapsulation
is violated by the dotted reference crossing the boundary of o1 from the outside to the
inside.

when borrowing by ensuring that references do not escape the scope of the

borrowing in a similar fashion.

The movement bound may be any visible owner inside the innermost

owner used to form the type. In the example in Figure 4.3, o1 is inside o2

and thus the movement bound must be (inside) o1. The only possible type of

ok is therefore unique[o1]:B<o1,o2>. To allow for some flexibility, the move-

ment bound can also change, but only inwards, which always upholds deep

ownership. Also, when losing uniqueness, the new owner is required to be

inside the bound. These restrictions preclude any violating movement. Since

o1 inside o2 in the example, changing the owner of ok from o1 to o2 is a

direct violation of these rules and our example would be caught as a type

error during compilation.

Another minor restriction necessary to preserve our invariants in presence

of movement is that owner may not appear as an owner parameter in the ex-

tends clause, i.e., the rightmost a may not be replaced for owner on line (**)

in the example in Figure 4.3. This is problematic since a supertype might end

up with an owner that cannot be named (since the unique owner cannot be

named externally, necessary to maintain the uniqueness), see 4.5. We choose

to not permit owner in the problematic, non-owner, position.

class B<p outside owner> { ... }

class C extends B<owner> { ... }

unique:C c;

unique:B<??> b = c--; (**)

Fig. 4.5. Using owner in the extends-clause might make supertypes impossible to ref-
erence from outside. On line (**), ?? indicates the lack of a name for the owner
parameter to B.



52 4 External Uniqueness

Choosing a Movement Bound

In Appendix A.1, we present an elaboration function that gives a valid move-

ment bound to all unique types. The default movement bound is equivalent

to replacing all occurrences of unique with unique[owner], except for code

not inside classes (where owner is not defined), in which case unique[world]

is used.

Another way is to put movement bounds under programmer control. The

programmer may select any visible owner inside the lower bound with re-

spect to the inside ordering of the owner parameters of the unique type as

movement bound.

Choosing movement bound is a trade-off: an outer bound enables more

movement, but limits what other objects the object can access (i.e., what own-

ership parameters can appear in its type). An inner bound would enable less

movement, but permit more access. Unique references with movement bound

world can be moved anywhere in the system, but as for objects owned by

world, can only reference other world-owned objects in addition to its repre-

sentation.

4.2 Discussion

In this section, we discuss some of the issues and features around our pro-

posal, including owner-polymorphic methods, generational ownership, how

to deal with constructors and why shallow ownership does not suffice to en-

able external uniqueness.

4.2.1 Owner-Polymorphic Methods

Joline sports owner-polymorphic methods, which are methods that take own-

ers as parameters. These methods can be given temporary permission to refer-

ence certain objects. The declaration of an owner-polymorphic method takes

the following form:

<temp inside world> void method(temp:Vector p) { ... }

where the owner parameters appear in front of the rest of the method head

(before the types that use them), inspired partly by GJ (Bracha, Odersky,

Stoutamire, and Wadler 1998) and λ-calculus.

Below is an example of invoking an owner-polymorpic method when

owner o2 is not inside o1:



4.2 Discussion 53

// o2 not inside o1

o1:Object r;

o2:Object a;

r.method<o2>(a);

In the code snippet above, r is owned by o1 and since o2 is not inside o1,

regular methods in r are not permitted to reference a. However, we pass the

method the temporary permission to reference objects owned by o2, and are

thus allowed to pass a as an argument to method. Since the permission is

temporary and cannot be stored in r, no references to a can be retained after

the method has exited (other than references created in object inside o2).

4.2.2 Generational Ownership

The inclusion of scoped regions in our language enables an interesting feature

that we call generational ownership2. Previously, the lowest owner accessible

to a method was the current this. That meant that methods executed inside

the receiver object in the ownership graph.

In generational ownership, a stack frame can be thought of as being nested

inside all existing owners in the ownership dag. The introduction of blocks as

owners allow creation of stack-owned heaps and gives an ownership structure

such as the one depicted in Figure 4.6. The uniquely referenced subheaps are

due to external uniquenss. They are subheaps with only one ingoing pointer,

i.e., the top object is referenced externally unique and no other objects in the

heap are referenced from outside the heap.

A stack frame with a heap can be thought of as a “generation of objects”.

Later stack frames are ordered inside earlier stack frames (which is the only

sensible option since the owners of later generations does not exist when

previous stack frames are still active); later generations can access all previous

generations, but not vice versa. Thus, the top stack frame and objects in its

heap are ordered inside all other objects in the system and the bottom frame

(i.e., the first frame created) corresponds to world. Since objects belonging

to earlier generations cannot reference objects of later generations, when a

stack frame is destroyed, the contents of its heap can no longer be referenced.

Thus the entire generation of objects can be destroyed.

4.2.3 Constructors

Normally, instantiating an object from a class template results in a unique

object. If a constructor is called on the instantiated object, it might create

2 The name generational ownership was coined by John Potter.



54 4 External Uniqueness

(sub) heap

� � � �� � � �

� � � �� � � �� � � �
� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �

	 	 	 		 	 	 		 	 	 		 	 	 		 	 	 	

(Sub) heap

Stack frame

(grows down− 
wards)

fra
me owns h

eap

frame owns heap

frame owns heap

frame owns heap

a

b

c

d

e

f Uniquely referenced

Fig. 4.6. Generational ownership. The lines without arrows indicate ownership, the
triangles are heaps and the rectangles are stack frames in a downwards growing stack.
Arrows are references, dashed arrows denote externally unique references and dotted
arrows denote invalid references. Bullets are externally unique objects.

aliases to the object that renders it non-unique. Thus, object creation with

constructors in the presence of (external) uniqueness is a bit tricky.

Constructors are effectively methods called only once and thus have the

same restrictions as ordinary methods. In an ordinary method call, external

uniqueness would be violated if the method created a path to this in a preex-

isting external object. In case of a constructor, this would mean that the result

of an object creation would not be an externally unique object.

To be accessible in the method, the preexisting external object would have

to have owner as its owner and be accessible from an object passed to the

method. If the owner was merely acting as the movement bound, there would

be no problem, because such an argument to the constructor would be unique

and thus be consumed by the constructor into the new object meaning any

aliases to this stored in the argument object would be internal. Thus, the

fix is simple: the parameters of a constructor cannot have owner in their type,

except as a movement bound. This is a minor restriction as constructors may

still make static aliases to its arguments and create and receive any objects.

Having argued how to deal with unique object creation in the presence

of constructors using only minor restrictions, we omit constructors from our

language description for simplicity.

4.2.4 Shallow Ownership does not Suffice

The property of external uniqueness that owners are dominating edges is a

refinement of the owners-as-dominators property of ownership types, and



4.2 Discussion 55

also a strengthening of the property of traditional uniqueness. For traditional

uniqueness, trivially a unique reference is a dominating edge since there can

be no other references to the object. In external uniqueness, a dominating

edge also dominates all objects in the referenced aggregate, not just the one

uniquely referenced. This deep version is stronger and therefore more pow-

erful than the shallow property given by traditional uniqueness. It should

provide more reasoning power, and also allow movement of aggregates in

contrast to movement of a single object possibly leaving its representation in

place.

Dominating edges are possible only in systems where dominators can be

enforced, i.e., in systems that offer deep ownership. Shallow ownership sys-

tems, as offered by Boyland et al.’s Capabilities for sharing (2001), Aldrich

et al.’s AliasJava (2002) and some systems in Clarke’s dissertation (2001)

lack the necessary strength to support external uniqueness since there is no

way of distinguishing between inside and outside of an object, or because

internal references may escape to the outside and compromise a supposedly

externally unique reference.

Adding traditional uniqueness in systems with shallow ownership is easy,

since the invariants underlying deep ownership need not be considered.





❖ 5

Formalising External Uniqueness

In this section, we formalise our proposal in a Java-like programming lan-

guage called Joline. We show the static and dynamic semantics of our proposal

and outline the most important proofs.

5.1 Introducing Joline

Although quite different, the Joline programming language carries on the tra-

dition of Joe1 (Clarke and Drossopolou 2002), but lacks effect annotations

etc. It also reintroduces the nesting relations in the class header and uses a

local state instead of let-statements. This section describes the syntax, static

semantics and dynamic semantics of Joline along with its key properties—a

structural property that captures both the owners-as-dominators property in

the presence of owner polymorphic methods (generational ownership) and

the owners-as-dominating edges property of external uniqueness, and regular

soundness.

5.1.1 Syntax

Joline’s syntax is shown in Table 5.1. It should be familiar to anyone with

some experience in Java. A program is a collection of classes followed by a

statement and a resulting expression. We could have followed Java’s example

and use static methods etc., but chose this way out for simplicity.

Classes are parameterised with owner parameters. Each owner parameter

(except the implicit, first, owner parameter) must be related to either owner or

some previous parameter of the same class. Classes contain fields and meth-

ods; fields must be initialised and methods may carry owner parameters (re-

member the discussion about owner polymorphic methods earlier).

The most interesting pieces of syntax are undoubtedly these: The destruc-

tive read suffix, --, required to destructively read a field or variable; Object



58 5 Formalising External Uniqueness

c ∈ ClassName f ∈ FieldName md ∈ MethodName

x, y ∈ TermVar α ∈ OwnerVar

P ::= classi∈1..n s e (Program)

class ::= class c〈αi Ri pi∈1..m〉 extends c′〈p′i′∈1..n〉 { fd j∈1..r methk∈1 ..s } (Class)

fd ::= t f = e; (Field)
meth ::= 〈αi Ri pi∈1..m〉 t md(ti xi∈1..n) { s return e } (Method)

lval ::= (L-value)
x (variable)
e.f (field)

e ::= (Expression)
this (this)
lval (l-value)
lval-- (destructive read)
new t (new)
null (null)
e.md〈pj∈1..m〉(ei∈1..n) (method call)

s ::= (Statement)
skip; (skip)
t x = e; (variable delcaration)
e; (expression)
lval = e; (update of lvalue)
s1; s2 (sequence)
if (e) { s1 } else { s2 } (if-statement)
(α) { s } (scoped region)
{ s } (block)
borrow lval t as 〈α〉 x { s } (borrow)

p, q ::= (Owners)
this (this)
α (owner parameter)
world (world)
owner (owner)
unique (unique)
uniquep (unique in elaborated language)

t ::= (Type)
p :c〈pi∈1..n〉

Table 5.1. Syntax of Joline



5.1 Introducing Joline 59

Table 5.2. Helper function definitions.

Owners

owners(p1 :c〈pi∈2..n〉) =̂ {pi∈1..n}

owners(uniqueb :c〈pi∈1..n〉) =̂ {b, pi∈1..n}

owners(E) =̂ The set of all owners defined in E plus world

creation which requires the owner parameters specified in the class header to

be bound to owners in scope; Method call, that may require owner arguments

if the invoked method is owner polymorphic; The scoped region construct

that introduces a new owner, α, for a given block; and borrowing, as has been

explained previously.

5.1.2 Joline’s Type System

In this section, we present the static semantics for Joline. First, we introduce

the static typing environment, owner substitutions, a few helper functions as

well as field and method lookup. We then present the type rules, beginning

with the rules for well-formed environments, owner orderings, classes, meth-

ods and programs. We then proceed with the types and subtypes, including

unique types and rules for losing uniqueness or moving a unique type to into

another bound. Last, we present the type rules for Joline’s statements and

expressions.

Type checking is defined for programs which have movement bounds in

place (either added manually by the programmer using the unique[owner]

syntax or inferred by the elaboration function in Appendix A.1).

Static Type Environment

The type environment E records the nesting relation on owner parameters,

and the types of free term variables:

E ::= E, x :: t | E,α �∗ p | E,α ≺∗
⊔

{pi∈1..n} | ε

where α ≺∗
⊔
{pi∈1..n} means α is inside all p ∈ {pi∈1..n}. We will use the test

isunique(t), that is true if and only if the type t is unique, i.e., isunique(t) iff

t = uniqueb : c〈σ〉. The helper function owners is defined for types and static

type environments. When applied to a type, it returns a set of all owners used

to form that type; when applied to an environment, it returns a set of all

owners defined in that environment (see Table 5.2 for formal definitions).



60 5 Formalising External Uniqueness

Substitutions

Substitution of owners for owner parameters is denoted σ where σ is a map

from owner variables to owners. If type p : c〈q〉 is formed from the class defi-

nition

class c<data inside owner>

{

...

}

we sometimes write p : c〈σ〉 for the same type where σ = {data 7→ q}. We

will also sometimes write σp to mean σ ∪ {owner 7→ p} or σn to mean σ ∪

{this 7→ n} or σp
n for the combination. Applying a substitution to a type is

written σ(t) or σ(t → t′) and is defined thus:

σ(p :c〈pi∈1..n〉) = σ(p) :c〈σ(pi) i∈1..n〉

σ(uniqueb :c〈pi∈1..n〉) = uniqueσ(b) :c〈σ(pi) i∈1..n〉

σ(t → t′) = σ(t) → σ(t′)

Applying a substitution to an owner is written σ(p) or σ(α R p) and is defined

thus:

σ(p) = q, if p 7→ q ∈ σ

σ(p) = p, if p 7→ q /∈ σ

σ(pR q) = σ(p)R σ(q)

Sometimes, we compose several substitution maps. We write ◦ for composi-

tion of substitution maps:

σ1 ◦ σ2 = {p → σ1(q) | p → q ∈ σ2}

Composition of substitution maps is equivalent to ordinary function composi-

tion and therefore is associative.

Field Lookup

For any class c, Fc is a map from the names of all field variables defined in c

and all of its superclasses to their corresponding types, i.e., for class

class List<data outside owner> extends Object

{

this Link<data> first;

this Link<data> last;



5.1 Introducing Joline 61

}

we have FList = { first 7→ this :Link〈data〉, next 7→ this :Link〈data〉 }.

Field lookup is formally defined thus:

Fc(f) =






⊥, if c ≡ Object

t, if class c · · · { · · · f t · · · } ∈ P

σ(Fc′(f)), if class c〈 〉 extends c′〈σ〉 { fd · · · } ∈ P ∧

f /∈ dom(fd)

The σ on the second line is a map from the owner names used in c′ to those

used in c to facilitate subclassing and ⊥ means that the method is not defined

for class c. P is the complete program, a global constant for all the rules except

` P to reduce the syntactic overhead necessary to thread P from the top level

to all the rules where it is required. When looking up a field variable for class

c on the second line, the types in Fc′ use owner names in the class definition

of class c′. Thus we apply the substitution σ(Fc′(f)) to “translate” the types

into using the names visible in c.

Method Lookup

Method lookup works similar to the field lookup mechanism described above.

For any class c, Mc is a map from all names of all methods defined in c and all

of its superclasses to a tuple containing the argument types and return type

of the method. Thus, if the following methods were present in the Link class

above

data Object get(world Int position) { ... }

world Boolean add(data Object obj) { ... }

we would have the following map for c: Mc = {get 7→ (world :Int → data :

Object), add 7→ (data :Object → world :Boolean)}.

As for field lookup, the owner names used in the classes may vary even

in the same hierarchy and therefore a translation is “built into” the method

lookup function. Thus, when looking up a method in class c, the types re-

turned will use owner names defined in c.

Mc(md) =






⊥, if c ≡ Object

(t → t′), if class c · · · { · · · t′ md(t x){· · ·} · · · } ∈ P

σ(Mc′(md)), if class c〈 〉 extends c′〈σ〉 · · · ∈ P



62 5 Formalising External Uniqueness

Table 5.3. Judgements used in the static semantics.

E ` 3 Good environment
E ` p Good owner
E ` pR q Owner p is R-related to q (R ∈ {≺∗,�∗})
E ` t Good type
E ` t ≤ t′ Type t is a subtype of type t′

E ` v :: t Value v has type t
E ` e :: t Expression e has type t
E ` s;E′ Statement s produces environment E′

E ` meth Good method
` Class Good class
` P Good program

Static Semantics

In this section, we present the static semantics of Joline. An overview of the

different judgements used is found in Table 5.3.

Good environment

(ENV-ε)

ε ` 3

(ENV-x)

E ` t x /∈ dom(E)

E, x :: t ` 3

(ENV-α �∗)

E ` p α /∈ dom(E)

E,α �∗ p ` 3

(ENV-α ≺∗)

E ` pi∈1..n α /∈ dom(E)

E,α ≺∗
⊔
{pi∈1..n} ` 3

The rules for good environment are pretty straight-forward. (ENV-ε) states

that the empty environment, ε, is well-formed. (ENV-x) states that adding a

variable name to type binding, x :: t in to a good environment E produces

another good environment provided x is not already bound to a type in E

and t is a well-formed under E. The rules (ENV-�∗) and (ENV-≺∗) deal with

inside and outside orderings of owners. (ENV-�∗) states that adding a α �∗ p

ordering of two owners to a good environment E produces a good environ-

ment if p is a good owner under E and α is not in E. (ENV-≺∗) states the

same, but for the ≺∗ relation. It also permits ordering an owner inside several

good owners, thus making the owners and their orderings a directed graph.

Good owner

(OWNER-VAR)

α R ∈ E

E ` α

(OWNER-THIS)

this : t ∈ E

E ` this

(OWNER-WORLD)

E ` 3

E ` world



5.1 Introducing Joline 63

The rules for good owners state that an owner is well-formed if it is defined

in the static environment. Also, if present in the environment, the special

variable this is also a good owner. The owner world is globally defined.

Owner Orderings

(IN-ENV1)

α ≺∗
⊔

P ∈ E p ∈ P

E ` α ≺∗ p

(IN-ENV2)

α �∗ p ∈ E

E ` p ≺∗ α

(IN-WORLD)

E ` p

E ` p ≺∗ world

(IN-THIS)

this : t ∈ E

E ` this ≺∗ owner

(IN-REFL)

E ` p

E ` p ≺∗ p

(IN-TRANS)

E ` p ≺∗ q E ` q ≺∗ q′

E ` p ≺∗ q′

P = {pi∈1..n} in (IN-ENV1) above. The inside and outside relations are de-

rived from the owner orderings in E. The relations are transitive and reflex-

ive and owners and their ordering form a dag (since an owner can be ordered

inside several other owners by (IN-ENV1)). From (IN-WORLD), we see that all

owners are inside world. Importantly, if this is a valid owner, it is always

ordered inside owner, which is the owner of the object denoted by this.

Program and Class

(PROGRAM)

` classi∈1..n ` s ;E E ` e :: t

` classi∈1..n s; return e :: t

(ROOT-CLASS)

` class Object { }

(CLASS)

E0 = owner ≺∗ world, αi Ri pi∈1..m E0 ` owner ≺∗ αi∈1..m

E0 ` owner c′〈σ〉 owner /∈ rng(σ) E = E0, this : owner c〈αi∈1..m〉

{fi∈1..n} ∩ dom(Fc′) = ∅ E ` ei : ti E ` methj∈1 ..s

∀md ∈ names(methj∈1 ..s) ∩ dom(Mc′). Mc(md) ≡ σ(Mc′(md))

` class c〈αi Ri pi∈1..m〉 extends c′〈σ〉 {ti fi = ei∈1..r methj∈1 ..s}

By (PROGRAM), a program is well-formed if all the classes it defines are well-

formed and all statements in the body of main, s;return e, are well-formed.

By (ROOT-CLASS), the empty root class Object is always well-formed.

The rule for well-formed class, (CLASS), is a little more complex. First,

owner must be inside all owner parameters of the class. Secondly, the su-

pertype to the class must be valid (remember σ is a mapping from owner

names used in the class header of c′ to the owner names αi∈1..m used in c).

The assertion owner /∈ rng(σ) prohibits the owner from being used as an

owner parameter in the non-owner position of any supertype of c. Allowing



64 5 Formalising External Uniqueness

this could cause unsoundness when moving uniques and we will discuss this

later in more detail. Shadowing fields is not permitted as the names of the

fields declared in c must not be in set of fields declared by any superclass to c.

Any expression initialising a field must be valid under the class’ environment

E (constructed from the owner class’ header, adding owner and the this vari-

able). Finally, all methods declared in the class must be well-formed under

E and, notably, for all overridden methods (a method with the same name

as one defined in any superclass to c), the types must be invariant. Note the

application of the σ-substitution to Mc′ to translate the names of the owner

parameters into the corresponding names in c.

Good method

(METHOD)

E′′ = E,αi Ri pi∈1..n, xj : tj∈1..m E′′ ` s; E′ E′ ` e : t0

E ` t0 md〈αi Ri pi∈1..n〉(tj xj∈1..m){ s return e; }

A method is well-formed under environment E if the statements and return

expression of its body are well-formed with respect to E extended with the

owner parameters and variables declared in its header.

Types

(TYPE)

class c〈αi Ri pi∈1..n〉 · · · ∈ P

σ = {owner 7→ q, αi 7→ qi∈1..n} E ` σ(αi Ri pi)i∈1..n

E ` q :c〈qi∈1..n〉

(UNIQUE-TYPE)

class c〈αi Ri pi∈1..n〉 · · · ∈ P

σ = {owner 7→ q, αi 7→ qi∈1..n} E ` σ(αi Ri pi)i∈1..n

E ` uniqueq :c〈qi∈1..n〉

A type is well-formed whenever the substituted owner arguments satisfy the

ordering on parameters specified in the class header. A type can be either

unique or not. In the case of unique types, the movement bound must satisfy

the same constraint as it would satisfy if it was the actual owner. If it was

possible to move a unique higher up in the ownership hierarchy than any of

its owner parameters, it would break the owners-as-dominators property.

Subtyping

Subtyping in Joline involves not only traditional subtyping but also a unique

losing its uniqueness and a unique moving (i.e., changing its movement



5.1 Introducing Joline 65

q :c′〈σ′〉

4

p :c′〈σ′〉 uniqueq :c′〈σ′〉

2

ggO
O
O
O
O
O
O
O
O
O
O

uniquep :c′〈σ′〉

2

ggN
N
N
N
N
N
N
N
N
N
N

3

33ggggggggggggggggggg

q :c〈σ〉

1

OO

4

p :c〈σ〉

1

OO

uniqueq :c〈σ〉

1

OO

2

ggO
O
O
O
O
O
O
O
O
O
O

uniquep :c〈σ〉

1

OO

2

ggN
N
N
N
N
N
N
N
N
N
N

3

33gggggggggggggggggggg

Arrows are labelled 1-4 as follows: 1 (up) Regular subtyping; 2 (up left) Los-
ing uniqueness (uniquep becomes p, rest of type is unchanged.); and 3 (up
right) Movement (uniquep becomes uniqueq, rest of type is unchanged); 4
(dotted lines) Invalid as non-unique types cannot move.

Fig. 5.1. Possible supertypes of p :c〈σ〉 and unique
p
:c〈σ〉 when c ≤ c′ and q ≺∗ p.

bound). Figure 5.1 shows possible supertypes for types p : c〈σ〉 and uniquep :

c〈σ〉 for some Γ s.t. Γ ` q ≺∗ p when c′ is a superclass of c.

(SUB-CLASS)

E ` p :c〈σp〉 class c〈. . .〉 extends c′〈p′i∈1..n〉 · · · ∈ P

E ` p :c〈σ〉 ≤ p :c′〈σ(p′i∈1..n)〉

(SUB-UNIQUE)

E ` p :c〈σp〉 class c〈. . .〉 extends c′〈p′i∈1..n〉 · · · ∈ P

E ` uniquep :c〈σ〉 ≤ uniquep :c′〈σ(p′i∈1..n)〉

Subtyping is derived from subclassing, modulo the binding of superclass pa-

rameters. As this corresponds to the composition of two order-preserving

functions, it is order-preserving, required to preserve deep ownership, see

Clarke’s dissertation (2001). In particular, subtyping preserves the owner,

it is fixed for life for non-unique objects and may change with movement

for unique objects. Letting the owner vary, as in Cyclone (Grossman, Mor-

risett, Jim, Hicks, Wang, and Cheney 2002), would be unsound in our system



66 5 Formalising External Uniqueness

(Clarke and Drossopolou 2002).

(SUB-REFL)

E ` t

E ` t ≤ t

(SUB-TRANS)

E ` t ≤ t′ E ` t′ ≤ t′′

E ` t ≤ t′′

As expected, the subtype relation is reflexive and transitive. To simplify the

formalism, we have no subsumption for uniques, i.e., the programmer must

explicitly convert a unique to a non-unique and explicitly tighten the bound

of a unique.

(LOSE-UNIQUE)

E ` e :: uniqueb :c〈σ〉 E ` p ≺∗ b

E ` (p) e :: p :c〈σ〉

(MOVE-UNIQUE)

E ` e :: uniqueb :c〈σ〉 E ` p ≺∗ b

E ` (uniquep) e :: uniquep :c〈σ〉

The (LOSE-UNIQUE) and (MOVE-UNIQUE) rules are of special interest. To-

gether, they allow movement of uniques from one place to another with and

without the preservation of uniqueness. The (MOVE-UNIQUE) rule allows a

unique type to be transformed if the target type’s movement bound is in-

side the original bound, a possible strengthening of the movement restriction.

This is crucial to preserve soundness as was discussed in Section 4.1.5. Losing

uniqueness is possible by just dropping the unique and using the movement

bound as the actual owner.

As stated above, losing uniqueness and tightening movement bounds are

explicit operations. In difference with ordinary type casts, these operations ac-

tually modify their targets (e.g., moving subheaps into other objects, destroy-

ing uniqueness wrappers). Thus, preventing them from occuring implicitly in

our calculus significantly reduces the complexity.

Statements

(STAT-LOCAL)

x /∈ dom(E) E ` e :: t

E ` t x = e; ;E, x :: t

(STAT-LOCAL) describes the conditions for variable declaration. The variable

name must not be in use in the same environment and the initial expression

must have the same type as the declared type of the variable (modulo sub-

sumption).



5.1 Introducing Joline 67

(STAT-SKIP)

E ` 3

E ` skip; ;E

(STAT-EXPR)

E ` e :: t

E ` e; ;E

(STAT-UPDATE)

E ` lval : t ref E ` e :: t

E ` lval = e; ;E

skipp is a valid statement under any valid environment. From (STAT-EXPR), a

well-formed expression can be treated as a statement. The rule (STAT-UPDATE)

simply enforces that updates can be performed to l-values only if the types

match, modulo subtyping. Remember that lval is both x and x.f .

(STAT-SEQUENCE)

E ` s1 ;E′′ E′′ ` s2 ;E′

E ` s1 s2 ;E′

(STAT-BLOCK)

E ` s ;E′

E ` {s} ;E

From (STAT-SEQUENCE), statements can be sequenced in an unsurprising fash-

ion. From (STAT-BLOCK), statements in a block may produce new environ-

ments (i.e., make new variables or owner parameters visible). However, these

are “removed” at the exit of the block and only the initial environment when

entering the block is left.

(STAT-SCOPED-REGION)

E,α ≺∗
⊔

P ` s ;E′ P ⊆ owners(E)

E ` (α) { s } ;E

(STAT-BORROW)

E ` lval :: uniquep :c〈pi∈1..n〉 ref E,α ≺∗ p, x :: α :c〈pi∈1..n〉 ` s ;E′

E ` borrow lval :: uniquep :c〈pi∈1..n〉 as 〈α〉 x { s } ;E

The rule (STAT-SCOPED-REGION) introduces a new owner variable for the du-

ration of the given block. This is “blocks-as-owners” (the owner is only defined

for the duration of the borrowing block). The bounds P , though unspecified

in code, determine which objects may be accessed by objects created in this

scope. Thus, a owner introduced by a scoped region is potentially internal to

all objects in scope. The reason for requiring the type of the borrowed lval

to be present is to make the dynamic semantics simpler. There is nothing to

prevent the necessary information to be elaborated in.

The rule (STAT-BORROW) states that any uniquely typed l-value may be

borrowed1. This is achieved by introducing a new owner variable which is re-

stricted in scope analogous to a scoped region to act as the owner of the tem-

porary non-unique reference to the borrowed value. To ensure that this ref-

erence, or other references into the borrowed value do not escape this scope,

1 For the dynamic system, we make a simplification and only allow borrowing from
local variables. This does not make the system weaker.



68 5 Formalising External Uniqueness

we require that this owner is inside the unique type’s movement bound. The

remainder of the type must correspond exactly to the type of the l-value, so

that it is reinstated with a correctly typed value when the borrowing ends.

Again, to simplify the formalism, we only permit borrowing from local

variables. This does not make the language less powerful, since borrowing a

field can be simulated by first moving its contents to a local variable, borrow-

ing from the variable and then reinstating its contents into the field.

l-values

(LVAL-VAR)

x :: t ∈ E x 6= this

E ` x :: t ref

(LVAL-FIELD)

E ` e :: p :c〈σ〉 Fc(f) = t

this ∈ owners(t) ⇒ e ≡ this

E ` e.f :: σp(t) ref

The rules above give the types of l-values, which are variables (other than

this) and fields. Their type is given exactly as declared, modulo substitution

of parameters. l-values may be updated or destructively read. The condition

this ∈ owners(t) ⇒ e ≡ this, which was called the static visibility in the

original ownership types system (Clarke, Potter, and Noble 1998), ensures

that types that contain this in them, i.e., types of representation objects, can

only be accessed internally to the object. It amounts to saying that fields (and

methods) which yield, return or require representation objects in are private.

This is not essential; we could have used dynamic aliasing as in Joe1 (Clarke

and Drossopolou 2002), but the resulting type system would have been too

complex to present our ideas. Also, allowing dynamic aliases arguably opens

up a hole in deep ownership types which might not be desirable. Note that

subsumption does not apply to l-value types to ensure the validity of reinstate-

ment at the end of borrowing or implicit conversion of a unique type to a

non-unique type.

Expressions

(EXPR-LVAL)

E ` lval :: t ref ¬isunique(t)

E ` lval :: t

(EXPR-DREAD)

E ` lval :: t ref

E ` lval-- :: t

Not all l-values can be directly treated as values. The rules (EXPR-LVAL) and

(EXPR-DREAD) correspond to extracting the value within the l-value. If the

type is non-unique, then the (contents of) l-value can automatically be used

as a value. If the type is unique, then a destructive read must be used to

convert its contents into an expression. Destructive reads can apply to non-

unique l-values.



5.1 Introducing Joline 69

(EXPR-THIS)

this :: t ∈ E

E ` this :: t

(EXPR-NULL)

E ` t

E ` null :: t

(EXPR-SUBSUMPTION)

E ` e :: t E ` t ≤ t′

E ` e :: t′

From (EXPR-NULL), can have any well-formed type. By (EXPR-SUBSUMPTION),

an expression of type t can be said to be of any type t′ such that t′ is a super-

type of t.

(EXPR-NEW)

E ` p :c〈σ〉

E ` new p :c〈σ〉 :: uniquep :c〈σ〉

The rule (EXPR-NEW) contains a subtle detail: instantiating an object creates

an externally unique.

(EXPR-CALL)

E ` e :: p :c〈σ〉 Mc(md) = ∀(αi Ri pi∈1..n)(tj∈1..m → t0)

this ∈ owners(Mc(md)) ⇒ e ≡ this σ′ = {αi 7→ qi∈1..n}

E ` σ′(σp(αi Ri pi∈1..n)) E ` ej :: σ′(σp(tj)) for all j ∈ 1..m

E ` e.md〈qi∈1..n〉(ej∈1..m) :: σ′(σp(t0))

The rule for method call is a behemoth. First, it applies only to non-unique

types (as does the rule for field access). The second line is the static visibil-

ity test, same as for field access, which restricts expressions containing this

in their type (as declared in the class) to being used only internally, that is,

on this. The owner arguments of the target type and the owner arguments

supplied to the method form two substitutions to transform the method’s ar-

gument and return types into types terms of the owners in scope. The value

supplied to each argument of the method must have the type expected by the

method. The method may return a uniquely typed value. In the dynamic se-

mantics, we make the simplification and allow only one owner parameter and

method parameter. Subsumption does apply to expression typing if the type

of the expression is not unique.

It would be possible to infer the binding σ′ of owners to the parameters

of the method, but that would introduce unnecessary complexity for our pur-

poses here.

Remarks

Note that there are no rules for accessing the fields and methods of unique

references. To do so a borrowing must first be issued.



70 5 Formalising External Uniqueness

5.1.3 Joline’s Dynamic Semantics

Joline’s dynamic semantics are formulated as a big-step operational semantics

from configurations to configurations, 〈C ; S | s〉 to 〈C ; S | v〉 where C is the

nested heap, S is the stack, s is a statement and v an optional value. The

structure of heaps reflect the the nesting of objects imposed by ownership

types and external uniqueness.

For brevity, the dynamic semantics we present here does not include gen-

erational ownership. Therefore, we remove the scoped region construct that

allows the creation of a temporary owner on the stack. While it does not af-

fect the structural properties of our proposal, generational ownership requires

some additional complexity that would only obscure the formalism of the mat-

ter at hand. To this end, we save the presentation of generational ownership

for the final PhD thesis.

We now begin by exploring the structure of the store and the store-type

information.

Store Structure

The store consists of nested subheaps. We denote heaps H, stacks S, frames

V and values v. We use C exclusively to denote a heap appearing at the top

level, i.e., a heap nested inside world.

Store

C,H ::= H, n 7→ C[V | M | H] | H, n 7→ B[H] | nil

The store consists of nested objects and borrowing blocks. Objects are written

n 7→ C[V | M | H] where n is the id of the object and C the name of the object’s

class. Borrowing blocks are written n 7→ B[H] where n is the id of the block.

The borrowing blocks are not proper objects and cannot be referenced. They

are used as place-holders in the semantics to keep track of a subheap belong-

ing to a unique object while borrowed. H is a subheap component of an object

or borrowing block, V a field-value mapping and M a method-implementation

mapping.

Stack

S ::= S • V | nil

The stack is the set of all frames in the program ordered from left (initial

frame) to right (currently active stack frame).



5.1 Introducing Joline 71

Frame

V ::= V, x 7→ v | nil

A frame is a mapping from (field) variable names to values.

Value

v ::= ↑n | Un[v | H] | null

There are three values in our semantics: pointers (written ↑n for a pointer

to object with id n), unique values (written Un[v | H] for a unique with id n,

subheap H and pointer compartment v) and the special null value. A unique is

similar to a borrowing block, except that it can be stored in a field or variable.

All values (including uniques) can be stored in variables or fields and be

passed to or returned from methods. A unique’s subheap can be thought of as

nested inside a field.

Store Typing

The store typing is a nested map from object ids to types. It contains the type

information for all objects except uniques and objects nested inside uniques.

Its structure is parallel with the structure of the store.

We write H for a set of types with other types nested inside them. We

sometimes use Γ as an alias for H to denote the entire store-typing. Each id-

type pair corresponds to an object and the id-type pairs nested inside the type

are the typing of the object’s subheap. There are three types, object types,

c〈σ〉, borrowing block types, B, and unique types, U.

Γ,H ::= H, n :: T [H] | nil

T ::= c〈σ〉 | B | U

We write T [H] for type T with types H nested inside it. When there are no

types nested inside a type, we omit the braces and write simply n :: U etc.

Types do not contain an owner component. Rather ownership is implicit

in the structure of a heap and is computed as required. For example, from

store type Γ = p :: T [H, n :: c〈σ〉[H′]], we can compute that the type of n

is p : c〈σ〉. Lookup of types from pointers is defined as a recursive lookup,

constantly pushing the owner of the current “level” (written as subscript):

H(↑m)p =

{
p :c〈σ〉 if H = H1,m :: c〈σ〉[H2],H3

H2(↑m)n if H = H1, n :: T [H2],H3 and m ∈ defs(H2)



72 5 Formalising External Uniqueness

Γ(↑m)p is equivalently defined. Since the owner of the top level is the con-

stant world, we will generally omit the subscript and write Γ(↑m) to mean

Γ(↑m)world.

Owner orderings

The helper function defs is defined for Γ. It returns a set of the objects typed

by a store typing:

defs(H, n :: T [H′]) = defs(H) ∪ {n} ∪ defs(H′)

defs(nil) = ∅

Thus, defs(Γ) is the set of object ids type in Γ. Also, q :: T [H] ∈ Γ means that

q :: T [H] is an element of Γ at some depth, i.e.,

q :: T [H] ∈ H
′ =

{
if H′ = H1, q :: T [H],H2

if H′ = H1, p :: T ′[H′′],H2 and q :: T [H] ∈ H′′

Given these helper functions, we can define ownership nesting relations using

the nesting of the store typing.

(GOOD-OWNER)

Γ ` 3 p ∈ defs(Γ) ∪ {world}

Γ ` p

(IN-OWNER)

Γ ` 3 q :: T [H] ∈ Γ p ∈ defs(H)

Γ ` p ≺∗ q

(IN-REFL)

Γ ` p

Γ ` p ≺∗ p

(IN-OUTSIDE)

Γ ` q ≺∗ p

Γ ` p �∗ q

By (GOOD-OWNER), any id that maps to a type in Γ can be used as an owner.

By (IN-OWNER), p is inside q if the type of p is nested inside q. By (IN-REFL),

inside is a reflexive relation.

Contexts

A context is a piece of the ordinary syntax with a hole, where the hole is

denoted by 〈 〉. Any store C or stack S can be factored in a number of ways

into a context. A hole can be empty, contain a subheap, or a unique value.

This is useful since it allows us to talk about a specific subcomponent of a

larger structure.



5.1 Introducing Joline 73

We write K〈 〉 for some stack-store pair with a hole. K〈 〉 is defined thus:

K〈 〉 ::= C〈 〉;S | C;S〈 〉

C〈 〉,H〈 〉 ::= H〈 〉, n 7→ C[V | M | H] | H〈 〉, n 7→ B[H] |

H, n 7→ C[V | M | H〈 〉] | H, n 7→ C[V〈 〉 | M | H] |

H, n 7→ B[H〈 〉] | H, 〈 〉

S〈 〉 ::= S〈 〉 • V | S • V〈 〉

V〈 〉 ::= V〈 〉, x 7→ 〈 〉 | V〈 〉, x 7→ v | V, x 7→ Un[↑m | H〈 〉]

We write e.g., C = C〈d〉 to mean that C can be factored as some store C〈 〉

with the hole containing d which can be an object, a borrowing block or a

unique. We also use similar notation for holes in store-typing, but we will

defer the introduction until later.

For convenience, we will sometimes write C〈H〉n to mean that H is part of

a subheap of an object with id n instead of C〈n 7→ C[V | M | H′,H]〉.

Dynamic semantics

Joline’s dynamic semantics is a big-step operational semantics. Starting config-

urations have the form 〈C ; S | s〉 (remember expressions are also statements)

and resulting configurations have the forms 〈C ; S | v〉, where v is a value re-

turned by an evaluated expression, or 〈C ; S〉 for a statement that does not

return a value.

Note that we have further simplified things by only allowing one argument

and only local variables as receivers for method calls. Also, we only allow

borrowing the contents local variables.

Statements

(STAT-LOCAL)

〈C ; S | e〉 → 〈C ′ ; S′ • V | v〉

〈C ; S | t x = e〉 → 〈C ′ ; S′ • V, x 7→ v〉

(STAT-SKIP)

〈C ; S | skip〉 → 〈C ; S〉

By (STAT-LOCAL), local variable declaration first evaluates the initial value and

then adds a local variable to the top stack frame and stores the result of the

evaluation in it. By (STAT-SKIP), the skip statement changes nothing.

Updating the value of a variable or field is written V[x 7→ v]. It is defined

thus:

V[x 7→ v] =

{
V′, x 7→ v,V′′, if V = V′, x 7→ v′,V′′

V, otherwise



74 5 Formalising External Uniqueness

For stacks, we write S[x 7→ v] to mean S′ • V[x 7→ v], where S = S′ • V (i.e.,

we only update variables on the top frame).

V(x) is a variable lookup defined thus:

V(x) =

{
v, if V = V′, x 7→ v,V′′

⊥, otherwise

where ⊥ means that the variable x is not defined in V. As for updating, we

write S(x) to mean V(x) where S = S′ •V. We use x, y for local variables and

f for field variables.

(STAT-EXPR)

〈C ; S | e〉 → 〈C ′ ; S′ | v〉

〈C ; S | e〉 → 〈C ′ ; S′〉

(STAT-UPDATE-LOCAL)

〈C ; S | e〉 → 〈C ′ ; S′ | v〉

〈C ; S |x = e〉 → 〈C ; S′[x 7→ v]〉

(STAT-UPDATE-FIELD)

〈C ; S | e〉 → 〈C1 ; S1 | v〉 S1(x) = ↑n C1 = C2〈n 7→ C[V | M | H]〉

〈C ; S |x.f = e〉 → 〈C2〈n 7→ C[V[f 7→ v] | M | H]〉 ; S1〉

By (STAT-EXPR), an expression can be treated as a statement by just forget-

ting its resulting value. Updating an lvalue is split into two different rules,

(STAT-UPDATE-LOCAL) and (STAT-UPDATE-FIELD), matched in the type system

by (STAT-UPDATE). They are straightforward, first the RHS expression is eval-

uated to obtain the value that will be stored in the variable or field. The value

is then stored in the lvalue, replacing its old contents. Note the use of the hole

in (STAT-UPDATE-FIELD). C1 = C2〈n 7→ C[V | M | H]〉 is just factoring C1 into

the equivalent context C2〈 〉 where the hole contains the object pointed to by

x. We then update the value of f in the object’s field component to the new

value and the resulting store is the store in the resulting configuration.

(STAT-SEQUENCE)

〈C ; S | s1〉 → 〈C1 ; S1〉 〈C1 ; S1 | s2〉 → 〈C2 ; S2〉

〈C ; S | s1;s2〉 → 〈C2 ; S2〉

By (STAT-SEQUENCE), sequences of statements are evaluated left to right and

the resulting store-stack pair of one statement is the initial store-stack pair of

the subsequent statement.

(STAT-BLOCK)

〈C ; S • nil | s〉 → 〈C ′ ; S′ • V〉

〈C ; S | { s }〉 → 〈C ′ ; S′〉



5.1 Introducing Joline 75

Block works as in Java or C++, except that shadowing local variables is not

supported. Before we evaluate the statements in a block, we push an empty

frame onto the stack. When the block exits, the contents of that frame are

removed. Remember that frames in our terminology does not correspond to

a specific method. Instead, a frame is tied to a block, which can be, but does

not necessarily need to be, a method body.

(STAT-BORROW)

S1 = S • V, x 7→ null , y 7→ v

〈C〈n 7→ B[H[n/x]]〉b ; S1 | s〉 → 〈C ′〈n 7→ B[H′]〉b ; S2〉

S2 = S′ • V, x 7→ v′′, y 7→ v′ n is fresh

〈C ; S • V, x 7→ Ux[v | H] | borrow x :: uniqueb :c〈σ〉 as 〈α〉 y in { s }〉 →

〈C ′ ; S′ • V, x 7→ Ux[v′ | H′[x/n]]〉

Borrowing destroys the uniqueness wrapper and instead wraps its contents

in a borrowing wrapper. As opposed to the uniqueness wrapper, there may be

pointers to its contents from the stack, and such a pointer is created by moving

the value of the pointer compartment of the unique into the borrowing vari-

able on the stack. The variable originally containing the unique is updated

with null . After the statements of the borrowing block have been executed,

the borrowing wrapper is destroyed and replaced by a uniqueness wrapper

and the resulting value is stored in the borrowed variable.

Expressions

(EXPR-DREAD-LOCAL)

S(x) = Ux[↑m | H]

〈C ; S |x--〉 → 〈C ; S[x 7→ null ] |Ufree[↑m | H[free/x]]〉

(EXPR-DREAD-FIELD)

S(x) = ↑n C = C ′〈n 7→ C[V | M | H]〉 V(f) = Un.f [↑m | H′]

〈C ; S |x.f--〉 → 〈C ′〈n 7→ C[V[f 7→ null ] | M | H]〉 ; S |Ufree[↑m | H′[free/n.f ]]〉

The rules for destructive reading of variables and fields are pretty straight-

forward. Whenever a unique is moved (given another owner), we apply a

substitution that replaces all occurrences of the old owner, i.e., the field or

variable that stored it, x or n.f above, with the owner free, to its entire con-

tents. Since the result of a destructive read is a free value, there is no field or

object that owns it. We denote this by giving it the special owner free.

To talk about a specific object in a store, we factor it into the object and its

context. This is denoted C = C ′〈n 7→ C[V | M | H]〉 where C ′ is the context of

the object n 7→ C[V | M | H] somewhere in C.



76 5 Formalising External Uniqueness

Instantiation

(EXPR-NEW)

V = {f 7→ null | f ∈ dom(Fc)} M = σfree
n (Mc) where n is fresh

〈C ; S | new p :c〈σ〉〉 → 〈C ; S |Ufree[↑n | n 7→ C[V | M | nil]]〉

In object instantiation, the object is given a fresh id and all its fields are ini-

tialised to null . The method component is the static definitions of the meth-

ods where the static owner names are substituted for the owners from object’s

type. The object is then wrapped inside a uniqueness wrapper with a pointer

to the created object in its pointer compartment. Finally, the entire uniqueness

wrapper is returned. Note that the owner of the object in the subheap is free.

The owner specified by the programmer, p, becomes the bound of the unique

(see the static semantics).

Owner cast

(EXPR-LOSE-UNIQUE)

〈C ; S | e〉 → 〈C ′ ; S′ |Ufree[↑n | H]〉 C ′ = C ′′〈p 7→ C[V | M | H′]〉

〈C ; S | (p) e〉 → 〈C ′′〈p 7→ C[V | M | H′,H[p/free]]〉 ; S′ | ↑n〉

When losing uniqueness, the uniqueness wrapper is destroyed and its contents

moved into the subheap of the new owner. A substitution is applied to change

all occurrences of the owner name of the unique with the new owner. Finally,

the value in the pointer compartment is returned.

Method call.

(EXPR-CALL)

〈C ; S | e〉 → 〈C1 ; S1 | v〉 S1(x) = ↑n

C1 = C2〈n 7→ C[V | M | H]〉 M(md) = λx :: t λα ≺∗ q. s; return e

〈C1 ; S1 • x 7→ v | s[p/α]〉 → 〈C3 ; S2 • V〉

〈C3 ; S2 • V | e[p/α]〉 → 〈C ′ ; S′ • V′ | v′〉

〈C ; S |x.md〈p〉(e)〉 → 〈C ′ ; S′ | v′〉

The owner polymorphic method is pretty straightforward. The static name of

the owner parameter is substituted for the actual argument in the method

body. The argument expression is evaluated, the value of the receiver variable

is looked up and the method code fetched and executed with a new frame

containing the argument value. That frame is popped on returning and the

method’s return value is the return value of the expression.



5.1 Introducing Joline 77

Table 5.4. Judgements for well-formed store typing.

H ` 3 Good store type
H ` t Type t is well-formed under H

5.1.4 Well-formed Store Typing

Recall the definition of the store typing on Page 71. Below, the rules for well-

formed store typing are introduced and explained. Note that we assume that

the ids of objects (and borrowing blocks and uniques) are unique in the store-

typing (but do not clutter the formalism with the trivial constructs to enforce

it).

Contexts

As in the stores, we use contexts also for the store typing. H〈 〉 denotes a piece

of store typing with hole in it.

H〈 〉 ::= H, 〈 〉 | H〈 〉, n :: T [H] | H, n :: T [H〈 〉]

When necessary, we label holes with subscript object ids to indicate the posi-

tion of the hole in H. For example, H〈H′〉p means that H′ is nested directly

inside the type of the object (or unique or borrowing block) with id p. We

write H = H′〈H′′〉p to mean that H can be factored as a context with H′′ in

a hole in p. When H is defined, we write H〈H′〉p to mean that H′ is added to

H inside object p.

A special case of the subscript notation exists for world. When the label is

world, e.g., H〈H′〉world, this means that H′ is in a hole at the top-level in H,

i.e., H〈 〉 = H′′, 〈 〉.

The well-formed store typing judgments are described in Table 5.4. Ini-

tially, the store typing is empty, denoted nil.

(STORE-TYPE-EMPTY)

nil ` 3

(STORE-TYPE)

H ` T ∨ (T = c〈σ〉 ∧ H ` p :c〈σ〉)

H〈n :: T 〉p ` 3

By (STORE-TYPE-EMPTY), the empty store typing is well-formed. By (STORE-

TYPE), a store type is well-formed if all types it contains are well-formed; a

id-type mapping can be added into an existing type in a well-formed store type

if the type added is well-formed with respect to the store type. Remember, the

LHS of the turn-stile means that n :: T is a id-type map directly nested inside

p in H.



78 5 Formalising External Uniqueness

Table 5.5. Judgements for well-formed configurations.

Γ;F ` 〈C ; S〉 〈C ; S〉 is a well-formed configuration
Γ;F ` 〈C ; S | e〉 :: t 〈C ; S | v〉 is a well-formed config. of type t
Γ;F ` 〈C ; S | s〉;E 〈C ; S | s〉 is a well-formed configuration
Γ;F ` 〈C ; S | v〉 :: t 〈C ; S | v〉 :: t is a well-formed config. of type t
Γ;F ` C;S C;S is a well-formed store-stack pair
H; p ` H � H′ H is a well-formed subheap/object/borrowing

block, owned by p, typed by H′

Γ;F ` S S is a well-formed stack
Γ;E ` V V is a well-formed frame
Γ ` v :: t v is a well-formed value of type t

The helper function Pc returns the set of owner parameters and their re-

lations used in class c and is defined thus:

Pc =

{
{αi Ri pi=1..n}, if class c〈αi Ri pi=1..n〉 · · · ∈ P

⊥, otherwise

where ⊥ means that the class c is not defined in P .

(TYPE)

H ` 3 H ` σp(α R q) for all α R q ∈ Pc

H ` p :c〈σ〉

(TYPE-WRAPPER)

H ` 3 T ∈ {B,U}

H ` T

By (TYPE), a type is well-formed if the owners used to form it satisfy nest-

ing relations between the owner parameters specified in the class. By (TYPE-

WRAPPER), the type of a unique or borrowing block is well-formed if the store

typing is well-formed.

5.1.5 Well-formed Configuration

The rules for well-formed configuration might seem somewhat unorthodox at

first. Basically, we pull a piece of typing information out of nowhere and use

it to type the right hand side of the turns-tile (see for example H in (STORE)).

However, we force this information to match the structure of the heap.

Some of the rules are on the form Γ; p ` H � H. The H to the right of the

� symbol is the store typing information for the visible parts of the subheap

H. For Γ; p ` H � H we say that “H is typed by H”.

As the previous sentence hints, visibility restrictions are built into the well-

formed configuration rules. The store typing information on the LHS of the

turns-tile is the information visible to the objects in the subheap on the RHS.

When “validating” an object, its type information is added to the LHS when

validating its subheap, making the object visible to its own representation.



5.1 Introducing Joline 79

Notably, typing information for uniques (and the types of objects nested inside

uniques) is never made visible outside the uniques. This is a pivotal restriction

that makes it unsound for an object outside of a unique to reference an object

inside it.

At for store type information, we assume that objects ids are unique and

do not clutter the formalism with the trivial rules to enforce it.

Configurations

(CONFIG)

Γ;F ` C;S

Γ;F ` 〈C ; S〉

(CONFIG-EXPR)

Γ;F • E ` C;S E ` e :: t

Γ;F • E ` 〈C ; S | e〉 :: t

(CONFIG-STAT)

Γ;F • E ` C;S E ` s;E′

Γ;F • E ` 〈C ; S | s〉;E′

By (CONFIG), (CONFIG-EXPR) and (CONFIG-STAT), a configuration is well-

formed if its store and stack are well-formed and its optional expression/state-

ment is well-formed with respect to the static type information of the top-most

frame.

(CONFIG-VAL)

Γ;F • E ` C;S

{
Γ〈free :: U〉b ` v :: uniquefree :c〈σ〉, if t = uniqueb :c〈σ〉

Γ ` v :: t, otherwise

Γ;F ` 〈C ; S | v〉 :: t

(CONFIG-VAL) deals with resulting configurations, containing a value returned

from an expression. If the value is free, we require that it is well-formed with

respect to its bound, b (note that we are inserting the type information for the

uniqueness wrapper, which will contain the types of all objects in the subheap

of the free into the type of object b). Since the typing information of the free

is not in Γ, clearly no references to the free can exist in C;S. If the value is

not free, it must be well-formed with respect to the store typing.

Store-stack pair

(STORE-STACK)

H; world ` C � Γ Γ;F ` S

Γ;F ` C;S

By (STORE-STACK), a store-stack pair is well-formed if the store and stack

components are well-formed with respect to the store typing. The H is “pulled

out of thin air”, but is required to be a subset of Γ (see (SUBHEAP)). Remember

that we write Γ for a store typing that types an entire store (and not H).



80 5 Formalising External Uniqueness

Stores

(SUBHEAP-EMPTY)

H ` n

H;n ` nil � nil

By (SUBHEAP-EMPTY), an empty subheap inside n in H is well-formed and is

typed by an empty store type if n is a good owner under Γ.

The objdom helper function returns the set of objects defined in a subheap,

not including borrowing blocks:

objdom(H) =






objdom(H′) ∪ {n}, if H = H′, n 7→ C[V | M | H′′]

objdom(H′), if H = H′, n 7→ B[H′′]

∅, if H = nil

(SUBHEAP)

H; p ` Hi � Hi for all i ∈ 1..n

defs(H′) = objdom(Hi∈1..n)

{
H = H′, if p = world

p :: T [H′] ∈ H, otherwise

H; p ` Hi∈1..n � Hi∈1..n

By (SUBHEAP), a subheap Hi∈1..n inside p in Γ is well-formed and typed by

Hi∈1..n if all p objects and borrowing blocks Hi in the subheap are well formed

and are typed by Hi. Also, the type information in p must be equivalent to

the type information of all objects (but not borrowing block) at top-level in

Hi∈1..n.

The use of objdom in (SUBHEAP) is important in that it establishes the

relation between the type information pulled out of thin air and the resulting

type information. Consider (STORE-STACK) on the previous page. There, H

appears magically on the LHS of the turnstile. However, in (SUBHEAP), we see

that the contents of H must match the objects at top-level in C. The rules for

well-formed object, unique and borrowing block will further require that the

types in H match the types of the top-level objects. Thus, to be valid, the H

must be a subset of Γ in (STORE-STACK).

Objects and borrowing blocks

(OBJECT)

Γ(m) = p :c〈σ〉 Γ ` p :c〈σ〉 Γ′ = Γ〈H〉m

σp
m(Mc) = M Γ′;m ` H � H′ ti = σp

m(Fc(fi))

∀ i ∈ 1..n

{
Γ′〈m.fi :: U〉bi

` vi :: uniquem.fi
:ci〈σi〉, if ti = uniquebi

:ci〈σi〉

Γ′ ` vi :: σp
m(Fc(fi)), otherwise

Γ; p ` m 7→ C[fi 7→ vi i∈1..n | M | H] � m :: c〈σ〉[H′]



5.1 Introducing Joline 81

By (OBJECT), an object m 7→ C[V | M | H] is well-formed under Γ at p and is

typed by m :: c〈σ〉[H′] if it has the type p : c〈σ〉 in Γ, its type is well-formed,

the values in all its fields are well-formed, its subheap is well-formed and is

typed by H′, and its method component corresponds with the static method

definitions but with the actual owners from the object’s type. For a subtle

reason, we cannot unify the validation of fields and (GOOD-FRAME); in the

added type information for uniques values, the ids must correspond to the id

of the object plus field-name, since this is the unique owner of the contents of

the uniques.

(BORROWING-BLOCK)

H〈n :: B[H′]〉p;n ` H � H′′

H; p ` n 7→ B[H] � n :: B[H′′]

By (BORROWING-BLOCK), a borrowing block is well-formed under H and is

typed by n :: B[H′′] if its subheap is well-formed and typed by H′′ under the

store type constructed by adding n :: B[H′] to H.

The contents of a borrowing block should not be visible outside itself (ex-

cluding the stack). In (BORROWING-BLOCK), the borrowed type is added to

H, meaning that it was not already in H and not visible to anything typed

against it. Since only the stack and the contents of the borrowing block is

typed against this extended H, external references to objects inside the bor-

rowing block from places other than the stack are impossible in out system.

Stacks and frames

(STACK/FRAME-EMPTY)

Γ ` 3

Γ; ∅ ` nil

(STACK)

Γ;F ` S Γ;E ` V

Γ;F • E ` S • V

By (STACK/FRAME-EMPTY), an empty stack or empty frame is well-formed.

The ∅ indicates that the piece of static type information associated with the

stack/frame is empty, i.e., it is not supposed to contain any frames or variables.

By (STACK), a stack is well-formed if all its frames are well-formed.

(FRAME)

Γ;E ` V

{
Γ〈x :: U〉b ` v :: uniquex :c〈σ〉, if t = uniqueb :c〈σ〉

Γ ` v :: t, otherwise

Γ;E, x :: t ` V, x 7→ v

By (FRAME), a frame is well-formed if the value of all its variables are well-

formed. Note the adding of x :: U to Γ, similar to (CONFIG-VAL) above.



82 5 Formalising External Uniqueness

Values

(UNIQUE)

Γ〈H〉n ` v :: n :c〈σ〉 n /∈ rng(σ) Γ〈H〉n;n ` H � H′

Γ ` Un[v | H] :: uniquen :c〈σ〉

By (UNIQUE), a unique is well-formed under H if its id corresponds to the

bound of its type, the value of its pointer component is well-formed and its

type is the bound, class and owner parameters from the unique’s type, the

id of the unique is not in the set of owner parameters, and its subheap is

well-formed.

Note that the type information for a unique and its nested objects are

never in Γ, meaning that external references to a unique or its contents are

impossible.

(VAL-NULL)

Γ ` t

Γ ` null :: t

(VAL-PTR)

Γ(n) = p :c〈σ〉

Γ ` ↑n :: p :c〈σ〉

(VAL-SUBSUMPTION)

Γ ` v :: t Γ ` t ≤ t′

Γ ` v :: t′

By (VAL-NULL), null can have any well-formed type. By (VAL-PTR), a pointer

is well-formed and has type t if it typed t in Γ. By (VAL-SUBSUMPTION), sub-

sumption applies to values.

5.2 Proof Statements

In this section, we state theorems and sketch the proofs of type sound-

ness, along with the important structural properties that gives us owners-as-

dominators and external-uniques-as-dominating-edges.

For convenience, we define the binary relation # on sets to mean that they

are disjoint in all their elements, i.e.,

A# B ⇐⇒ A ∩ B = ∅

where A and B are sets.

5.2.1 Dominance Properties

These structural properties capture both owners-as-dominators and external-

uniqueness-as-dominating-edges. In a well-formed configuration, there are no

external references to an object, except for from its owner. We model this us-

ing holes—in a well-formed configuration that can be factored as a configura-

tion plus a hole containing an object, borrowing block or unique, there are no



5.2 Proof Statements 83

Table 5.6. Definition of uses; the set of pointers used in a store/stack.

uses(C;S) = uses(C) ∪ uses(S)

uses(S • V) = uses(S) ∪ uses(V)

uses(V, x 7→ v) = uses(V) ∪ uses(v)

uses(H, n 7→ B[H′]) = uses(H) ∪ uses(H′)

uses(H, n 7→ C[V | M | H′]) = uses(H) ∪ uses(V) ∪ uses(H′)

uses(Un[↑m | H]) = {m} ∪ uses(H)

uses(↑m) = {m}

uses(nil) = ∅

Table 5.7. Definition of defs; the set of ids of all objects defined in a store/stack.

defs(C;S) = defs(C) ∪ defs(S)

defs(S • V) = defs(S) ∪ defs(V)

defs(V, x 7→ v) = defs(V) ∪ defs(v)

defs(H, n 7→ B[H′]) = defs(H) ∪ defs(H′)

defs(H, n 7→ C[V | M | H′]) = defs(H) ∪ defs(V) ∪ defs(H′)∪{n}

defs(Un[↑m | H]) = defs(H)

defs(↑m) = ∅

defs(nil) = ∅

references from the objects outside the hole to the contents of the object in the

hole. If the contents of the hole is a unique value, there are also no references

from the stack to the unique’s contents. From now on, we make heavy use of

the helper functions uses and defs, to capture the set of object ids pointed to

respective the set of ids of all objects defined in some store/stack. (See Table

5.6 and Table 5.7 for the complete definitions.)

Theorem 5.1. (Dominance Properties)

Assume Γ;F ` C;S. Then:

1. If C = C ′〈n 7→ C[V | M | H]〉 or C = C ′〈n 7→ B[H]〉, then

uses(C ′)# defs(H).

2. If S = S′〈n 7→ C[V | M | H]〉 or S = S′〈n 7→ B[H]〉, then

uses(C)# defs(H).

3. If C;S = K〈Un[↑m | H]〉, then uses(K)#(defs(H) ∪ {n}).

Proof. (Outline) The first two cases deal with objects or borrowing blocks in

the store and stack. uses(C ′) is the set of all pointer values stored in fields in

all objects in C ′. Since uses(C ′) is disjunct from the set of objects defined in



84 5 Formalising External Uniqueness

Root

u

r

s

q

d

f

mn

Fig. 5.2. Possible paths. The 〈 〉 denotes a hole in the store with n and its subheap as
its contents. n is an object or a uniqueness wrapper.

H in the hole, we see that there are no external pointers to the contents of

an object. (Note that n is not included in defs(H).) The third case deals with

unique values and imposes a stronger restriction—no object nested inside the

unique or the unique is in the set of used pointer values. Thus, there are no

references to the unique’s content nor to the unique from any place else in the

stack or the store.

Owners-as-Dominators

The owners-as-dominators-property (OAD) states that for any path to an ob-

ject from the root of the object hierarchy, the path must contain the object’s

owner, i.e., the owner is a dominating node for all objects nested inside it.

In other words, the OAD can be explained as no objects belonging an to

object n’s representation are referenced from outside n. If this is true, all paths

to the object must pass through the owner at some point.

Thus, if for all Γ;F ` K such that K = C〈n 7→ C[V | M | H]〉;S or K =

C;S〈n 7→ C[V | M | H]〉 implies that uses(C)# defs(H), then that satisfy the

OAD property.

In plain language, this means that the set of ids referred to by all fields in

C and the set of ids of the objects defined in H are disjunct, i.e., there are no

pointer to the objects in H anywhere in C. Thus, the only possible external

pointers to objects in H are from V, i.e., from (inside) its owner, n.

As an example, consider the picture in Figure 5.2 above. There are three

possible paths to the gray object from the root: q → u → r, q → d → s → r

and q → d → f . By the structural invariant, there may be no pointers to

objects inside n from outside of n and thus, the path q → d → f is invalid.

As all other paths to the gray object go via n, n is a dominating node for it,

meaning that OAD is satisfied.



5.2 Proof Statements 85

External-Uniques-as-Dominating-Edges

External-uniqueness-as-dominating-edges (EUADE) states that a uniquely ref-

erenced object is a dominating edge to the objects nested inside it. This means

that for each path to an object inside a unique from the root, the path must

contain the reference to the unique.

In a similar fashion as for OAD, Theorem 5.1 gives us EUADE. For any well-

formed configuration, Γ;F ` K〈Un[v | H]〉, uses(K)#(defs(H)∪{n}), i.e., the

set of all ids of all objects referenced by fields and variables in K (outside the

unique, including the stack) is disjunct from the set of objects nested in the

unique and the id of the unique. Thus, if u is the externally unique pointer to

n, not only is the the path q → d → f in the picture in Figure 5.2 invalid, but

so is also q → d → s → r since m may not reference n. Now, since there can

be only one pointer to a unique, the unique is clearly a dominating edge of

the gray object.
2

Type soundness

Type soundness is proved as a subject reduction theorem, i.e., types are pre-

served throughout the evaluation of a program. In combination with the dom-

inance properties, subject reduction gives us the owners-as-dominators prop-

erty and the external-uniques-as-dominating-edges property since it proves

that configurations are well-formed between evaluation of statements.

Our subject reduction theorem states that if a well-formed configuration

evaluates successfully, it produces another configuration that is well-formed

with respect to some extended store-type environment. Movement does not

produce any visible changes to the store-typing since unique types are not

present in Γ.

Theorem 5.2. (Subject reduction)

If Γ;F • E ` 〈C ; S | s〉;E′ and 〈C ; S | s〉 → 〈C ′ ; S′〉, then there exists Γ′ such

that Γ′;F • E′ ` 〈C ′ ; S′〉, where Γ ⊆ Γ′.

Proof. (Outline) The proof is by structural induction over the Joline’s state-

ments and expressions. The key to soundness is the hiding of the typing of

unique variables in Γ since these types may change during evaluation.

If the store-typing for all uniques (and their contents) are not visible to

external objects, then no external objects are affected by movement since

they cannot witness the change of type. For all internal objects, the internal

view of the moving object is unchanged by the movement operation and the

only necessary operation to keep things sound is to replace any occurrence



86 5 Formalising External Uniqueness

of the old owner (if owner was used to form types inside the unique) with

the new one, which is a trivial operation. For owner-polymorphic methods

and borrowings, the store-typing is temporarily extended during evaluation.

However, the ownership ordering and the dominance properties guarantees

that values typed by these extensions never escape from the stack frames or

borrowing blocks in point. Thus, we can simply remove the extension from

the store-type as we pop the frame or remove the borrowing block from the

stack since this contains all values that use the additional type information.

Modulo these concerns, the proof of subject reduction is straight forward.

2

5.3 Concluding Remarks

This concludes the technical presentation of Joline. We save generational own-

ership and the full proofs for the final PhD thesis. Confident that our system

is sound, we move on to describe some applications for external uniqueness.



❖ 6

Applications and Extensions

This chapter presents examples of applications for external uniqueness as well

as possible extensions.

For the applications, we show how external uniqueness together with our

proposed supporting constructs enables transfer of ownership (e.g., moving

objects between representations) and merging representations in the pres-

ence of ownership types and how we can use our borrowing construct, scoped

regions and owner-polymorphic methods to simulate various notions of bor-

rowing. We also show “movable aliased objects”, non-unique objects with all

the benefits of unique objects that can be encoded using external uniqueness

and how we overcome the intialisation problem and allow external initialisa-

tion of an object’s representation.

Many of these examples were previously not possible to encode in a system

with ownership types.

6.1 Applications for External Uniqueness

External uniqueness has virtues other than overcoming the abstraction prob-

lem. As an extension to ownership types allowing transfer of ownership, we

can encode object pools or merge several objects’ representations, which was

not previously possible. Transfer of ownership is also useful in overcoming the

initialisation problem pointed out by e.g., Detlefs et al. (1998).

6.1.1 Transfer of Ownership

Transfer of ownership is an important design pattern in concurrent object-

oriented programming (Lea 1998). Ownership of an object is transferred from

one object to another and the first object must release all its references to the

moving object.



88 6 Applications and Extensions

class TokenRing

{

owner:TokenRing next; // sibling

unique:Token token;

void give()

{

next.receive(token--);

}

void receive(unique:Token tkn)

{

token = tkn--;

}

}

Fig. 6.1. A Token ring implementation.

B

Root

A B

Root

A

Before After

Fig. 6.2. Transfer ownership of the gray object from A (left) to the sibling B (right).

Figure 6.1 shows the implementation of a token ring. The token object is

passed from one object to the next by calling the give method. Figure 6.2

illustrates the move of the grey Token from TokenRing element A to B. The

movement bound of the moving token must be outside the target TokenRing

element. The movement bound must also be outside A. Otherwise there could

be residual aliasing from the grey token to A which would become unsound

during a move. If the movement bound is outside A, any alias from the token

or any object internal to the token are references to objects outside A which

makes them valid even if moved to B. B can be the movement bound or some

owner below the movement bound.

External uniqueness allows the token object to be a fully-fledged aggregate

which may be the resource shared between the elements in the token ring. Of

course, there is no reason why this couldn’t be a movement from one machine

to another.



6.1 Applications for External Uniqueness 89

We now examine other examples where transfer of ownership is beneficial.

Object Pools

Using object pools is a well-known optimisation technique. In systems where

many short-lived objects are needed to perform some task, instead of fre-

quently creating objects, using them and then disposing of them, tasks which

are expensive, a pool of possibly initialised objects is used. “New objects” are

taken from the pool when needed, and later returned there instead of dis-

posed.

Unless objects taken from object pools should not be encapsulated, pre-

vious ownership types systems have a severe limitation with regard to object

pools since owners are fixed for life. To use the object pool for different ob-

jects with different owners would require one object pool per owner, which is

likely to be suboptimal under most designs.

With external uniqueness, we can encode object pools where the objects

in the pool are unique. An object can be taken from the pool and moved into

the appropriate owner. When discarded, the object could be simply moved

back into the object pool unless the object had lost its uniqueness or had its

movement bound changed in a way that prevented it from being moved back

into the pool.

Avoiding Unnecessary Synchronisation

As we have previously stated, uniqueness can be used to avoid unnecessary

synchronisation. Making sure that an object is thread-local (or confined to a

single thread) is easy with uniqueness since there is only one pointer to the

object. It is also easy to realise that movement of an object between threads

without risking residual aliasing is trivial. However, as we have continuously

argued, as traditional uniqueness only applies to a single object, moving that

from one thread to another might not be sufficient since references to its

(conceptually) internal objects might still exist in the first thread. Thus, the

aggregate is split between threads, which is likely to be the opposite of the

intention. Being a shallow property, uniqueness cannot solve this problem,

other than by forcing all references to internal objects in an aggregate to be

unique. With this constraint, moving the bridge object will implicitly move

the entire aggregate. However, it precludes internal sharing which might not

be possible or desirable, and the abstraction problem persists.

External uniqueness overcomes this limitation (as is done also in Parame-

terised Race-Free Java (Boyapati and Rinard 2001; Boyapati, Lee, and Rinard

2002) but perpetuating the abstraction problem and neither allowing the exis-

tence of back pointers nor the existence of sibling objects). Since an externally



90 6 Applications and Extensions

unique reference is a dominating edge, moving it from one thread to another

implicitly moves all its internal objects along with it. Thus, if an externally

unique object is moved to a thread, there is no need for synchronisation on

any method, except if the receiver is an external object. This is a powerful

consequence.

6.1.2 Merging Representations

External uniqueness enables the protected, self-referential internals of two or

more data structures to be merged without copying into a new data structure.

This offers the same degree of protection without any residual aliasing from

the original data structures and without the increased performance penalties

and complexity required for copying. While merging by copying might some-

times be possible, in the presence of internal sharing, it is likely to cause

inconsistencies. At least, it will break the internal structure of the object since

the original objects and not their copies will be referenced, unless all the ob-

jects in point are implemented with this in mind.

Merging representations was previously impossible in the presence of deep

ownership since owners were fixed for life. Merging entire representations, or

parts of representations is a common enough task that preventing it greatly

impacts the usefulness of the proposals. In previous systems with deep own-

ership, merging the sets of links of two lists without resorting to copying re-

quired that the lists shared a common representation or that the links were

not part of the lists’ representations’ and shared a common owner. The former

is not allowed and the latter weakens encapsulation since external objects are

able to access the lists’ representations.

As an example of merging representations in Joline, Figure 6.3 shows the

merging of one doubly-linked list into another. The append method of the first

list is invoked with the second list as argument. The phases of the operation

are (in order):

* The first list borrows its own head link (i.e., the entire list) using a tem-

porary owner (here ho).

** The head link of the other list is moved into a variable owned by ho, i.e.,

the two lists now share a common owner.

Remaining code the merge is performed, in this case an append, and then the head variable

is reinstated with the resulting value of bh. Note that bh may have been set

in line ***. This illustrates what we have earlier stated about borrowing:

when a borrowing ceases, there is only one reference into the aggregate,

not necessarily the same as the one originally borrowed. This is consistent

with external uniqueness.



6.1 Applications for External Uniqueness 91

class Link<data>

{

data:Object data;

owner:Link<data> next, prev;

}

class List<data>

{

unique:Link<data> head;

void append(owner:List<data> other)

{

borrow head as <ho> bh (*)

{

ho:Link<data> ohead = other.head--; (**)

if (bh == null)

{

bh = ohead; (***)

}

else if (ohead != null)

{

ho:Link<data> h = bh;

while (h.next != null)

{

h = h.next;

}

h.next = ohead;

h.next.prev = h;

}

}

}

}

Fig. 6.3. Merging two doubly-linked lists in a JLL. ho is the temporary owner of the
list head while borrowed.

Note that other.head is consumed in this operation, i.e., after merge, the

second list is empty.

David Holmes posed this example as a challenge when he saw the original

ownership types proposal (Clarke, Potter, and Noble 1998). No existing com-

bination of uniqueness and ownership types can handle it, but we finally do

so in an elegant manner.

6.1.3 Simulating Borrowing and Orthogonality of Concepts

To recapitulate, borrowing was introduced in previous uniqueness proposals

to tackle slipperiness. With borrowing, unique references could be operated

upon without consuming their targets and or having to manually reinstate the



92 6 Applications and Extensions

class Example extends Object

{

<borrowed inside this> void method(borrowed:BlackBox bb)

{

...

}

}

void example(world Example e)

{

unique:BlackBox<> bb = new unique BlackBox<>();

borrow bb as <temp> b

{

e.method<temp>(b); // pass borrowed owner and reference

}

}

Fig. 6.4. Passing a borrowed object as argument to a method. The method method in
class Example is given a temporary permission to reference the owner temp, created in
the method example. Thus, the reference to the borrowed black box in b can be passed
as a parameter to method.

values after using them. Existing uniqueness proposals impose the restriction

that a borrowed reference cannot be stored in the field of an object, making

borrowed references a kind of second-class citizens which are neither orthog-

onal to unique references nor non-unique references. These proposals lack

mechanisms in their type systems to treat borrowed references as usual non-

unique references but maintain the uniqueness invariant between borrowings.

The borrowing we propose here is of a different kind. Rather than intro-

duce borrowed references as a special kind of reference, we introduce a bor-

rowing construct that allows an externally unique object to become a regular,

non-unique object temporarily. While borrowed, an object is a regular non-

unique object and thus suffers from no unnecessary restrictions. Any opera-

tions that can normally be carried out on a non-unique object can be carried

out on a borrowed reference. Ownership types guarantees that any aliases

created are temporary or appropriately contained. The result is a cleaner lan-

guage which employs only orthogonal constructs (unique, non-unique) in a

flexible manner; there isn’t a borrowed keyword that needs to be propagated

through the system, and no need for borrowing annotations, just the borrow-

ing construct.

Pass a Borrowed Object as an Argument

Our borrowing takes a unique reference, converts it to a non-unique with the

ability to convert it back, and places the non-unique reference on the stack.



6.1 Applications for External Uniqueness 93

void example(unique BlackBox bb)

{

borrow bb as <temp> b

{ // 1st block

temp:List<temp> list = new temp:List<temp>;

list.add(bb);

...

(scoped)

{ // 2nd block, nested in 1st

scoped:List<temp> list = new scoped:List<temp>;

list.add(bb);

...

}

... // (*)

}

... // (**)

}

Fig. 6.5. Storing a borrowed reference on the heap. The method creates a temporary
owner scoped, and uses that as an owner for a list object in the innermost block.

Since the owner of the non-unique reference is local, no object in the system

(except the borrowed object, and objects internal to it) has the necessary

permission to create an alias to it.

To simulate the kind of borrowing found in traditional uniqueness sys-

tems we use the owner polymorphic methods introduced in a previous chapter

(Section 3.2.2). Any owner can be borrowed, even owners not corresponding

to a particular object. Thus, we can pass the permission to access a borrowed

object to an owner polymorphic method along with the borrowed reference.

Since the permission did not exist before the borrowing, no previously exist-

ing external objects’ types are parameterised with the permission and thus

cannot store a permanent reference to the object on the heap.

The owner polymorphic method can use its owner parameter to instantiate

objects that may store references to the borrowed object on the heap in the

same fashion as discussed immediately below. However, any such object will

be invalidated before the borrowing exits, since the appropriate owners are

out of scope and the necessary types cannot be named.

Store a Borrowed Object on the Heap

A borrowed reference can be stored on the heap in any object that has a

permission to reference it. As was shown previously when the borrowing con-

struct was introduced, a temporary owner of the the borrowed object is de-

fined for a particular scope. This owner can then be used as a regular owner



94 6 Applications and Extensions

to create objects. These will have permission to access the borrowed object

and store it in a field. An example of this is shown in Figure 6.5. The example

also shows a scoped region used to create an additional owner scoped, inside

temp, defined for a block nested inside the borrowing block.

When the second, innermost, block exits, the scoped owner goes out of

scope an cannot be named. Thus, in the code to follow, the lines marked

(*) and (**), the type cannot be formed and thus no variables can hold

a reference to the object and the object cannot be accessed. When the first

block exits, the temp owner goes out of scope and thus, after the borrowing,

at the line marked (**), the type of any reference to the borrowed object

cannot be formed.

Thus, it is safe to reinstate the value in b to bb.

6.1.4 Movable Aliased Objects

The original idea that led to the discovery of the abstraction problem with

uniqueness and the definition of external uniqueness was the realisation that

one pointer to an object was an unnecessary restriction. Uniqueness is useful

since it is a way to account for all pointers—if we could move all pointers to

an object in one fell swoop from one thread to another or between objects,

we could still have transfer of ownership; if we could update the types of all

pointers to an object, we can change the object’s type. The key behind all

examples in this chapter is that all (active) pointers are accounted for since

there is only one. We now show how external uniqueness can be used to

implement several pointers into a data structure and still have all the bene-

fits of uniqueness. We call these movable aliased objects (and sometimes omit

“aliased” when it is obvious what we mean).

Movable aliased objects can be encoded into external uniqueness by use

of externally unique proxy objects. The proxy can then hold multiple sibling

pointers (remember, pointers to objects owned by owner) into an aggregate;

the aggregate is aliased but movable. To move the object, we simply move the

unique proxy object. This moves all external pointers to the movable aliased

object since all such pointers are internal to the proxy. A movable aliased ob-

ject is an object to which there are no external pointers, only sibling pointers.

To access it, its proxy object must be borrowed. This creates an external name

for the owner of the movable object and allows it to be referenced from the

outside.

Figure 6.6 shows the object graph for a movable aliased object and its

unique proxy. It also shows a virtual ownership bound for the unique object

and its siblings. We say that bound is virtual, since it does not correspond to a



6.1 Applications for External Uniqueness 95

uProxy object

s

s’

f

f

Movable object

Root

OwnershipInvalid refUnique refRef and Object

Fig. 6.6. Movable aliased objects—the dashed box denotes the “virtual boundary”
of the unique proxy. s, s′ are sibling references to the movable object. Owners-as-
dominators applies as usual. There could of course be movable objects (or rather, all
sibling objects are part of the movable aliased aggregate).

specific object. By the unique-owners-as-dominating-edges property, there can

be only one pointer crossing the virtual boundary. Thus, the movable objects

are protected from external aliasing and are thus implicitly moved by just

moving the proxy.

Applications for Movable Aliased Objects

In this section, we show some applications for movable objects. These applica-

tions cannot be handled by traditional uniqueness since they require multiple

external pointers.

List with Head and Tail Links

In the previous example in Figure 6.3 there was a single unique reference into

the internal set of links of a doubly-linked list from the List object. External

uniqueness enables doubly-linked lists, which is not possible in traditional

uniqueness, by encapsulating all links in the same ownership bound and pre-

venting the existence of more than one external pointer to that bound. The

object graph for that example is shown in Figure 6.7. It is quite simple to

modify this example to account for multiple pointers into that data structure

to enable for example a tail pointer in addition to the pointer to the list head.

This too cannot be handled by traditional uniqueness.

Figure 6.9 shows the implementation of a simple proxy object class called

HeadAndTail. It is completely empty except for two fields, head and tail.

Instead of having the two pointers directly in the List class, we encapsulate

them in the proxy. The resulting object graph is shown in Figure 6.8. The



96 6 Applications and Extensions

Data object
Owner of data objects

Link

List

OwnershipInvalid refUnique refRef and Object

Fig. 6.7. The object graph for the doubly-linked list in Figure 6.3. The dotted box
denotes the possibility of any number of owners between the owner of the data objects
and the list object. The dashed box denotes the ownership bound of the externally
unique set of links.

boundary

Data object

Link
HeadAndTail

Movable object 

Owner of data objects
(not shown in code example)

List

OwnershipInvalid refUnique refRef and Object

Fig. 6.8. Object graph for the doubly-linked list with head and tail pointers in Figure
6.8. The dashed box denotes the virtual bounds of the owners of the unique objects.
The virtual bound corresponds to the owner of handle.

dashed box denotes the virtual ownership bound of the unique proxy object

that encapsulates the proxy and the links. To show the absence of any magic,

we show the modified merge() method from Figure 6.3 that moves and ap-

pends in the presence of multiple external pointers into the lists. The differ-

ence is notably quite small—we now operate on handles instead of directly

on the head and the handle of the other list is moved into the representa-

tion of the target list and then consumed. Also, because of the presence of a

tail pointer, there is no need to iterate through the list to get to the last list

element. If our language had tuple types, as Haskell (Peyton Jones, Hughes,

et al. 1999) does, movable aliased objects would be even easier to implement,

since no special class would have to be written for the proxy object. However,

it is now possible to define specific methods for the proxy class to manipulate

the external references into the object.



6.1 Applications for External Uniqueness 97

class Link<data>

{

data:Object data;

owner:Link<data> next, prev;

}

class HeadAndTail<data>

{

owner:Link<data> head, tail; // The external pointers

} // to the movable object

class List<data>

{

unique:HeadAndTail<data> handle;

void append(owner:List<data> other)

{

borrow handle as <ho> bh

{

ho:HeadAndTail<data> ohandle = other.handle--;

if (bh.head == null)

{

bh = ohandle;

}

else if (ohandle.head != null)

{

bh.tail.next = ohandle.head;

ohandle.head.prev = bh.tail;

bh.tail = ohandle.tail;

}

}

}

}

Fig. 6.9. Movable aliased objects enable head and tail pointers to unique set of links
in a list.



98 6 Applications and Extensions

class Lexer

{

this:InputStream stream; // internal

Lexer(unique:InputStream s)

{

stream = s--;

}

}

void lexerClient()

{

unique:InputStream stream = new FileInputStream(file);

unique:Lexer l = new Lexer(stream--);

}

Fig. 6.10. Overcoming the initialisation problem

6.1.5 The Initialisation Problem

The initialisation problem is the inability to externally create and initialise ob-

jects that are part of some other object’s representation. In a system with own-

ership types, an object’s representation cannot be named outside it, meaning

it is impossible to create or initialise a representation object outside its owner.

This has been a limitation with many of the previous systems with deep own-

ership.

This is arguably a severe drawback since external initialisation increases

the flexibility and facilitates code reuse. For example, plug-in architectures

are not possible.

Overcoming the Initialisation Problem in Joline

In Joline, we can overcome the initialisation problem by using movement and

transfer of ownership. The externally initialised objects are created as exter-

nal objects and then moved into the target representation. The dominating

edge property of external uniqueness guarantees that once the representation

object is moved into their target, no aliases from objects external to the target

exist.

Revisiting an early discussion in Section 2.2, the example in Figure 6.10

presents a lexer class that reads tokens from an externally initialised stream.

The lexerClient() method creates and initialises the InputStream which is

then moved into the representation of the lexer without leaving any external

aliasing to the stream object. This enables the implementor of the lexer to

disregard any external aliasing, which makes the implementation easier, voids

the need for checks that no-one has e.g., moved the file pointer externally



6.1 Applications for External Uniqueness 99

of the lexer class, and makes it easier to maintain and reason about class

invariants.

In our example, the input stream also loses its uniqueness.





❖ 7

Discussion

We argue that our model of uniqueness is more appropriate for use in

an object-oriented context than traditional uniqueness; external uniqueness

views objects as aggregates; unique pointers to true black boxes is allowed;

and it does not suffer from the abstraction problem.

In this chapter, we aim to substantiate these claims. In particular, we show

how external uniqueness overcomes the abstraction problem and facilitates

reasoning. We also discuss the problem with external uniqueness in the pres-

ence of multiple threads.

7.1 External Uniqueness for Object-Orientation

By using a strong notion of encapsulation, such as the one provided by owner-

ship types, external uniqueness enables unique pointers to entire aggregates—

one single entry point to a potentially large collection of objects. This is a more

natural way of looking at a unique reference, since the aggregate is viewed as

a whole, and not as a bunch of interconnected objects where the uniqueness

only applies to one. A traditionally unique pointer cuts a slice in an aggregate

and allows the slice to be manipulated, e.g., moved to another object, with-

out necessarily effecting its representation. For modern programs with large

collections of objects cooperating together to form aggregate objects we need

a uniqueness mechanism that supports aggregate uniqueness as well as object

uniqueness. Tasks such as moving an aggregate without risking residual alias-

ing of the aggregate’s internals or moving a mobile agent from one platform

to another requires uniqueness to honour deep ownership.

In contrast to uniqueness, external uniqueness is a property of how the

object is used externally, unbeknownst to the object—not a property of the

object itself. An object’s implementation does not control how it can be refer-

enced nor does it need to consider its external pointers in its implementation.



102 7 Discussion

There is no need for second-class citizen borrowed pointers with unneces-

sary restrictions. We allow entire aggregates to be moved, between threads or

different objects’ representations, without the risk of residual aliasing of ei-

ther the bridge object, or its representation. Furthermore, we allow arbitrary

aliasing in an aggregate, even back pointers to an object considered unique

externally. All this makes external uniqueness more properly suited to object-

oriented programming.

7.2 How External Uniqueness Overcomes the Abstraction

Problem

As described earlier in Section 2.3.2, the abstraction problem is caused by

the treatment of this internally, or more exactly, the possibility of subjective

movement. Additionally, in the case of PRFJ, by the treatment of this’s owner

which is intimately linked with the former. The key to overcoming the abstrac-

tion problem, the same key as to enable unique pointers to aggregate objects,

is to prevent subjective movement. We do so by presenting different views of

the uniquely referenced object (the bridge object) internally and externally.

Internally, the object is non-unique and in the presence of deep ownership

cannot escape to become visible outside. Thus, subjective treatment of this

can disregard how the object is viewed externally; we can even allow the cre-

ation of dynamic and static aliases to this since these aliases are confined to

the object.

The external view of the object is where uniqueness is important. As we

have argued before, external uniqueness is effectively unique (Section 4.1.3).

Since the internal references are not active or reachable while the object is

viewed as unique externally, it suffices to preserve uniqueness externally and

let the implementation of the class bother less with the external view of its

instances. Ownership types allow us to make the distinction between an ob-

jects inside and outside. Since we know that references to representation will

never escape, we can allow them, even if the object is viewed externally as

unique. From a software engineering perspective, our proposal is better suited

to software evolution than traditional uniqueness, since it does not break the

principle of abstraction; is does not require interfaces to change when the

internal implementation does, as illustrated by the upcoming example.

Subjective Treatment in the Presence of External Uniqueness

The key to overcoming the abstraction problem is to make all possible internal

operations valid regardless of how the object is being referenced externally.



7.2 How External Uniqueness Overcomes the Abstraction Problem 103

Subjective movement is problematic since it requires this to be unique; this

requirement will necessarily propagate into the interface (if we want modular

checking) since the receiver of a method using subjective movement must be

unique. We choose to disallow it.

In external uniqueness, objects are never unique internally. If they do not

create internal aliases to this, they are actually unique (in the traditional

sense); if they do, they are effectively unique, or externally unique. The encap-

sulation of ownership types prevent any internal alias to an externally unique

pointer from escaping and compromising the external uniqueness invariant;

we can allow an object to treat itself non-uniquely, create aliases to itself etc.,

and as we have shown, external uniqueness is still effectively unique.

As the internal view of all objects is non-unique, the same set of opera-

tions are available (and valid) inside the object regardless of how it is

referenced and thus, external uniqueness does not suffer from the ab-

straction problem.

Since instances will never view themselves as unique, there is no need to

reflect treatment of this in the interface (or track it using program analysis,

other than for the purposes of preserving the owners-as-dominators property

of ownership types). Also, since instantiating an owner with unique does not

propagate through implementation as in PRFJ, there is no need for where-

clauses or similar constructs to control which objects or owner parameters can

be uniquely referenced respective instantiated with unique. This means that

any change to the class’ implementation cannot change its instances ability

to be referenced uniquely, nor affect any external, unique references to itself.

Any possible treatment of this or of the owner parameter is always valid,

regardless of any possible external unique references.

Thus, the price to avoid the abstraction problem is the loss of subjective

uniqueness—an object can no longer move itself. The gains are much greater.

A Concrete Example

Figure 7.1 shows the implementation in Joline of a Server class used in Chap-

ter 2 in the description of the abstraction problem. The difference between

this figure and the previous ones is the complete absence of any annotations

concerning uniqueness or the treatment of this, which s consistent with ex-

ternal uniqueness. The connect() method will store a reference to the server

in a client object, a consuming method in the case of method-level annota-

tions, and an invalid method in a unique class in the case of class-level anno-

tations. The only additional requirement which stems from ownership types

is that the owner of the server must be accessible to the client object. At the



104 7 Discussion

class Server extends Object

{

int no_connections = 0;

void connect(owner:Client client) // (*)

{

client.isManagedBy(this); // (**)

}

int getConnections()

{

return this.no_connections;

}

}

Fig. 7.1. The Server class example from Figures 2.4 and 2.5 encoded with external
uniqueness.

line marked with (*), the client parameter is declared as sharing the same

owner as the server object, and it will thus have the necessary permissions

to receive the this reference at line (**). Possibly a little contrived in this

particular example, this means that the client belongs to the same aggregate

as the server and that there may be no external references to the client from

outside that aggregate. If such references were possible, then the client ob-

jects could be used to access the server externally. This would be unsound if

the server is externally unique and therefore it is not allowed.

Now, lets consider the effects of changing the code of the figure, in partic-

ular replacing the entire getConnections() method for the following code,

making the method a consuming method.

int getConnection()

{

this:BlackBox<owner> bb = new this:BlackBox<owner>();

bb.xyzzy(this);

return this.no_connections;

}

The method now creates a temporary black box object with permission to

reference the receiver and then passes this to the black box’s xyzzy method

with unknown consequences.

In the case of external uniqueness, this change is perfectly legal without

changing the method header, since the getConnections() method can only

be invoked if there are no unique references to the receiver object, meaning

that the receiver object can be treated any way we like. Thus, there is no need

for the notion of borrowing or consuming methods, no need for annotations,



7.3 Facilitating Reasoning about Objects 105

and the view and possible operations on this are the same regardless of the

method’s implementation.

In case of traditional uniqueness in the style of Minsky (1996), uniquely

referencing instances of Server would have required some class annota-

tion in the class header. The addition of the back pointer in the change to

getConnections() would have forced this annotation to be removed—the

internal use of this leaking out in interfaces.

In the style of e.g., Hogg (1991) and Boyland (2001a), the same prob-

lem appears but with different symptoms: the getConnections() method is

forced to be declared as consuming its receiver, and the first call to accept will

steal the only reference to the server.

Again: the same set of actions is possible regardless of the object’s external

reference(s) meaning that the implementation cannot effect how the object

is referenced and used externally (nor need it be reflected in the interface)—

which is what the abstraction principle states.

7.3 Facilitating Reasoning about Objects

Uniqueness can be instrumental in determining whether a piece of code is

sensible or not, for example in the issue of closing and reading two possibly

aliased file variables. Uniqueness enables the movement of an object between

threads without the risk of residual aliasing, which makes synchronisation

unnecessary and therefore reduces the risks of data races and deadlocks in

certain situations. Knowing that an object is unique means that we can track

its state as is done in e.g., Vault (DeLine and Fähndrich 2001) and Fugue

(DeLine and Fähndrich 2003). This would not be possible in the presence

of aliases, since it is generally impossible to determine that some method

invocation does not affect the state of a non-unique object.

Similar properties are provided by deep ownership. In Joe1, Clarke and

Drossopoulou (2002) show how to determine the disjointness of the ef-

fects of two method invocations based on deep ownership types. Smith and

Drossopoulou (2003) further this work and use ownership types to facilitate

program verification in the context of a Hoare logic with a type and effects

ownership system. Also, preserving non-trivial class invariants is a lot easier

in presence of strong encapsulation, since modifications of an object’s repre-

sentation are either performed internal to the object, or by the object itself,

not by external objects.

By bringing together uniqueness and the strong encapsulation of owner-

ship types, we aim to achieve the benefits of both systems. Indeed, we extend



106 7 Discussion

deep ownership with uniqueness suggesting that all the benefits of deep own-

ership apply to our system as well.

External Uniqueness and Software Protocol Checking

We observe a weakness in our system that stems from the use of internal

pointers. Even though external uniqueness is effectively unique, in a system

such as Fugue that tracks type-state (see Strom and Yemeni (1986) for an

enlightening read on type-states), coordinating all pointers to an object to

make sure that any possible internal back pointer views its referenced object

as having the same state as an external pointer is at least a hard problem to

solve. A field of an internal object that has a type which allows it to hold a

back pointer need not necessarily contain one. Making this work will at least

require some additional machinery.

However, external uniqueness gives more powerful guarantees than tra-

ditional uniqueness. In particular, the owners-as-dominating-edges property

applies to all objects in a transitive closure, not just to a single one. Moving a

unique object between threads will move the object along with its represen-

tation, even in the presence of internal sharing between the representation

objects.

7.4 External Uniqueness in the Presence of Multiple Threads

A feature of uniqueness important in the context of concurrency is that an

object referred to uniquely can only be entered by one thread.

However, if threads are created within an object while it is being bor-

rowed, then their mere existence threatens the possibility of retaining a strong

notion of uniqueness. If the thread internal to the borrowing outlives the bor-

rowing, active internal references exist simultaneous with the external refer-

ence which breaks the effective uniqueness of external uniqueness. We outline

three ways to deal with this below.

Make sure borrowing outlives subthreads. An immediate solution is to force

the borrowing thread to outlive all subthreads. Any thread internal to

the object created during the borrowing must have finished its execution

before the borrowing ceases. If any threads are still running at the end of

the borrowing, the borrowing thread must wait until they have finished.

This is an unsatisfactory solution since it is not possible to tell when a

borrowing will end, if ever.

Prevent simultaneous borrowings. A second solution to the problem is to allow

any borrowed threads to continue executing after the borrowing exits. The



7.4 External Uniqueness in the Presence of Multiple Threads 107

new requirement is that these threads must not be alive when the external

reference is borrowed again. Thus, a possible delay is deferred to the start

of the next borrowing block.

This approach suffers from the same problem as the first solution. Both

solutions violate the definition of borrowing since the behaviour of any

internal threads might prevent the borrowed value from being reinstated.

Weaken uniqueness. The third solution views internal threads as part of an

aggregate’s implementation and should therefore be permitted to exist si-

multaneously with externally unique pointers. Where sound, movement

is allowed even in the presence of internal threads and the threads move

with the object. Simultaneous borrowings are allowed and localised reen-

trancy is void.

We feel that creating threads inside borrowed objects should be avoided.

Creating a thread linked to a unique object is far superior, since this moves

the unique object into the thread together with all its representation and thus

voids the need for synchronization.





❖ 8

Related Work

In this chapter, we discuss related work; mainly other forms of alias man-

agement techniques and variations on uniqueness. As most of the detailed

discussions of the latter are included in the relevant sections, this chapter

presents only a brief overview of them.

We look at other systems that provide uniqueness and/or aggregates or

strong encapsulation and compare these to external uniqueness and point

to where these are discussed elsewhere in the thesis. We then look briefly

at region-based memory management which is related in some aspects, and

uniqueness and linearity in functional programming. We finally look closer on

the originality of our proposal.

8.1 Alias Encapsulation: Containment, Ownership, etc.

Alias encapsulation schemes (a large body of which are ownership types sys-

tems) have been employed for reasoning about programs, e.g., Clarke and

Drossopoulou (2002) and Müller and Poetzsch-Heffter (1999); for alias man-

agement, e.g., Clarke et al. (1998), Noble et al. (1998); and in program un-

derstanding in the presence of aliasing (Aldrich, Kostadinov, and Chambers

2002). Boyapati and Rinard (2001) and Boyapati et al. (2002) use ownership

types as the basis for a system to eliminate data-races respective deadlocks

from concurrent programs. Boyapati, Liskov and Shrira (2002) use ownership

types to enable safe lazy updates in object-oriented databases. In this thesis,

we use alias encapsulation to overcome the abstraction problem inherent in

extant proposals for unique pointers.

Good examples of alias encapsulation schemes are Islands (Hogg 1991),

Confined Types (Bokowski and Vitek 1999), Universes (Müller and Poetzsch-

Heffter 1999) and Ownership Types (Clarke, Potter, and Noble 1998). Most

other approaches are either reminiscent of these, or just weakened versions.



110 8 Related Work

Islands was defined for Smalltalk (Goldberg and Robson 1983) as a set of

annotations guaranteeing that objects inside an island, a connected subgraph

of the object graph, were not referenced from objects outside the island, ex-

cept for the bridge object, which would then become a single entry point to

the island. Via methods in the bridge object, objects could move in and out

of an island. The encapsulation provided by Islands is among the strongest

proposed. However (or, perhaps, subsequently), the practical usefulness of is-

lands is questionable. We defer the discussion of Islands to Section 8.4 where

we discuss the originality of our proposal.

Confined types uses Java packages (Gosling, Joy, and Steele 1996) as the

protection domain: instances of classes that are package scoped may not be

referenced from outside the package (i.e., by instances of classes not defined

in the package). Arguably, confined types is a more lightweight approach to

alias encapsulation with a coarse grained level of protection. Recent studies

by Grothoff, Palsberg and Vitek (2001) of the structure of existing applications

in the Purdue Benchmark Suite, a large selection of programs, suggest that a

quarter of all of classes satisfy the confinement properties of confined types.

However, it is not clear what that means in practice, except that confined types

may be quite compatible with existing ways of constructing object-oriented

programs.

Universes (Müller and Poetzsch-Heffter 1999) is basically an extended

subset of ownership types (see below) for a Java-like language. The repre-

sentation of an object conceptually belongs to a “universe” and references

may not cross the universe boundary in any direction. Its only extension to

ownership types is the introduction of a read-only pointer that may be used

for cross-universe aliasing, but not for changing the referenced object (or, in-

deed, any object in the entire system). The read-only references can be used

to implement iterators, which for long was problematic in ownership types.

Read-only references is a form of alias control—allowing aliases while con-

trolling their effect on a program. The concept is as basic as uniqueness, a

read-only reference may not be used to change the referenced object. Read-

only references have been used to either extend alias encapsulation proposals

(Hogg 1991; Müller and Poetzsch-Heffter 1999), or as stand-alone alias con-

trol schemes (Kniesel and Theisen 2001; Skoglund and Wrigstad 2002). In the

last case it is however unclear what practical gains stand from using them.

Ownership Types was proposed by Clarke, Noble and Potter (1998). In

its original form, every object has an owner and references to representation

objects are not allowed to be passed out of its owning object. In contrast to

Islands, Balloon Types and Universes, aliases from internal objects to objects

that own them are allowed; classes are parameterised with “permissions” to



8.1 Alias Encapsulation: Containment, Ownership, etc. 111

reference external objects. Ownership types can be used to enable both shal-

low and deep encapsulation.

Ownership Types was described in more detail in Chapter 3. Even more

detailed descriptions are available in the literature, e.g., in Clarke’s disserta-

tion (Clarke 2001) where a full-blown description of the theory of owner-

ship types is presented in Abadi’s and Cardelli’s Object Calculus (Abadi and

Cardelli 1996), or Clarke and Drossopoulou’s (2002) Joe1 for a more recent

implementation of ownership types in a class-based Java-like setting. The last

paper is also a good example of how ownership information can be used to as-

sist reasoning about programs by forming the basis of a disjointness theorem

showing that two statements do not interfere with each other. See also Smith

and Drossopoulou (2003) for further developments of the Joe1 platform.

8.1.1 Comparison

Table 8.1 on page 112 presents a comparison between different proposals in

the literature that include uniqueness, alias encapsulation and borrowing. No-

tably, external uniqueness is the only system that provides the strong encap-

sulation of deep ownership and orthogonal borrowing. The italicised letters

in the table are keys that are explained on page 114.

First we give short explanation of the various kinds of uniqueness, owner-

ship, encapsulation and borrowing that we consider in our comparison.

Kinds of Uniqueness

We consider three kinds of uniqueness, all of which have been mentioned

earlier in the thesis:

free — values can be unique (e.g., from object construction; cannot regain

freeness once lost.).

conventional uniqueness — fields and variables may contain unique refer-

ences to an object. Such a reference is the only one stored in the heap,

and possibly the stack, modulo any borrowing.

external uniqueness — fields and variables may contain externally unique ref-

erences into an aggregate. Internal references to the unique object are

permitted.

Both forms of uniqueness subsume free. Freedom without uniqueness means

that the freeness is lost as soon as the value is stored in a field or variable and

cannot be regained. Commonly used synonyms for uniqueness include linear

(Baker 1995) and unsharable (Minsky 1996).



112 8 Related Work

Uniqueness Encapsulation Borrowing

This paper External Deep Orthogonal
PRFJ a Conventional Deep Parameter
Flexible Alias Protection b Free Deep n/a
Vault c ∼Conventional Shallow Orthogonal
AliasJava d Conventional Shallow Parameter
Pivot Uniqueness e(c) <Conventional Shallow Parameter
Capabilities for sharing f (d) ∼Conventional ∼Shallow ∼Parameter
Islands g(e) Conventional Full ∼Parameter
Balloons h Conventional Full Parameter
OOFX/Alias Burying i Conventional None Parameter
Eiffel∗ j Conventional None Parameter
Virginity k Free None Parameter

Table 8.1. Comparison of related work. (a-k see text.)

Kinds of Ownership and Encapsulation

We consider three kinds of ownership/encapsulation:

shallow — direct access to certain objects is limited. This is similar to tradi-

tional uniqueness; moving a unique pointer from one object to another is

effectively giving the receiving object shallow ownership over the unique.

deep — the only access to the internal, transitive state of an object is through

a single entry point. The entry point may be multiply referenced and ref-

erences to external state is possible.

full — same as deep ownership, except that no references to objects outside

the encapsulating boundary from within the encapsulating boundary are

permitted.

As was shown in Figure 3.3 on page 33, while shallow ownership prevents

direct access to its representation objects, proxy objects may be created (in-

ternally or externally) which access the encapsulated objects and may escape

the encapsulation boundary. This makes the encapsulation provided by shal-

low ownership intransitive.

Deep ownership goes further than shallow ownership by lifting the nest-

ing of objects into the type system and ensuring that no references to deeply

nested objects pass through their enclosing boundary. This is also called flexi-

ble alias encapsulation (Noble, Vitek, and Potter 1998).

Full alias encapsulation, a term coined by Noble, Vitek and Potter (1998)

to describe e.g., Hogg’s Islands, offers a stronger, less flexible encapsulation

than deep ownership since references to external objects are not permitted

from within the encapsulation boundaries.

In graph theoretic terms, deep ownership imposes that owners are domi-

nators which break path connectivity when removed, whereas full alias encap-



8.1 Alias Encapsulation: Containment, Ownership, etc. 113

sulation imposes that bridge objects are cut points which break graph connec-

tivity when removed. For a more in-depth, graph-based comparison between

different models of encapsulation, see a recent paper by Noble, Biddle, Tem-

pero, Potanin and Clarke (2003).

In addition to the ones considered above, other forms of encapsulation ex-

ist, such as the package level confinement found in Confined Types (Grothoff,

Palsberg, and Vitek 2001). These are however too coarse-grained to enable

external uniqueness and are therefore not further discussed.

Kim, Bertino and Garza (1989) define semantics for references capable of

expressing a shallow form of ownership and traditional uniqueness for com-

posite references. This system is however not statically checked nor does it

provide deep ownership or external uniqueness. The machinery seems how-

ever to be in place to implement external uniqueness via dynamic checks.

Kinds of Borrowing

We consider two kinds of borrowing of unique references:

borrowed parameters — method parameters, this, and/or local variables may

borrow a unique reference. Borrowed references may not be assigned to

fields.

orthogonal borrowing — references are either unique or non-unique. Scope

restrictions apply to a borrowed unique reference to ensure that the

uniqueness invariant can be regained.

Other names for borrowing are limited (Chan, Boyland, and Scherlis 1998),

temporary (Kniesel 1996), lent (Bacon, Strom, and Tarafdar 2000), uncon-

sumable (Minsky 1996) and unique (Hogg 1991). None of these however use

orthogonal borrowing.

Several proposals’ implementations of borrowing weaken uniqueness by

not preventing the original reference from being accessed during the bor-

rowing. These proposals include Eiffel∗ (Minsky 1996), AliasJava (Aldrich,

Kostadinov, and Chambers 2002), Balloon Types (Almeida 1998), Pivot

Uniqueness (Leino, Poetzsch-Heffter, and Zhou 2002) and Capabilities for

sharing (Boyland, Noble, and Retert 2001).

By using nullification or scope restrictions, this can be avoided at the price

of race conditions and additional null-pointers as is done in PRFJ (Boyapati

and Rinard 2001), Vault (DeLine and Fähndrich 2001), and in Alias Burying

(Boyland 2001a).

Checking the constraints underlying alias burying modularly leads to an

interdependence between uniqueness and read effects identified by John Boy-



114 8 Related Work

land (2001b). Guava (Bacon, Strom, and Tarafdar 2000) also uses lent pa-

rameters to avoid capturing of objects in a system for avoiding data races in

Java.

Comments to the table

a) Parameterised Race-Free Java (Boyapati and Rinard 2001) permits object

graphs which violates deep ownership, but it uses an effects system to prevent

access through the offending references. The result is effectively deep owner-

ship. In addition, to increase flexibility, PRFJ allows unique to be used even

as a non-owner parameter. For a more detailed discussion of PRFJ, see page

119.

b) Flexible Alias Protection (Noble, Vitek, and Potter 1998) was the start-

ing point for ownership types. Its encapsulation model is slightly stronger

since objects inside a protected boundary may not rely on mutable state of

objects external to it. For a more detailed discussion, see page 120.

c) The Vault system (DeLine and Fähndrich 2001; Fähndrich and DeLine

2002) gives a practical linear type system for a non object-oriented, impera-

tive language. Our borrowing is similar to an adopt operation found in Vault

that allows a linear (unique) reference to become non-linear (non-unique)

temporarily by storing it into a non-unique object. While the scope of our bor-

rowing is restricted to a certain block, the scope of adoption is the lifetime of

the adopting object storing the previously linear pointer. Vault also provides

a focus operation that enables a non-linear reference to be treated linearly

and access to linear components in non-linear objects. This is achieved by a

form of “aggressive alias burying” in the sense that the focus operation will

not allow operations on any aliases to the focused object during the scope of

the focus. This elegantly avoids destructive reads, but does not scale to multi-

threaded class-based object-oriented programs since all valid pointers of the

focused object must be accounted for in order for the focus operation to work.

d) AliasJava (Aldrich, Kostadinov, and Chambers 2002) only provides shal-

low encapsulation which does not suffice to implement external uniqueness

since internal objects that may contain non-unique references to an externally

unique object may escape. AliasJava was shown in the introduction to shal-

low ownership, Section 3.2.1. For a more detailed description, see Aldrich’s

dissertation (2003).

e) Pivot Uniqueness (Leino, Poetzsch-Heffter, and Zhou 2002) enables

unique fields that can only be assigned with newly created objects or null. Piv-

otal encapsulation is shallow, guaranteeing only that the contents of a pivot

field is never exported from an object, it may only be borrowed.



8.2 Region-based Memory Management 115

f) Capabilities for sharing (Boyland, Noble, and Retert 2001) offers prim-

itive and dynamic constructs that can be combined to enable various kinds

commonly proposed constructs—uniqueness, read-only references etc., though

no one specific policy is enforced. It presents an elegant unification of many

popular constructs; two sets of access rights, one “base set” and one “exclu-

sive set” are used to model the various mechanisms. Notably, uniqueness is

the strongest, and the uniqueness capability includes the owner capability. Its

constructs are shallow with the intention that systematic application of shal-

low mechanisms can be used to achieve deep versions. No static type system

exists.

g) Islands (Hogg 1991) allow borrowing through read-only references. For

a more detailed discussion, see page 117.

h) Balloon Types (Almeida 1997; Almeida 1998) is discussed in more de-

tail on page 118.

i) OOFX/Alias Burying (Greenhouse and Boyland 1999; Boyland 2001a)

avoids destructive reads by allowing violations of actual uniqueness as long as

these violations are never witnessed. The alias burying solution to maintain-

ing a strong uniqueness invariant would work well with external uniqueness,

but would require an effects system to be modular. Alias burying is discussed

throughout the thesis.

j) Eiffel∗(Minsky 1996) is an early system bringing traditional uniqueness

into object-oriented programming using method-level annotations to deal

with subjective treatment of this. Eiffel∗ is covered in the introduction to

uniqueness, Section 2.2.

k) Virginity (Leino and Stata 1999) is basically free values obtained by

object creation whose freeness is lost once assigned to a field or variable.

8.2 Region-based Memory Management

Our scoped region construct is similar to the lexically scoped letregion con-

struct used in region-based memory management (Talpin and Jouvelot 1992;

Tofte and Talpin 1997). There are a number of differences. Firstly, our con-

struct is under programmer control, as in Cyclone (Grossman, Morrisett, Jim,

Hicks, Wang, and Cheney 2002), whereas the regions calculus is the basis for a

compiler’s intermediate language. Secondly, the principal aim of region-based

memory management differs from ours, which is to limit the aliasing between

objects. The final difference is the technical machinery used to achieve safety:

our approach is structural, maintaining a specific nesting relationship between

objects to ensure that no references into a deleted region remain (see also



116 8 Related Work

Clarke’s dissertation (2001)), whereas the regions calculus uses effects to de-

termine that references into a deleted region are never dereferenced.

Both Cyclone (Grossman, Morrisett, Jim, Hicks, Wang, and Cheney 2002)

and Gay and Aiken’s RC (2001) manage a nesting relationship which cap-

tures when one object outlives another, very similar to how our system works.

While some attempts to explicitly add region-based memory management to

Java exist (see e.g., (Yates 1999; Christiansen and Velschrow 1998)), they re-

quire interfaces to be extended with effects annotations to ensure modular

checking, whereas our structural approach uses ownership and owner anno-

tations. Recent work by Boyapati et al. add regions and ownership to Java

to address the problems of Real-time Java (Boyapati, Salcianu, Beebee, and

Rinard 2003). (Other styles of effects system also exist for Java (Greenhouse

and Boyland 1999; Clarke and Drossopolou 2002; Boyapati and Rinard 2001;

Boyapati, Lee, and Rinard 2002).) Although the structural approach lacks the

delicacy of the regions calculus, we believe that it is closer to the spirit of

object-oriented programming. Indeed, real-time Java (Bollella, Gosling, Bros-

gol, Dibble, Furr, and Turnbull 2000) includes ScopedMemory objects which

behave similarly to our scoped regions, without guarantees of static safety. All

regions systems lack the deep ownership and unique references.

Deep ownership enables an object to be seen as having a region (referred

to using this) containing the objects it owns, revealing an interesting duality:

in the region calculus, the lifetime of objects depends upon the lifetime of

regions; in deep ownership types, the lifetime of regions depends upon the

lifetime of objects.

A number of systems in the literature combine linearity and regions

(Walker and Watkins 2001; Crary, Walker, and Morrisett 1999), using linear-

ity to track the use of regions to avoid the lexical scoping or region allocation

and deallocation in the regions calculus.

8.3 Uniqueness and Linearity

Girard’s linear logic (Girard 1987) created the opportunity for stronger con-

trol of resources in programming languages. However, a number of research-

ers have realised that programming with uniqueness or linearity in its strictest

form is painful (Wadler 1990; Baker 1995). Wadler’s let! construct, quasi-

linear types (Kobayashi 1999), and Vault’s adoption and focus (Fähndrich and

DeLine 2002), for example, introduce means for alleviating this pain. Our no-

tion of external aliasing and to a lesser extent our borrowing construct were

designed for a similar goal in an object-oriented setting.



8.4 Originality 117

Furthermore, we believe that the common linear typing restriction of

preventing linear objects inside non-linear ones is not well-suited to object-

oriented programming due to the inflexible nature of classes.

8.4 Originality

Our system is not the first to offer uniqueness and strong encapsulation com-

bined. Some of the systems mentioned previously in this thesis, and in this

chapter, namely Hogg’s Islands (1991), Almeida’s Balloon Types (1997), and

Boyapati et al.’s Parameterised Race-Free Java (Boyapati and Rinard 2001;

Boyapati, Lee, and Rinard 2002) all offer similar features. Noteworthy, Flexi-

ble Alias Protection (Noble, Vitek, and Potter 1998), which later evolved into

Ownership Types, provides single entry points to aggregates for free values.

We now look at these proposals in a little more detail to show how we extend

them.

8.4.1 Hogg’s Islands

Hogg’s seminal Islands paper used uniqueness as a way of achieving pro-

tection from aliasing in object-oriented languages. The protection domain is

called an island and is basically an aggregate object with a single entry point in

the same fashion as is enabled by external uniqueness. Encapsulation is guar-

anteed statically by the use of side-effect free functions and unique pointers.

The main constraint in play to achieve islands is that all references passed in

and out of a bridge object must be unique. That way, no references to objects

internal to the island can escape and break the protection boundary. Instead

of escaping, the entire internal object, which must itself be an island, is moved

out of the island.

In Islands, there is no way of distinguishing between references to internal

objects and references to external objects. All references count as internal and

thus, no state reachable from a bridge object can be referenced from outside

an island. This was one of the most severe obstacles overcome in ownership

types.

Islands use method-level annotations to achieve and maintain uniqueness.

As we have previously shown, this breaks the principle of abstraction, and

furthermore requires that all references are treated as internal. Since all ref-

erences passed in and out of a bridge object are required to be unique, sharing

of internal objects as well as external objects passed as arguments to methods

in the bridge object is precluded. This makes Islands an unsuitable strategy



118 8 Related Work

for many object-oriented programs. For a comparison of the encapsulation

offered in Islands and ownership types, see Clarke’s dissertation (2001).

External Uniqueness could be used to implement (a sort of) Island, with a

simple requirement on bridge objects that all non-representation parameters

and return values of an object are unique.

8.4.2 Almeida’s Balloon Types

Balloon types enable the same kind of construct as Islands—a balloon is a

transitive closure of objects with a single entry point. References cannot cross

a balloon boundary in any direction. Instead on relying on extensive pro-

gram annotations (indeed, the syntactic additions is comparable to unique-

ness which cannot be said for e.g., Islands or the deep ownership in Joline),

balloon types is achieved using an intricate program analysis, described in

Almeida’s dissertation (Almeida 1998). The overly constraining restriction of

Islands is thus also found in balloons, objects internal to a balloon cannot

reference objects external to the balloon, but only for static aliases. Dynamic

aliasing is not covered by balloons1 and thus, the encapsulation offered by

balloons does not apply to dynamic references.

We believe that the inability of statically referencing external objects in-

ternally is too severe to make balloon types a feasible system for enforcing

encapsulation in object-oriented programming. Furthermore, because of this

inability, if such a reference is required due to changes to the implementation,

the containing structure can no longer be a balloon, forcing the removal of the

balloon keyword. Thus, the implementation of a class determines its ability

of being a balloon, a clear violation of the abstraction principle. However,

because of the dependency on extensive static analysis rather than program

annotations, this causes no further propagating changes to the program. The

cost is the need for whole program analysis to preserve the balloon invariants.

In conclusion, ballons are overly restrictive and lacks even a destructive

read to move balloons around (relying instead on deep-copying, which might

not be a desirable nor working alternative). In our proposal, the pointers to

aggregates enabled by external uniqueness can be moved around (as opposed

to deep-copied), and the bridge object may be aliased internally. Also, the un-

derlying model of encapsulation is more flexible, since it allows static refer-

ences to objects outside the aggregate from objects inside the aggregate.

1 To this end, Almeida proposes Opaque balloons, an extension to plain balloons that
places the same restrictions on dynamic references as on static references.



8.4 Originality 119

8.4.3 Parameterised Race-free Java

Intended to be used for preventing data-races and deadlocks in object-oriented

programming, Boyapati’s and Rinard’s ownership types system is slightly

more powerful than the ownership types system we rely on to enable exter-

nal uniqueness. It provides deep ownership types effectively—its type system

permit references which violates deep ownership, but its effect system will

prevent accesses through these references, in a sense similar to the read-only

references found in Müller’s and Poetzsch-Heffter’s Universes (1999).

Also, the PRFJ system allows the unique keyword to be used as an owner

parameter even in the non-owner position. When parameterised with unique,

all fields etc. using that parameter as an owner will contain unique references.

Naturally the class must have been written with that in mind for it to work.

PRFJ uses where-clauses such as this2:

class List<data> where owner != unique

{

...

}

to prevent owners from being instantiated with unique in cases where that

would be invalid or simply undesirable.

In PRFJ, an object is declared unique by instantiating its owner parame-

ter with unique, exactly as in our system. The key difference is that inside

the class, any occurrence of the owning (first) parameter will be replaced

by unique which means that any potential back-pointer will instead be a

unique pointer. This is PRFJ’s way of preventing possible internal aliasing of

the unique, precisely the opposite of our proposal. This design causes prob-

lems with abstraction in addition to the ones described earlier: if changes to

the implementation requires the owning parameter to be used in a position

where it cannot be unique (e.g., prohibited by a where-clause in some other

class or if an internal back pointer is necessary), a where-clause preventing

this must be inserted and thus, any usage of unique pointers to instances of

the class at any other location in the program must be removed. In PRFJ, not

only how the object treats this internally, but how it uses its owner parameter

causes the abstraction problem.

There should be no problem changing the uniqueness implementation of

PRFJ to external uniqueness. The cost is the possibility to parameterise a class

with uniqueness annotations to achieve unique pointers inside the class.

2 Readers familiar with PRFJ may note that the syntax has been changed slightly to
match the one we use for external uniqueness for convenience.



120 8 Related Work

8.4.4 Flexible Alias Protection

Flexible Alias Protection (Noble, Vitek, and Potter 1998), takes, as the name

hints, a more flexible approach to alias protection than Islands and Balloons.

References from within the protection domain to objects outside it are al-

lowed, but the objects in the protection domain may not depend on the exter-

nal objects’ mutable state. We mention Flexible Alias Protection here mostly

because of its close relation to ownership types. Flexible Alias Protection en-

ables a strong notion of aggregate objects, with the flexibility of ownership

types (enabling references to external objects), even though these references

may not be used to read or modify any mutable state.

Flexible Alias Protection introduced a free mode, basically a uniqueness an-

notation, but only for results of object creation or deep copying, not for static

aliasing. A reference returned by an expression of free mode is not aliased

and is thus by the encapsulation provided by the proposal’s other constructs

a single entry point to an aggregate, same as for an externally unique refer-

ence. Exactly how it is determined that a value is not aliased is not described

in enough detail to determine whether or not Flexible Alias Protection suffers

from the abstraction problem.

Flexible Alias Protection evolved into ownership types, which, in some

senses even more flexible, lacked a lot of the features outlined in the original

proposal, such as the arg mode that prevented internal objects to be dependent

on mutable state of external objects, and the free mode described above. In

a sense, external uniqueness is an additional step in the direction of finally

including all the features of Flexible Alias Protection in ownership types.



❖ 9

Conclusions and Future Work

In this chapter, we summarise and critique our results and briefly discuss fu-

ture work, in particular the Joline compiler.

9.1 Summary

In this dissertation, we have introduced external uniqueness and shown a type

system and dynamic semantics for Joline, a language that implements our pro-

posal and outlined its soundness proof along with the important dominance

properties of generational ownership and the unique-owners-as-dominating-

edges property. We have also shown applications for external uniqueness that

were not possible to implement in previous uniqueness or ownership types

systems.

We believe that external uniqueness it better suited to object-oriented pro-

gramming than traditional uniqueness. It avoids the abstraction problem, and

allows unique pointers to true, black boxes whose contents are properly en-

capsulated. Since internal pointers of an externally unique object are never

active at the same time as the external, unique reference, external uniqueness

is effectively unique.

9.2 Critique

Introducing external uniqueness in a language that already has deep owner-

ship types, such as Joe1 (Clarke and Drossopolou 2002) or PRFJ (Boyapati

and Rinard 2001; Boyapati, Lee, and Rinard 2002), is virtually free. However,

if ownership types is not present, external uniqueness requires a significantly

large machinery to function correctly. On a positive side, introducing such

a machinery will enable deep ownership even for non-unique objects in the

entire system.



122 9 Conclusions and Future Work

We now look at some of the weaknesses of our proposal.

9.2.1 Weaknesses Inherited from Ownership Types

The main weaknesses of external uniqueness are those inherited from deep

ownership. Ownership types is simple and powerful in smaller examples and

smaller programs, however, in combination with uniqueness, it requires the

programmer to program with a single entry point in mind. Although we have

nothing to back this claim up with, we suspect that programming with deep

ownership in larger programs with more complex structure might be less

smooth. For example, in programs that involve cross-boundary aliasing (i.e.,

references crossing conceptual boundaries, such as references from the view

layer to the model layer in a model-view architecture (Gamma, Helm, John-

son, and Vlissides 1994)), the programmer might be forced to choose between

the desired level of encapsulation and the desired level of flexibility. Naturally,

such trade-offs exist to some extent regardless of the support of a compiler or

formal system to maintain it. The formal system just make things less flexible.

The observer pattern illustrates a problem that might arise in larger pro-

gram structures. To allow objects from one conceptual layer, e.g., the model

layer, to be able to subscribe to events generated in the view layer, the event

handling objects in the second layer need to be able to access objects of the

first layer. While it may be possible to use unintuitive designs to achieve the

appropriate ownership hierarchy (e.g., letting the view objects be part of the

model objects’ representation), this will most likely lead to a flattening of

the hierarchy if model objects are shared or interact heavily, or worse, if the

objects in the view layer subscribe to events from model objects. The result-

ing object structure will most likely require many objects to be owned by a

common owner to enable interaction, most likely world, unless measures are

taken to propagate the common owners through the program.

While having little to do with our proposal directly, this illustrates a weak-

ness of the system underlying external uniqueness. Shallow ownership over-

come these weaknesses (Aldrich, Kostadinov, and Chambers 2002), by the

use of proxy objects etc., but is not strong enough to enable external unique-

ness. Recent attempts have been made by Clarke and Drossopoulou (2002) to

overcome this while maintaining deep ownership, but so far only for dynamic

references. More practical experience of programming with ownership types

is necessary to determine if our suspicion is correct.

Boyapati and Rinard (2002) use inner classes to allow multiple access

paths and cross-boundary aliasing by allowing objects of inner classes to ac-

cess the representation of an object while having an external owner. The so-

lution is rather elegant, with only a minor addition, namely the possibility of



9.2 Critique 123

an inner class to use this of the enclosing class as owner. While this has been

shown to overcome the iterators problem, it would be unsound in our system,

since a back-pointer could be exported during a borrowing and kept outside

even after the borrowing ceases if the owner of the object of an inner class

would be external to the boundary of the externally unique pointer. A possible

restriction could be to only allow owner to be the owner of such “inner class

objects”. While much less flexible, this restriction would preserve soundness

of our system since any object possibly containing a back pointer will be part

of the aggregate since the out-most possible owner of an object of an inner

class is the owner of the unique. Thus, it would not be possible to reference

while an externally unique reference to the aggregate is in place.

Nevertheless, we feel that this is an inadequate solution since it requires

changes to a class to enable sharing capabilities that was not programmed

into it in the first place.

9.2.2 The Joline System

The Joline system used to present our proposal is a fairly complex system

with several concepts not necessary for external uniqueness. One virtue of the

complex system is that it enables us to study the interaction of our proposed,

orthogonal features, scoped regions, owner polymorphic methods etc.. This

made it possible to produce the large number of examples of applications for

external uniqueness which we feel is more intuitive than arguing its uses from

a purely theoretical perspective.

On the downside, the complex system might have obscured our results

and also slowed the process of proving soundness. A leaner system with a

minimal core calculus would undoubtedly have been better in this respect.

Development of a core calculus for external uniqueness would be instruc-

tive.

9.2.3 The Price of External Uniqueness

Because of the lack of practical experience from programming with owner-

ship types, there is no telling whether the price of external uniqueness (at

least when depending on ownership types) is too high. While the studies of

Noble and Potanin (2002) suggest quite some level of object encapsulation

is present in existing programs, there are to the best of our knowledge no

practical studies of programming in the presence of deep ownership. The pro-

posed implementation of external uniqueness that we have presented here is

no doubt costly if the encapsulation given by deep ownership types is consid-

ered unnecessary. To enable external uniqueness in an equally strong manner,



124 9 Conclusions and Future Work

less costly for the programmer or less restrictive to the object graph (where

possible), we might have to resort to program analysis or dynamic checks,

techniques which have drawbacks of their own, possibly in combination with

shallow ownership.

9.2.4 Lack of Practical Results

We would have liked to include some practical results in this study, in partic-

ular, a practical evaluation of the use of deep ownership and external unique-

ness in real programming to address the price of external uniqueness issue

above. This will instead be addressed in future work.

9.3 Future Work

We identify a lack of practical experience in using deep ownership with object-

oriented programming. Also, there is not much experience in programming

with unique pointers as first-class concepts, even though it seems that most

objects in most programs are uniquely referenced; the studies of Noble and

Potanin (2002) suggest that as much as up to 85% of all objects in an object-

oriented program are normally uniquely referenced. This suggests that exter-

nal uniqueness would be not only useful, but work well with existing ways of

buiding software. However, as we have stated, the effects of bringing in the

deep ownership necessary to enable external uniqueness are not fully known.

As a future direction of this research, we intend to perform a practical

evaluation of our proposed concepts as well as ownership types and how well

they fit with normal object-oriented programming. To this end we are in the

process of implementing a Joline compiler to apply our ideas to memory man-

agement, concurrency, mobility, programming patterns, and so forth. With

more insight into the effect on real programming of ownership types and ex-

ternal uniqueness, we also believe that we can better understand the benefits

of possibly weaker forms of external uniqueness, alternative borrowing vari-

ants etc. We hope to have useful results along those lines to present in future

papers.

Movable aliased objects can be used to merge lists’ representation without

copying. It is possible to move an externally unique set of links from one list

to another. However, it is not possible to detach a single list node and move

it to another list unless the node is externally unique too. While not directly

related to uniqueness, it is related to transfer of ownership, which we believe

is a necessary feature of any ownership types system to be used to program

real-world applications.



9.3 Future Work 125





References

[1996] Abadi, M. and L. Cardelli (1996). A Theory of Objects.

Springer-Verlag.

[2003] Aldrich, J. (2003, August). Using Types to Enforce Architectural

Structure. Ph. D. thesis, University of Washington.

[2002] Aldrich, J., V. Kostadinov, and C. Chambers (2002, November). Alias

annotations for program understanding. In OOPSLA Proceedings.

[1997] Almeida, P. S. (1997, June). Balloon Types: Controlling sharing of

state in data types. In ECOOP Proceedings.

[1998] Almeida, P. S. (1998, June). Control of Object Sharing in

Programming Languages. Ph. D. thesis, Department of Computing,

Imperial College of Science, Technology, and Medicine, University of

London.

[2004] Austin, C. (2004, February). J2se 1.5 in a nutshell. Article at Sun.

http://java.sun.com/developer/technicalArticles/releases/

j2se15/.

[2000] Bacon, D. F., R. E. Strom, and A. Tarafdar (2000). Guava: a dialect of

Java without data races. In OOPSLA Proceedings, pp. 382–400.

[1995] Baker, H. G. (1995, January). ‘Use-once’ variables and linear objects

– storage management, reflection and multi-threading. ACM SIGPLAN

Notices 30(1), 45–52.

[2002] Banerjee, A. and D. A. Naumann (2002, January). Representation

independence, confinement, and access control. In Proceedings of the

29th ACM Symposium on Principles of Programming Languages

(POPL’02), Portland, Oregon.

[1999] Bokowski, B. and J. Vitek (1999). Confined Types. In OOPSLA

Proceedings.

[2000] Bollella, G., J. Gosling, B. Brosgol, P. Dibble, S. Furr, and M. Turnbull

(2000). The Real-Time Specification for Java. Addison-Wesley.



128 REFERENCES

[2004] Boyapati, C. (2004, February). SafeJava: A Unified Type System for

Safe Programming. Ph. D. thesis, Electrical Engineering and Computer

Science, MIT.

[2002] Boyapati, C., R. Lee, and M. Rinard (2002, November). Ownership

types for safe programming: Preventing data races and deadlocks. In

OOPSLA Proceedings.

[2002] Boyapati, C., B. Liskov, and L. Shrira (2002, July). Ownership types

and safe lazy upgrades in object-oriented databases. Technical Report

MIT-LCS-TR-858, Laboratory for Computer Science, MIT.

[2003] Boyapati, C., B. Liskov, and L. Shrira (2003, January). Ownership

types for object encapsulation. In 28th ACM Symposium on Principles

of Programming Languages, New Orleans, Louisiana, pp. 213 – 223.

[2001] Boyapati, C. and M. Rinard (2001). A parameterized type system for

race-free Java programs. In OOPSLA Proceedings.

[2003] Boyapati, C., A. Salcianu, W. Beebee, and M. Rinard (2003, June).

Ownership types for safe region-based memory management in

real-time java. In ACM SIGPLAN 2003 Conference on Programming

Language Design and Implementation (PLDI).

[2001a] Boyland, J. (2001a, May). Alias burying: Unique variables without

destructive reads. Software — Practice and Experience 31(6), 533–553.

[2001b] Boyland, J. (2001b, June). The interdependence of effects and

uniqueness. In 3rd Workshop on Formal Techniques for Java Programs.

[2001] Boyland, J., J. Noble, and W. Retert (2001, June). Capabilities for

Sharing: A Generalization of Uniqueness and Read-Only. In ECOOP

Proceedings.

[1998] Bracha, G., M. Odersky, D. Stoutamire, and P. Wadler (1998).

Making the future safe for the past: Adding genericity to the Java

programming language. In OOPSLA Proceedings.

[2003] Cardelli, L., P. Gardner, and G. Ghelli (2003). Querying trees with

pointers. Unpublished note.

[1998] Chan, E. C., J. T. Boyland, and W. L. Scherlis (1998). Promises:

Limitied specifications for analysis and manipulation. In

IEEE International Conference on Software Engineering (ICSE).

[1998] Christiansen, M. V. and P. Velschrow (1998, May). Region-based

memory management in Java. Master’s thesis, Department of

Computer Science (DIKU), University of Copenhagen.

[2001] Clarke, D. (2001). Object Ownership and Containment. Ph. D. thesis,

School of Computer Science and Engineering, University of New

South Wales, Sydney, Australia.



REFERENCES 129

[2002] Clarke, D. and S. Drossopolou (2002, November). Ownership,

encapsulation and the disjointness of type and effect. In OOPSLA

Proceedings.

[1998] Clarke, D., J. Potter, and J. Noble (1998). Ownership types for

flexible alias protection. In OOPSLA Proceedings.

[2003a] Clarke, D. and T. Wrigstad (2003a, January). External uniqueness.

In 10th Workshop on Foundations of Object-Oriented Languages

(FOOL), New Orleans, LA.

[2003b] Clarke, D. and T. Wrigstad (2003b, July). External uniqueness is

unique enough. In L. Cardelli (Ed.), ECOOP Proceedings, Volume 2473

of Lecture Notes In Computer Science, Darmstadt, Germany, pp.

176–200. Springer-Verlag.

[1999] Crary, K., D. Walker, and G. Morrisett (1999). Typed memory

management in a calculus of capabilities. In 1999 Symposium on

Principles of Programming Languages.

[2001] DeLine, R. and M. Fähndrich (2001, June). Enforcing high-level

protocols in low-level software. In Proceedings of the ACM Conference

on Programming Language Design and Implementation, pp. 59–69.

[2003] DeLine, R. and M. Fähndrich (2003). The fugue protocol checker: Is

your software baroque? Technical Report MSR-TR-2004-07, Microsoft

Research.

[1998] Detlefs, D. L., K. R. M. Leino, and G. Nelson (1998, July). Wrestling

with rep exposure. Technical Report SRC-RR-98-156, Compaq Systems

Research Center.

[2001] Drossopoulou, S., F. Damiani, M. Dezani, and P. Giannini (2001,

June). Fickle: Object re-classification. In ECOOP Proceedings,

Budapest, Hungary, pp. 130–149. Springer Verlag.

[1990] Ellis, M. and B. Stroustrup (1990). The Annotated C++ Reference

Manual. Addison-Wesley.

[2002] Fähndrich, M. and R. DeLine (2002, June). Adoption and focus:

Practical linear types for imperative programming. In Proceedings of

the ACM Conference on Programming Language Design and

Implementation.

[1994] Gamma, E., R. Helm, R. E. Johnson, and J. Vlissides (1994). Design

Patterns. Addison-Wesley.

[2001] Gay, D. and A. Aiken (2001, June). Language support for regions. In

ACM SIGPLAN 2001 Conference on Programming Language Design and

Implementation (PLDI), Snowbird, Utah.

[1987] Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science 50,

1–102.



130 REFERENCES

[1983] Goldberg, A. and D. Robson (1983). Smalltalk-80: The Language and

its Implementation. Addison-Wesley.

[1996] Gosling, J., B. Joy, and G. Steele (1996). The Java Language

Specification. Addison-Wesley.

[1999] Greenhouse, A. and J. Boyland (1999). An object-oriented effects

system. In ECOOP’99.

[2002] Grossman, D., G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney

(2002, June). Region-based memory management in Cyclone. In

Proceedings of the ACM Conference on Programming Language Design

and Implementation.

[2001] Grothoff, C., J. Palsberg, and J. Vitek (2001). Encapsulating objects

with confined types. In OOPSLA Proceedings.

[1991] Harms, D. E. and B. W. Weide (1991, May). Copying and swapping:

Influences on the design of reusable software components. IEEE

Transactions on Software Engineering 17(5), 424–435.

[1991] Hogg, J. (1991, November). Islands: Aliasing protection in

object-oriented languages. In OOPSLA Proceedings.

[1992] Hogg, J., D. Lea, A. Wills, D. de Champeaux, and R. Holt (1992,

April). The Geneva convention on the treatment of object aliasing.

OOPS Messenger 3(2), 11–16.

[1999] Joyner, I. (1999, July). Object Unencapsulated, Java, Eiffel and

C++?? Object and Component Technology Series. Prentice Hall PTR.

[1989] Kim, W., E. Bertino, and J. F. Garza (1989). Composite objects

revisited. In Proceedings of the 1989 ACM SIGMOD International

Conference on Management of Data, Portland, Oregon, pp. 337–347.

[1996] Kniesel, G. (1996, November). Encapsulation = visibility +

accessibility. Technical Report IAI-TR-96-12, Universiät Bonn. Revised

March 1998.

[2001] Kniesel, G. and D. Theisen (2001, May). JAC – access right based

encapsulation for java. Software — Practice and Experience 31(6),

555–576.

[1999] Kobayashi, N. (1999, January). Quasi-linear types. In 26th ACM

Symposium on Principles of Programming Languages.

[1992] Landi, W. (1992, December). Undecidability of static analysis. ACM

Letters on Programming Languages and Systems 1(4), 323–337.

[1998] Lea, D. (1998). Concurrent-Programming in Java: Design Principles

and Patterns. Java Series. Addision-Wesley.

[1999] Leavens, G. T. and O. Antropova (1999, February). ACL —

eliminating parameter aliasing with dynamic dispatch. Technical



REFERENCES 131

Report 98-08a, Department of Computer Science, Iowa State

University, Ames, Iowa, 50011.

[2002] Leino, K. R. M., A. Poetzsch-Heffter, and Y. Zhou (2002, June). Using

data groups to specify and check side effects. In Proceedings of the

ACM Conference on Programming Language Design and Implementation.

[1999] Leino, K. R. M. and R. Stata (1999, April). Virginity: A contribution

to the specification of object-oriented software. Information Processing

Letters 70(2), 99–105.

[1986] Liskov, B. and J. Guttag (1986). Abstraction and Specification in

Program Development. The MIT Press.

[1992] Meyer, B. (1992). Eiffel: The Language. Prentice Hall.

[1996] Minsky, N. (1996, July). Towards alias-free pointers. In ECOOP

Proceedings.

[1999] Müller, P. and A. Poetzsch-Heffter (1999). Universes: A type system

for controlling representation exposure. In A. Poetzsch-Heffter and

J. Meyer (Eds.), Programming Languages and Fundamentals of

Programming. Fernuniversität Hagen.

[2002] Noble, J. and A. Potanin (2002, June). Checking ownership and

confinement properties. In 4th Workshop on Formal Techniques for Java

Programs, Malaga, Spain.

[2003] Noble, J., R. B. E. Tempero, A. Potanin, and D. Clarke (2003, July).

Towards a model of encapsulation. In D. Clarke (Ed.), International

Workshop on Aliasing, Confinement and Ownership in Object-oriented

Programming, UU-CS-2003-030. Utrecht University.

[1998] Noble, J., J. Vitek, and J. Potter (1998, July). Flexible alias

protection. In E. Jul (Ed.), ECOOP’98— Object-Oriented Programming,

Volume 1445 of Lecture Notes In Computer Science, Berlin, Heidelberg,

New York, pp. 158–185. Springer-Verlag.

[1999] Peyton Jones, S., J. Hughes, et al. (1999, February). Haskell 98 — A

non-strict, purely functional language. Available from

http://haskell.org.

[1998] Potter, J., J. Noble, and D. Clarke (1998, November). The ins and

outs of objects. In Australian Software Engineering Conference,

Adelaide, Australia. IEEE Press.

[2003] Skoglund, M. (2003). Investigating object-oriented encapsulation in

theory and practice. Lic. Thesis, Department of Computer and Systems

Sciences, Stockholm University, Kista, Sweden.

[2002] Skoglund, M. and T. Wrigstad (2002, March). Alias control with

read-only references. In Sixth Conference on Computer Science and

Informatics.



132 REFERENCES

[2003] Smith, M. and S. Drossopoulou (2003, July). Cheaper reasoning

with ownership types. In D. Clarke (Ed.), International Workshop on

Aliasing, Confinement and Ownership in Object-oriented Programming,

UU-CS-2003-030, pp. 15 – 28. Utrecht University.

[1986] Strom, R. E. and S. Yemeni (1986, January). Typestate: A

progamming language concept for enhancing software reliability. IEEE

Transactions on Software Engineering SE-12(1), 157–170.

[1992] Talpin, J.-P. and P. Jouvelot (1992, July). Polymorphic type, region,

and effect inference. Journal of Functional Programming 2(3),

245–271.

[1997] Tofte, M. and J.-P. Talpin (1997). Region-Based Memory

Management. Information and Computation 132(2), 109–176.

[1990] Wadler, P. (1990, April). Linear types can change the world! In

M. Broy and C. B. Jones (Eds.), IFIP TC 2 Working Conference on

Programming Concepts and Methods, Sea of Gallilee, Israel, pp.

561–581. North-Holland.

[2001] Walker, D. and K. Watkins (2001). On regions and linear types. In

International Conference on Functional Programming, pp. 181–192.

[1999] Yates, B. N. (1999, August). A type-and-effect system for

encapsulating memory in Java. Master’s thesis, Department of

Computer and Information Science and the Graduate School of the

University of Oregon.



❖ A

Appendix

A.1 Elaborating Movement Bounds

The elaboration function below fills in the movement bound of a unique type

automatically. Basically, it defaults to owner, except for in the initial expres-

sions (that is not inside any object) where world is used.

E(classi∈1..n s e) = E(classi)i∈1..n Eworld(s) Eworld(e)

class c〈αi Ri pi∈1..m〉 extends c′〈p′i′∈1..n〉 { Vj∈1..m methk∈1 ..p }

=

class c〈αi Ri pi∈1..m〉 extends c′〈p′i′∈1..n〉 { Eowner(Vj)j∈1..m Eowner(methk )k∈1 ..p }

Ep(t f = e;) = Ep(t) Ep(f) = Ep(e);

Ep(〈αi Ri pi∈1..n〉 t m(tj xj∈1..m) { s return e })

=

〈αi Ri pi∈1..n〉 Ep(t) m(Ep(tj) xj∈1..m){ Ep(s) return Ep(e) }

Ep(x) = x

Ep(e.f) = Ep(e).f

Ep(this) = this

Ep(lval--) = Ep(lval)--

Ep(new t) = new Ep(t)

Ep(null) = null

Ep(e.m〈pj∈1..m〉(ei∈1..n)) = Ep(e).m〈pj∈1..m〉(Ep(ei)i∈1..n)

Ep(skip;) = skip;

Ep(t x = e;) = Ep(t) x = Ep(e);

Ep(e;) = Ep(e);



134 A Appendix

Ep(lval = e;) = Ep(lval) = Ep(e);

Ep(s s′) = Ep(s) Ep(s
′)

Ep((α) { s }) = (α) { Eα(s) }

Ep({ s }) = { Ep(s) }

Ep(borrow lval as 〈α〉 x { s }) = borrow Ep(lval) as 〈α〉 x { Eα(s) }

Ep(α) = α

Ep(owner) = owner

Ep(world) = world

Ep(unique) = uniquep

Ep(p0 c〈pi∈1..n〉) = Ep(p0) c〈Ep(pi)i∈1..n〉


