
Full Proofs for Loci

Tobias Wrigstad, Filip Pizlo, Fadi Meawad, Lei Zhao, Jan Vitek

Purdue University

Abstract This note presents the full proofs for Loci [2]. There is one
semantic change—we now allow @Thread, @Context and @Shared as class-
level annotations1, adding classes whose instances are always thread-
local. We have also cleaned up the semantics by re-splitting rules that
were combined to fit in within page limits, elaborated definitions, etc.

Note: this techreport was posted with the explicit permission
of Sophia Drossopoulou.

1 A Formal Account of Loci

1.1 Syntax and Static Semantics

Loci’s syntax is shown in Figure 1. For clarity, we use an explicit annotation
@Context, instead of implicit annotations. Without loss of generality, we use
a “named form,” reminiscent of SSA but with mutable variables, where the
results of field and variable accesses, method calls and instantiations must be
immediately stored in a variable or field.

For simplicity, all rules have an implicit P on the left of the turnstile. We use
the right-associative viewpoint-adaptation operator ⊕ to expand the @Context
annotation thus:

α1 ⊕ α2 c =
{
α1 c if α2 = @Context
α2 c otherwise α1 ⊕ α2 ⊕ α3 c = α1 ⊕ (α2 ⊕ α3 c)

Class-Table For functions and relations g, g′, define g • g′ as:

(g • g′) =
{
g(x), if g(x) is defined;
g′(x) otherwise.

Define • for tuples as:

(F ,M) • (F ′,M ′) = (F • F ′,M •M ′)

1 The old @Thread classes are now called @Context. Classes annotated @Thread now
must always be thread-local.

P ::= cd program

C ::= α class c extends d { F M } class declaration
F ::= τ f field
M ::= τ m(τ x) { s;return y } method
s ::= s;s | skip | x = y .f | x = y | y .f = z | τ x | statement

x = new τ() | x = y .m(z) | x = start c()
τ ::= α c type
α ::= @Thread | @Shared | @Context annotations

E ::= [] | E[x : τ] local type environment

Figure 1. Loci’s syntax. c, d are class names, f ,m are field and method names, and
x , y , z are names of variables or parameters respectively, where x 6= this. For simplicity,
we assume that names of classes, fields, methods and variables are unique. The special
variable ret and return only appears in the dynamic syntax and semantics.

For a program P , define the class table CT as: CT (c) = (F ,M) • CT (d) where
class c extends d { F M } ∈ P and CT (Object) = (ε, ε). Also define ε(x) = ⊥.
Now, lookup in combined tuples models lookup in inheritance hierarchies and
lookups of non-existing elements return ⊥ and ⊥(x) = ⊥.

We use a number of shorthands to access the class-table: fields(c) = fst(CT (c))
and method(c) = snd(CT (c)). Thus, fields(c.f) looks up the type of the (only,
since we do not model overriding of fields) field f in the most specific super-
type of c (including c). Furthermore define mbody(c.m) as (x, s;return y) and
mtype(c.m) as τ → τ when methods(c.m) = τ m(τ x){ s;return y }.

Lase, we also define a shorthand for retrieving then names of fields and
methods of a class names(τ f) = f and names(τ m(· · ·){ · · · }) = m.

Well-formed Programs By construction, all class hierarchies are rooted in
Object. For simplicity, Object is an empty class in all P ’s. Furthermore, Object
can be subclassed by classes with any thread-locality. We write · · · to denote an
unimportant omission.

(wf-program)

` cd for all cd ∈ P
` P

(object)

` class Object { }

Modulo for Object, subclassing and overriding must preserve annotations. Over-
loading is not supported, nor is overriding fields.

(wf-class)

fields(d) = fd2 methods(d) = md2

∀m ∈ names(md1) ∩ names(md2). mtype(c.m) = mtype(d.m)
names(fd1) ∩ names(fd2) = ∅

d ≡ Object ∨ P (d) = α1 class d · · · α1 ` fd1 α1 c ` md1

` α1 class c extends d { fd1 md1 }

2

(wf-field) makes use of the viewpoint-adaptation operator⊕ on annotations and
types. This is similar to σ-substitution found in ownership types type systems.
This makes the Loci type system treat a @Context variable as @Thread in a @Thread
class, etc.

(wf-field)

` α1 ⊕ α2 c

α1 ` α2 c f

(wf-method)

this : α c, x : α⊕ τ ` s;return y;E E ` y : α⊕ τ
α c ` τ m(τ x){ s;return y }

E is a standard local type environment that maps variables to types (Figure 1).

(empty-E)

` []

(wf-E)

` E ` τ x 6∈ dom(E)
` E[x : τ]

Statements. The statements should be straightforward to follow for anyone
familiar with Java. x, y, z are local variables and x 6= this.

(sequence)

E ` s1;E1 E1 ` s2;E2

E ` s1;s2;E2

(skip)

` E
E ` skip;E

(assign)

x : τ ∈ E E ` y : τ
E ` x = y;E

(select)

` E
y : α c ∈ E x : τ ∈ E

fields(c.f) = τ ′ ` α⊕ τ ′ ≤ τ
E ` x = y.f ;E

(update)

y : α c ∈ E
fields(c.f) = τ
E ` z : α⊕ τ
E ` y.f = z;E

(var-decl)

` E ` τ
x 6∈ dom(E)
this : α c ∈ E

E ` τ x;E[x : α⊕ τ]

(select) and (update) apply ⊕ to the annotation on the target and the field
to possibly expand @Contexts. Note that (var-decl) replaces @Context with the
annotation of the current this (which may be @Context).

(new)

` E
x : τ ∈ E ` α c ≤ τ
E ` x = new α c();E

(method-call)

y : α c ∈ E mtype(c.m) = τ → τ ′

E ` z : α⊕ τ x : τ ∈ E ` α⊕ τ ′ ≤ τ
E ` x = y.m(z);E

Similar to how Java deals with threads, the start operation only works on classes
that have a 0-arity run method (denoted by ε parameter types). Finally, (var-

sub) allows subsumption for reading variables, but it not used in code.

(fork)

mtype(c.run) = ε→
E ` x : @Shared d ` c ≤ d

E ` x = start c();E

(return)

E ` y : τ
E ` return y : τ ;E

(var-sub)

` E
x : τ ′ ∈ E ` τ ′ ≤ τ

E ` x : τ

3

H ::= [] | H[ι 7→ (ρ c, F)] heap
F ::= [] | F [f 7→ v] fields
v ::= ι | null value

T ::= (S, ρ) | (NPE, ρ) thread
S ::= ε | S 〈V, s〉 stack
V ::= [] | V [y 7→ v] stack frame

Figure 2. Syntax for heaps, threads, stacks, frame, objects and values. For clarity, we
split fields and stack frames into two different syntactic categories.

Subclassing, Types, and Subtypes. The following rules define subclass, sub-
type and well-formed type.

(subclass-direct)

P (c) = α class c extends d · · ·
` c ≤ d

(subclass-transitive)

` c ≤ c′ ` c′ ≤ d
` c ≤ d

(subclass-reflex)

` c
` c ≤ c

(class)

P (c) =
α class c · · ·

` c

(type)

` c P (c) = α1 class c · · ·
α = α1 ∨ α1 = @Context ∨ c = Object

` α c

(subtype)

` α c
` c ≤ d
` α c ≤ α d

By (subtype), subtyping must preserve annotations. For brevity we write · · · to
omit unimportant parts of code in P . Most importantly, though, Object may be
use in both @Shared, @Context and @Thread types.

1.2 Dynamic Semantics

Loci’s dynamic semantics is a small-step operational semantics. Syntax for heaps,
fields, values, threads, stacks and stack frames can be found in Figure 2. A Loci
configuration (H;T) consists of a single heap H of locations mapped to objects
tagged to denote to what heap(let) they belong to and a collection of threads.
Each thread T has its own stack, plus a thread id denoted ρ. An instance of class
c belonging to the thread ρ will have run-time type ρ c. We use % to denote the
shared heap. ρ and % both belong to the syntactic category θ which is read as
“heap id.”

Thread-scheduling is modeled as a non-deterministic choice in (schedule).
A configuration with a thread scheduled to run is denoted (H;T ;T). For con-
venience, we write H(ι.f) := v as a shorthand H[ι 7→ (θ c, V [f 7→ v])] where
H(ι) = (θ c, V). We denote the look-up of a non-existent field F (f) = ⊥ (where
⊥ 6= v), which can happen due to lazy creation of thread-local fields.

The initial configuration has the form

([ι = (ρ Object, ε)]; (〈[this = ι], s;return y〉, ρ); ε)

i.e., there is only one thread on start-up, a single instance of Object on the heap,
which the starting statements execute in.

There are two kinds of reduction rules. The first () is a “scheduling re-
duction” and takes a two-compartment configuration with n+ 1 idle threads to
a three-compartment configuration with n idle threads and one active thread.

4

The second reduction (→) is the regular reduction step and goes in the inverse
direction of a scheduling reduction. Effectively, (H; ε) is a final configuration.

(schedule)

(H;T , T, T ′) (H;T ;T , T ′)

The rules (finished-thread) and (dead-thread) remove threads that are fully
reduced (normally or abnormally) from the system. NPE is a special error config-
uration denoting a crashed thread due to a null-pointer dereference error.

(finished-thread)

(H; (〈V, return x〉, ρ);T)→ (H;T)

(dead-thread)

(H; (NPE, ρ);T)→ (H;T)

We use the special variable ret to capture return values. The only assignment
to ret is through a return which assigns the ret of the underlying stack frame.

(return)

F (y) = v T = (S 〈V ′[ret 7→ v], s′〉, ρ)
(H; (S 〈V ′, s′〉, 〈V, return y〉, ρ);T)→ (H;T, T)

(assign)

F (y) = v T = (S 〈V [x = v], s〉, ρ)
(H; (S 〈V, x = y; s〉, ρ);T)→ (H;T, T)

(var-decl)

T = (S 〈V [x 7→ null], s〉, ρ)
(H; (S 〈V, τ x; s〉, ρ);T)→ (H;T, T)

(skip)

(H; (S 〈V, skip; s〉, ρ);T)→ (H; (S 〈V, s〉, ρ), T)

We model thread-local variables as zero or more variables indexed by the thread
id ρ—a thread ρ accessing a @Thread field f returns the contents of the field fρ.

(select-other)

V (y) = ι H(ι) = (c, F) fields(c.f) = α d α 6= @Thread F (f) = v

(H; (S 〈V, x = y.f ; s〉, ρ);T)→ (H; (S 〈V [x = v], s〉, ρ), T)

(select-thread)

V (y) = ι H(ι) = (c, F) fields(c.f) = @Thread d F (fρ) = v

(H; (S 〈V, x = y.f ; s〉, ρ);T)→ (H; (S 〈V [x = v], s〉, ρ), T)

(select-first-thread)

V (y) = ι H(ι) = (c, F) fields(c.f) = @Thread F (fρ) = ⊥
(H; (S 〈V, x = y.f ; s〉, ρ);T)→ (H(ι.fρ) := null; (S 〈V [x 7→ null], s〉, ρ), T)

5

The fields are created lazily on first read and are then given the value null. An
alternative would be to create a copy for every thread in the system, but the
above solution felt somewhat closer to the semantics of the ThreadLocal API,
which calls initialValue() on the first read of a field by a particular thread.

(select-npe)

(H; (S 〈V [y 7→ null], x = y.f ; s〉, ρ);T)→ (H; (NPE, ρ), T)

Like reading, writing a @Thread field updates the copy of the field indexed by the
current thread’s id.

(update-other)

V (y) = ι V (z) = v H(ι) = (c,) fields(c.f) = α d α 6= @Thread
(H; (S 〈V, y.f = z; s〉, ρ);T)→ (H(ι.f) := v; (S 〈V, s〉, ρ), T)

(update-thread)

V (y) = ι V (z) = v H(ι) = (c,) fields(c.f) = @Thread d
(H; (S 〈V, y.f = z; s〉, ρ);T)→ (H(ι.fρ) := v; (S 〈V, s〉, ρ), T)

(update-npe)

(H; (S 〈V [y 7→ null], y.f = z; s〉, ρ);T)→ (H; (NPE, ρ), T)

A new instance cannot be leaked on instantiation and can subsequently be placed
either on the shared heap or in the current heaplet. This is decided by the
annotation of the target variable for the instantiation.

(new-shared)

ι is fresh
F = [f 7→ null | α f ∈ fields(c) ∧ α 6= @Thread] H ′ = H[ι 7→ (% c, F)]
(H; (S 〈V, x = new @Shared c(); s〉, ρ);T)→ (H ′; (S 〈V [x 7→ ι], s〉, ρ), T)

(new-thread)

ι is fresh
F = [f 7→ null | α f ∈ fields(c) ∧ α 6= @Thread] H ′ = H[ι 7→ (ρ c, F)]
(H; (S 〈V, x = new @Thread c(); s〉, ρ);T)→ (H ′; (S 〈V [x 7→ ι], s〉, ρ), T)

(new-context)

H(V (this)) = (θ ,) ι is fresh
F = [f 7→ null | α f ∈ fields(c) ∧ α 6= @Thread] H ′ = H[ι 7→ (θ c, F)]
(H; (S 〈V, x = new @Context c(); s〉, ρ);T)→ (H ′; (S 〈V [x 7→ ι], s〉, ρ), T)

If the target variable is @Context-annotated, the class is stored in the same heap
or heaplet as the current this.

6

(method-call)

V (y) = ι H(ι) = (c,) mbody(c.m) = (x′, s′;return y′)
V (z) = v V ′ = this 7→ ι, x′ 7→ v S′ = S 〈V, x = ret; s〉

(H; (S 〈V, x = y.m(z); s〉, ρ);T)→ (H; (S′, 〈V ′, s′;return y′〉, ρ), T)

An invocation x = y.m() is rewritten into x = ret and the method’s body is
executed on a new stack frame eventually assigning ret as the result of a return.

(method-call-npe)

(H; (S 〈V [y 7→ null], x = y.m(z); s〉, ρ);T)→ (H; (NPE, ρ), T)

For brevity, null-pointer exceptions kill the entire thread rather than propagate
an error through the execution. The semantics is effectively the same.

(fork)

ι, ρ′ are fresh
F = [f 7→ null | α f ∈ fields(c) ∧ α 6= @Thread] H ′ = H[ι 7→ (% c, F)]

mbody(c.run) = (ε, s′;return y′) T = (〈[this 7→ ι], s′;return y′〉, ρ′)
(H; (S 〈V, x = start c(); s〉, ρ);T)→ (H ′; (S 〈V [x 7→ ι], s〉, ρ), T , T)

The (fork) operation adds a thread to the system and is a simplified union
of Java’s new and start. The new thread object is created on the shared area,
forcing its thread-local data to be stored either on the stack of the run method,
or in a thread-local field.

2 Well-Formedness Rules

We now present the rules for well-formed configurations, stacks and heaps. The
store type Γ is defined Γ ::= [] | Γ [ι : t] where t is a run-time type on the form
θ c where θ ::= ρ | %. For simplicity, we assume that names and ids of threads
are unique.

Well-formed Store Type The rules for well-formed store type follow standard
form, except that we distinguish between run-time and compile-time types. A
run-time type in the store-type consists of a “heap id” θ denoting the heap to
which an object belongs. Notably, @Thread classes and @Shared classes always live
on some thread-local heap respective the shared heap. @Context classes always
live on the same heap as the current this.

(Γ -empty)

` []

(wf-Γ1)

` Γ
(` @Context c ∨ ` @Thread c)

` Γ [ι : ρ c]

(wf-Γ2)

` Γ
(` @Context c ∨ ` @Shared c)

` Γ [ι : % c]

7

We use the function rtt to take static type to a run-time type. The function
takes three parameters—the static type, the heap id of the current this and the
current thread id.

rtt(α c, θ, ρ) =

θ c if α = @Context
ρ c if α = @Thread
% c if α = @Shared

Well-formed Configuration An unscheduled configuration is well-formed if
any scheduled configuration derived from it is well-formed. A scheduled config-
uration is well-formed if the heap and top-most frame of the scheduled thread
are well-formed, plus the remainder of all unscheduled threads are well-formed.

(wf-unscheduled)

Γ ` (H;T ;T)
Γ ` (H;T, T)

(wf-scheduled)

Γ ` H Γ ` (H;T)
∃ E s.t. Γ ;E; ρ ` 〈V, s〉
Γ ` (H; (〈V, s〉, ρ);T)

(wf-npe)

Γ ` (H;T)
Γ ` (H; (NPE, ρ);T)

Well-formed Stack Frame The key element in (wf-stack-frame) is the ex-
traction of the heap id of the current this, which is used in (wf-frame) to make
sure that @Context-typed variables live on the correct heap.

(wf-stack-frame)

Γ (V (this)) = θ c E ` s;E′ Γ,E; ρ; θ ` V
Γ ;E; ρ ` 〈V, s〉

Notably, there is always a this on the stack frame. The initial configuration has
one, and (method-call) always puts a this on the stack.

Well-formed Frame We make use of a run-time type function that given a set
of heap ids, returns the correct heap id for an annotation.

(frame-empty)

` Γ
Γ ; []; ρ; θ ` []

(wf-frame)

Γ ` v : rtt(τ, θ, ρ) Γ ;E; ρ; θ ` V
Γ ;E[y : τ]; ρ; θ ` V [y 7→ v]

Well-formed Heap The rules for well-formed heap are mostly standard. The
empty heap is well-formed, and adding a well-formed object to a well-formed
heap results in a well-formed heap.

(wf-heap-empty)

` Γ
Γ ` []

(wf-heap)

Γ ` H Γ (ι) = θ c E = fields(c) Γ ;E; θ ` F
Γ ` H[ι 7→ (θ c, F)]

8

Well-formed Fields The rules for well-formed fields are standard, modulo
that (field-threads) introduces zero or more thread-local fields for a single field
declaration.

(fields-empty)

` Γ
Γ ; []; θ ` []

(field-thread)

Γ ` v : ρ c Γ ;E; θ ` F
Γ ;E[f : @Thread c]; θ ` F [fρ 7→ v]

(field-other)

α 6= @Thread Γ ` v : rtt(α c, θ,⊥) Γ ;E; θ ` F
Γ ;E[f : α c]; θ ` F [f 7→ v]

We use ⊥ as third argument to rtt in (field-other), since it will never be used
as α 6= @Thread.

Well-formed Values The well-formed values rules map static types to run-time
types. As usual, null can have any type.

(type-null)

` c
Γ ` null : θ c

(type-value)

Γ (ι) = θ d ` d ≤ c
Γ ` ι : θ c

(subtype)

` τ ≤ τ ′

` rtt(τ, θ, ρ) ≤ rtt(τ ′, θ, ρ)

(eq-type-thread)

` α c α = @Thread
` rtt(α c, , ρ) = rtt(α c, , ρ)

(eq-type-shared)

` α c α = @Shared
` rtt(α c, ,) = rtt(α c, ,)

(eq-type-context)

` α c α = @Context
` rtt(α c, θ,) = rtt(α c, θ,)

(eq-type-ct)

` @Context c
` rtt(@Context c, ρ,) = rtt(@Thread c, , ρ)

(eq-type-cs)

` @Context c
` rtt(@Context c, %,) = rtt(@Shared c, ,)

3 Proofs

3.1 Helper Lemmas

We use a couple of standard lemmas defined below.

Lemma 1. Extension.

1. If E ` s;E′, x 6∈ dom(E′), and ` τ , then E[x :τ] ` s;E′[x :τ].
2. If Γ ` H and Γ ′ ⊇ Γ , then Γ ′ ` H.

9

3. If Γ ;E; ρ; θ ` V and Γ ′ ⊇ Γ , then Γ ′;E; ρ; θ ` V .
4. If Γ ` (H;T), Γ ′ ⊇ Γ and Γ ′ ` H ′ then Γ ` (H ′;T).

Proof. Follows by straightforward derivation on the well-formedness rules. ut

Lemma 2. Well-formed Construction.

1. If E ` s;E′, then ` E and ` E′.
2. If E ` y : τ , then ` E and ` τ .
3. If ` τ ≤ τ ′, then ` τ and ` τ ′.
4. If Γ ` H, then ` Γ .

Proof. Follows by straightforward derivation on the well-formedness rules. ut

Lemma 3. Lookup.

1. If Γ ;E; ρ; θ ` V and E ` y : τ , then Γ ` V (y) : rtt(τ, θ, ρ).
2. If Γ ;E; ρ; θ ` V and y : τ ∈ E, then Γ ` V (y) : rtt(τ, θ, ρ).

Proof. Follows by straightforward derivation on the well-formedness rules. ut

3.2 Invariants

Informally, Loci enforces the following property:

A thread ρ can only access objects in heaplet ρ or on the shared heap %.

We formulate this in two theorems, the first of which says that pointers in
variables on a stack frame in a thread ρ either point to objects in ρ or in %,
and the second that evaluating a field access in thread ρ results in a pointer to
either an object in ρ or in % (or is a null-pointer).

Theorem 1. Local variables point into shared heap or current heaplet. If Γ ;E `
(H; (S 〈V, s〉, ρ);T), then ∀ι ∈ rng(V). tid(H, ι) ∈ {%, ρ}.

Proof. Follows by straightforward induction on s. The non-trivial cases are s =
x = y.f ; s′, which is covered by Theorem 2 and s = x = new α c(); s′.

NB. Theorems 1 and 2 are proven co-inductively.
Trivially, the initial stack-frame satisfies the theorem as this 7→ ι and H =

[ι 7→ ρ Object]. clearly is empty. We now prove that all statements that modify
local variables satisfy the theorem under the hypothesis that all existing stack
variables satisfy the theorem.

s′; s′′ Follows immediately from induction hypothesis.
skip; s′ Immediate since no variables are changed.

x = y.f ; s′ Follows immediately from Theorem 2.
x = y; s′ Follows immediately from induction hypothesis.

y.f = z; s′ Immediate since no variables are changed.
τ x; s′ Immediate since x is initialised with null 6= ι.

10

x = new α c(); s′ By (new-∗), a newly instantated object ι will have thread id θ s.t.
θ ∈ {ρ, %, θ′}. The first two cases are immediate—ρ is the current thread id
and % is id of the global shared heap. For the third case,
θ′ = tid(H(V (this))), which is in {%, ρ} from the induction hypothesis.

x = y.m(z); s′ Follows immediately from the induction hypothesis since only local
variables can be returned.

x = start c(); s′ Follows immediately from (fork) as a forked object is always shared.
return y Follows immediately from the induction hypothesis as all frames on a stack

belong to the same thread.

ut

Theorem 2. Field accesses yield pointers to shared heap or current heaplet. Let
s be a field access x = y.f . If Γ ;E ` (H; (S 〈V, s; s′〉, ρ);T), (H; (S 〈V, s; s′〉, ρ);T)→
(H ′; (S′ 〈V ′, s′〉, ρ), T ′), and V ′(x) = ι, then tid(H ′, ι) ∈ {%, ρ}.

Proof. The proof is by derivation on Γ ;E ` (H; (S 〈V, x = y.f;s′〉, ρ);T). The
key points are the threading of ρ through the derivation, and rules for well-
formed values. Note that H ′ = H by (select). For brevity, we omit facts in our
derivations that are never relied on subsequently.

1. By (scheduled), (a) Γ ` H and (b) Γ ;E; ρ ` 〈V, x = y.f ; s′〉 for some E.
2. By 1.b) and (wf-stack-frame), (a) E ` x = y.f ; s′;E′ and

(b) Γ ;E; ρ; θ ` V where θ = Γ (V (this)). By Theorem 1, (c) θ ∈ {%, ρ}.
3. By 2.a) and (select) via (sequence), (a) fields(c.f) = τ where y : α c ∈ E.
4. By 2.b, 3.a) and (wf-frame), (a) V (y) = ι s.t. Γ ` ι : t s.t. t = rtt(α c, θ, ρ).

(N.B. by (select), V (y) 6= null to be able to take the step.)
5. By 4.a) and (type-value), Γ (ι) = θ′ d. s.t. ` d ≤ c.
6. By (select-∗), H(ι) = (d θ′, F) for some F .
7. By 1.a, 5., 6.), and (wf-heap), Γ ; fields(d); θ′ ` F .
8. Let τ = α′ c′. By (select-∗), there are two cases, α′ = @Thread,
α′ 6= @Thread. We continue in this order disregarding the cases when the
field is null, i.e., v below is some ι.
– By (select-thread), F (fρ) = v. By (field-thread), Γ ` v : ρ c′. Thus,

by 1.a) and (wf-heap), tid(H, v) = ρ.
– By (select-other), F (f) = v. By (field-other), Γ ` v : θ′′ c′ s.t.
θ′′ = rtt(α′ c′, θ′,⊥). As α 6= @Thread, θ′′ ∈ {θ′, %}.
By 1.c), 4.a), 5.) and def. of rtt, θ′ ∈ {%, ρ}.
Thus, by 1.a) and (wf-heap), tid(H, v) ∈ {%, ρ}.

ut

Thread-Locality Corollary Based on the theorems above, we formulate a
“thread-locality corollary” that says that we can kill any thread and garbage
collect any object belonging to the thread, without affecting the program. To
this end, Figure 3 defines an “garbage collection” operation |ρ on H.

11

[]|ρ = [] F [fρ 7→ v]|ρ = F |ρ
H[ι 7→ (ρ c, F))]|ρ = H|ρ F [f 7→ v]|ρ = F |ρ[f 7→ v]
H[ι 7→ (ρ′ c, F))]|ρ = H|ρ[ι 7→ (ρ′ c, F |ρ)] F [fρ′ 7→ v]|ρ = F |ρ[fρ′ 7→ v] ρ 6= ρ′

Figure 3. Garbage collection operator |ρ that removes all objects belonging to thread
ρ, along with thread-local fields pointing to any such object.

Corollary 1. Thread-Locality. If Γ ` (H; (S, ρ), T, T) and (H;T ; (S, ρ), T) →
(H ′;T ′; (S, ρ), T), then Γ ′ ` (H|ρ;T) and (H|ρ;T ;T) → (H|′ρ;T ′;T) for some
Γ ′ ⊆ Γ .

Proof. Proof by negation-as-failure using the results of Theorems 1 and 2. The
only way in which the execution could be altered by killing thread ρ is if a local
variable on the top-most stack frame in T points to an object in ρ, or if a field
access in T could result in a ρ-owned object. That this cannot be the case follows
directly from Theorems 1 and 2. ut

3.3 Type Soundness

We prove type soundness in the standard fashion of progress plus preservation [1].
In this context, preservation means that reduction does not invalidate the store
typing.

Theorem 3. Preservation.

1. If Γ ` (H;T ;T), and (H;T ;T)→ (H ′;T), then there exists a Γ ′ s.t.
Γ ′ ` (H ′;T).

2. If Γ ` (H;T ;T), and (H;T ;T)→ (H ′;T ′, T), then there exists a Γ ′ s.t.
Γ ′ ` (H ′;T ′, T).

Proof. The proof of the first case is immediate from (finished-thread) and
(dead-thread), which are the only steps that remove threads. The proof of the
second case is straightforward by structural induction on s when T = (S〈V, s〉).
There are no surprising cases.

return y 1. By (wf-scheduled),
(a) Γ ` H,
(b) Γ ;E; ρ ` 〈V, return y〉 for some E,
(c) Γ ;E; ρ ` S for some E, and
(d) Γ ` (H,T)

2. By 1.b) and (wf-stack-frame),
(a) E ` return y;E′ and
(b) Γ ;E; ρ; θ ` V s.t.
(c) θ = Γ (V (this)).

3. By 2.a) and (return), E ` y : τ .
4. By 2.b), 3.) and Lemma 3 (Lookup),

12

(a) Γ ` v : t where
(b) V (y) = v, and
(c) t = rtt(τ, θ, ρ).

5. By induction hypothesis, S = S′〈V ′, s′〉, thus
(a) Γ ;E1; ρ ` 〈V ′, s′〉 and
(b) Γ ;E′; ρ ` S′ for
(c) E = E1, E′.

6. By 1.c), 5.) and (wf-stack-frame),
(a) E1 ` x = ret;s′;E2 and
(b) Γ ;E1; ρ; θ′ ` V ′ where
(c) E = E′, E1 and
(d) θ′ = Γ (V ′(this)).

7. By 6.a) and (sequence),
(a) E1 ` x = ret;E3 and
(b) E3 ` s′;E2.

8. By 7.a) and (assign),
(a) E1 ` ret : α c and
(b) x : α c ∈ E.

9. By (method-call), the method call that was rewritten into x = ret,
had a return type τr s.t. ` αr ⊕ τr ≤ α c. By (wf-method), αt ⊕ τ ≤ τr
where αr is the annotation on the receiver of the method call and αt is
the annotation of the current this in E. Thus, if τ = αy d, then
` d ≤ c by (subclass-∗). Notably, if α = @Context, then
αy = αr = αt = @Context by the definition of ⊕. Thus, θ = θ′ and by
4.a,c), Γ ` v : rtt(α c, θ′, ρ) If τ = @Shared d (or τ = @Thread d), then
α = @Shared (or @Thread) by def. of ⊕ and trivially, Γ ` v : rtt(τ, θ′, ρ)
since θ′ is never “used” and an ` d ≤ c, Γ ` v : rtt(α c, θ′, ρ).

10. By 6.b), 9.) and (wf-frame), Γ ;E1; ρ; θ′ ` V ′[ret 7→ v]
11. By 6.a,c,d), 10.). and (wf-stack-frame),

Γ ;E1; ρ ` 〈V ′[ret 7→ v], x = ret;s′〉.
12. By 1.a), 5.b,c), 11.) and (wf-scheduled),

Γ ` (H;S〈V ′[ret 7→ v], x = ret;s′〉;T).
13. By 12.) and (wf-unscheduled), Γ ` (H;S〈V ′[ret 7→ v], x = ret;s′〉;T).

s′; s′′ Follows immediately by the induction hypothesis.
skip; s′ Immediate.

x = y.f ; s′ 1. By (wf-scheduled),
(a) Γ ` H,
(b) Γ ;E; ρ ` 〈V, x = y.f ; s′〉 for some E,
(c) Γ ;E; ρ ` S for some E, and
(d) Γ ` (H,T)

2. By 1.b) and (wf-stack-frame),
(a) E ` x = y.f ; s′;E and
(b) Γ ;E; ρ; θ ` V where
(c) θ = Γ (V (this))

3. By 2.a) and (sequence),
(a) E ` x = y.f ;E and

13

(b) E ` s′;E′.
4. By 3.a) and (select),

(a) y : α c ∈ E,
(b) x : τ ∈ E,
(c) fields(c.f) = τ ′, and
(d) ` α⊕ τ ′ ≤ τ .

5. By 2.b), 4.a) and Lemma 3 (Lookup),
(a) Γ ` v : θ′ where
(b) V (y) = v, and
(c) θ′ = rtt(α c, θ, ρ).

6. If v = null, then the theorem is trivially satisfied by (select-npe)—by
1.d) and (wf-npe) Γ ` (H; (NPE, ρ);T). Otherwise, evaluation can
proceed according to (select-other), (select-thread) and
(select-thread-first). We prove the first and omit the latter because
they are similar and updating a field with null is covered by (update).
Thus, by (select-other), H(v) = (θ′ d, F) and F (f) = v′ s.t. ` d ≤ c.

7. By 1.a), 4.c), 6.) and (wf-heap), Γ ; fields(d); θ′ ` F .
8. By 6.), 7.) and (field-other), Γ ` v′ : rtt(τ ′, θ′,⊥).
9. If τ ′ = @Context c′. By 5.a) and def. of rtt, α = @Context implies θ = θ′.

Thus, by 8.), Γ ` v′ : rtt(τ ′, θ,⊥).
10. If τ ′ = @Shared c′. By 5.a), 8.) and def. of rtt, Γ ` v′ : rtt(τ ′, θ,⊥).
11. τ = c′′. By 4.d) and (subclass), ` c′ ≤ c′′.
12. By 9.), 10.), 11.) and (type-value), Γ ` v′ : rtt(τ, θ,⊥).
13. By 2.b), 12.) and (wf-frame), Γ ;E : ρ; θ ` V [x 7→ v′].
14. By 2.c), 3.b), 13.) and (wf-stack-frame), Γ ;E : ρ ` 〈V [x 7→ v′], s′〉.
15. By 1.a,c,d), 14.) and (wf-scheduled), Γ ` (H; (S〈V [x 7→ v′], s′〉, ρ);T).
16. By 15.) and (wf-unscheduled), Γ ` (H; (S〈V [x 7→ v′], s′〉, ρ), T).

x = y; s′ 1. By (wf-scheduled),
(a) Γ ` H,
(b) Γ ;E; ρ ` 〈V, x = y;s′〉 for some E,
(c) Γ ;E; ρ ` S for some E, and
(d) Γ ` (H,T)

2. By 1.b) and (wf-stack-frame),
(a) E ` x = y;s′;E and
(b) Γ ;E; ρ; θ ` V where
(c) θ = Γ (V (this)).

3. By 2.a) and (sequence),
(a) E ` x = y;E and
(b) E ` s′;E′.

4. By 3.a) and (assign),
(a) x : τ ∈ E, and
(b) E ` y : τ .

5. By 4.b) and (var-sub),
(a) y : τ ′ ∈ E and
(b) ` τ ′ ≤ τ .

14

6. By (assign), V (y) = v. By 2.b), 5.a) and Lemma 3 (Lookup),
Γ ` v : rtt(τ ′, θ, ρ).

7. By 5.b), 6.), and (subtype), Γ ` v : rtt(τ, θ, ρ).
8. By 2.b), 4.a), 7.) and (wf-frame), Γ ;E; ρ; θ ` V [x 7→ v].
9. By 3.b), 8.) and (wf-stack-frame), Γ ;E; ρ ` 〈V [x 7→ v], s′〉.

10. By 1.a,c,d), 9.) and (wf-scheduled), Γ ` (H; (S〈V [x 7→ v], s′〉;T).
11. By 10.) and (wf-unscheduled), Γ ` (H; (S〈V [x 7→ v], s′〉, T).

y.f = z; s′ 1. By (wf-scheduled),
(a) Γ ` H,
(b) Γ ;E; ρ ` 〈V, y.f = z;s′〉 for some E,
(c) Γ ;E; ρ ` S for some E, and
(d) Γ ` (H,T)

2. By 1.b) and (wf-stack-frame),
(a) Γ ;E; ρ; θ ` V and
(b) E ` y.f = z;s′;E where
(c) θ = Γ (V (this)).

3. By 2.b) and (sequence),
(a) E ` y.f = z;E and
(b) E ` s′;E′.

4. By 3.a) and (update),
(a) y : α c ∈ E,
(b) fields(c.f) = τ , and
(c) E ` z : α⊕ τ .

5. By induction hypothesis, either V (y) = null or V (y) = ι. The former
case proceeds by (update-npe), which trivially satisfies the theorem by
1.a,d) and (wf-npe)—Γ ` (H; (NPE, ρ), T). We continue with the more
interesting case, V (y) = ι. For this case, the evaluation can proceed by
either (update-other), (update-thread). We omit the second because
it is a copy-and-patch proof of the former (similar to when
α′ = @Shared). Thus, by (update-other),
(a) V (z) = v,
(b) H(ι) = (θ′ d, F),
(c) fields(d.f) = α′ c′.

6. By 2.a), 4.a), 5.), and Lemma 3 (Lookup), Γ ` ι : rtt(α c, θ, ρ).
7. By 5.), 6.) and (type-value), Γ (ι) = θ′ d s.t. ` d ≤ c.
8. By 1.a), 7.) and (wf-heap),

(a) Γ ` H ′ for H = H ′[ι 7→].
(b) Γ ; fields(d); θ′ ` F .

9. By 4.c) and (var-sub),
(a) z : τ ′ ∈ E, and
(b) ` τ ′ ≤ α⊕ τ .

10. By 2.a), 5.a), 9.a), and Lemma 3 (Lookup), Γ ` v : rtt(τ ′, θ, ρ).
11. τ ′ = α′′ c′′. If α′ = @Shared, then α′′ = @Shared by def. of ⊕. Then, by

10.) and (type-eq-shared), Γ ` v : rtt(τ ′, θ′, ρ).

15

12. τ ′ = α′′ c′′. If α′ = @Context, then α′′ = α by def. of ⊕. There are three
cases: If α = @Context, then θ = θ′ by 6.). Thus, Γ ` v : rtt(τ ′, θ′, ρ) by
11.) If α = @Shared, then by (type-eq-shared) rtt(τ ′, θ, ρ) = rtt(τ, θ′, ρ).
If α = @Thread, then by (type-eq-thread) rtt(τ ′, θ, ρ) = rtt(τ, θ′, ρ).

13. By 5.c), 8.), 12.) and (wf-frame), Γ ; fields(d); θ′ ` F [f 7→ v].
14. By 7.), 8.a), 13.) Γ ` H(ι.f) := v.
15. By 2.a,c), 3.b) and (wf-stack-frame), Γ ;E; ρ ` 〈V, s′〉.
16. By 1.c,d), 14.), 15.) and (wf-scheduled),

Γ ` (H(ι.f) := v; (S〈V, s′〉, ρ);T).
17. By 17.) and (wf-unscheduled), Γ ` (H(ι.f) := v; (S〈V, s′〉, ρ);T).

τ x; s′ 1. By (wf-scheduled),
(a) Γ ` H,
(b) Γ ;E; ρ ` 〈V, τ x; s′〉 for some E,
(c) Γ ;E; ρ ` S for some E, and
(d) Γ ` (H,T)

2. By 1.b) and (wf-stack-frame),
(a) E ` τ x; s′;E′ and
(b) Γ ;E; ρ; θ ` V where
(c) θ = Γ (V (this)).

3. By 2.a) and (sequence),
(a) E ` τ x;E′′ and
(b) E′′ ` s′;E′.

4. By 3.a) and (var-decl),
(a) ` τ ,
(b) x 6∈ dom(E),
(c) this : α c ∈ E, and
(d) E′′ = E[x : α⊕ τ].

5. By 4.a) and (type), ` d where τ = d.
6. By 5.) and (type-null), Γ ` null : rtt(α⊕ τ, θ, ρ).
7. By 2.b), 6.) and (wf-frame), Γ ;E′′; ρ; θ ` V [x 7→ v].
8. By 2.c), 3.b), 4.d), 7.) and (wf-stack-frame),

(a) Γ ;E′′; ρ ` 〈V [x 7→ v], s′〉.
9. By 1.a,c,d), 8.) and (wf-scheduled), Γ ` (H;S〈V [x 7→ v], s′〉, ρ;T)

10. By 9.) and (wf-unscheduled), Γ ` (H;S〈V [x 7→ v], s′〉, ρ, T)
x = new α c(); s′ 1. By (wf-scheduled),

(a) Γ ` H,
(b) Γ ;E; ρ ` 〈V, x = new α c(); s′〉 for some E,
(c) Γ ;E; ρ ` S for some E, and
(d) Γ ` (H,T)

2. By 1.b) and (wf-stack-frame),
(a) E ` x = new α c(); s′;E and
(b) Γ ;E; ρ; θ ` V where
(c) θ = Γ (V (this)).

3. By 2.a) and (sequence),
(a) E ` x = new α c();E and
(b) E ` s′;E′.

16

4. By 3.a) and (new),
(a) ` E,
(b) x : τ ∈ E, and
(c) ` α c ≤ τ .

5. Evaluation can proceed in three cases, (new-context), (new-thread),
and (new-shared). As they are extremely similar, we only prove the
first, which is arguably the most complex.

6. By (new-shared),
(a) H(V (this)) = (θ′ ,),
(b) fields(c) = @Context f1, @Shared f2, @Thread f3.

7. By 1.a) and (wf-heap), θ′ = θ.
8. By 5.), (fields-empty), (field-other), and (type-null)

Γ ; [][@Context f1][@Shared f2]; θ ` [][f1 7→ null][f2 7→ null].
9. By 4.c) and (subtype), ` α c.

10. By 9.), Theorem 1 (θ ∈ {%, ρ}), (wf-Γ1), and (wf-Γ2), ` Γ [ι : θ c].
11. By 1.a), 6.), 7.), 10.) and (wf-heap), Γ [ι : θ c] ` H ′ where

H ′ = H[ι 7→ (θ c, [][f1 7→ null][f2 7→ null])].
12. By 10.) (type-value), Γ ` ι : rtt(α c, θ, ρ).
13. By 2.b), 4.b,c), 11.) and (wf-frame), Γ ;E; ρ; θ ` V [x 7→ ι].
14. By 10.), 13.), and Lemma 1 (Extension), Γ [ι : θ c];E; ρ; θ ` V [x 7→ ι].
15. By 1.c) and Lemma 1 (Extension), Γ [ι : θ c];E; ρ ` S.
16. By 3.b), 15.) and (wf-stack-frame), Γ [ι : θ c];E; ρ ` 〈V [x 7→ ι], s′〉.
17. By 11.), 15.), 16.) and (wf-scheduled),

Γ [ι : θ c](H ′; (S〈V [x 7→ ι], s′〉, ρ);T).
18. By 17.) and (wf-unscheduled), Γ [ι : θ c](H ′; (S〈V [x 7→ ι], s′〉, ρ), T).

x = y.m(z); s′ 1. By (wf-scheduled),
(a) Γ ` H,
(b) Γ ;E; ρ ` 〈V, x = y.m(z); s′〉 for some E,
(c) Γ ;E; ρ ` S for some E, and
(d) Γ ` (H,T)

2. By 1.b) and (wf-stack-frame),
(a) E ` x = y.m(z); s′;E and
(b) Γ ;E; ρ; θ ` V where
(c) θ = Γ (V (this)).

3. By 2.a) and (sequence),
(a) E ` x = y.m(z);E and
(b) E ` s′;E′.

4. By 3.a) and (method-call),
(a) y : α c ∈ E,
(b) mtype(c.m) = τ → τ ′,
(c) E ` z : α⊕ τ ,
(d) x : τ ∈ E,
(e) ` α⊕ τ ′ ≤ τ .

5. A method call can proceed in two ways, V (y) = null and V (y) = ι. In
the former, (method-call-npe) trivially satisfies the theorem by 1.a,d)
and (wf-npe), Γ ` (H; (NPE, ρ), T). We now continue with the more
interesting second case. By (method-call),

17

(a) V (v) = ι,
(b) H(ι) = (θ′ d,),
(c) mbody(d.m) = (x′, s′′; return y′′), and
(d) V (z)v.

6. By 2.b), 4.a) and Lemma 3 (Lookup), Γ ` ι : rtt(α c, θ, ρ).
7. By 3.b), 4.c,d) and Lemma 2 (Well-Formed Construction),

(a) ` E,
(b) ` α⊕ τ and
(c) ` τ .

8. By 4.a), 7.) and (wf-E), ` α c.
9. By 7.), 8.), (empty-E), and (wf-E), ` E′′ where
E′′ = [][this : α c][x′ : α⊕ τ].

10. By 2.b), 4.c) and Lemma 3 (Lookup), Γ ` v : rtt(α⊕ τ, θ, ρ). For each
vi typed αi , if αi ∈ {@Shared, @Thread}, rtt(α⊕ τ, θ, ρ) = rtt(α⊕ τ, θ′, ρ)
by (type-eq-shared/thread). If αi = @Context, then θ = θ′ by 6.) and
def. of rtt. Thus, Γ ` v : rtt(α⊕ τ, θ′, ρ).

11. By 6.), 9.), 10.) and (wf-frame), Γ ;E′′; ρ; θ′ ` V ′ where
V ′ = [][this 7→ ι][x 7→ v].

12. By 5.c) and (wf-method), E′′ ` s′′;return y′′;E3.
13. By 11.), 12.) and (wf-stack-frame), Γ ;E′′; ρ ` 〈V ′, s′′;return y′′〉.
14. By 7.a,c), ` E[ret : τ]. By (wf-E), E ` ret : τ .
15. By 4.d), 14.), and (assign), E[ret : τ] ` x = ret;E[ret : τ].
16. By 3.b), 15.), and Lemma 1 (Extension), E[ret : τ] ` s;E′[ret : τ].
17. By 16.), E.), and (sequence), E[ret : τ] ` x = ret;s;E′[ret : τ].
18. By, 2.b), (type-null), and (wf-frame),

Γ ;E[ret : τ]; ρ; θ ` V [ret 7→ null].
19. By 2.c), 17.), 18.) and (wf-stack-frame),

Γ ;E[ret : τ]; ρ ` 〈V [ret 7→ null], s′′;return y′′〉.
20. By 1.a,c,d), 13.), 19.), and (wf-scheduled), Γ ` (H; (S′, ρ);T) where

S′ = S〈V [ret 7→ null], x = ret; s′〉〈V ′, s′′; return y′′〉.
21. By 20.) and (wf-unscheduled), Γ ` (H; (S′, ρ), T)

x = start c(); s′ The proof is very similar to (new) and (method-call) and is therefore
omitted. The new top-most frame is placed in a new thread with a fresh
thread id.

ut

Theorem 4. Progress. If Γ ` (H;T ;T), then there exists a reduction such that
(H;T ;T)→ (H ′;T ′) where T ⊆ T ′.

Proof. The case where T = (NPE, ρ) satisfies the theorem for T ′ = T . The rest
of the proof is by structural induction on the shape of s when T = S〈V, s〉, ρ.
Essentially, a statement can get stuck in our system if variables, fields, classes or
methods mentioned do not exist, or on an attempt at returning from the bottom
stack frame.

18

return y There are two sub-cases, S = ε and S = S′〈V ′, s′〉. The first case follows
immediately from (finished-thread). We now prove the second—there
exists a local variable y. By (wf-scheduled), 1.) Γ ;E; ρ ` 〈V, return y〉 for
some E. By 1.) and (wf-stack-frame), 2.) E ` return y;E and
3.) Γ ;E; ρ; θ ` V for some uninteresting θ. By 2.) and (return),
4.) E ` y : τ . By 4.) and (wf-E), 5.) yτ ∈ E. By 3., 5.) and (wf-frame)

V (y) = v.
s′; s′′ Immediate from induction hypothesis.

skip; s′ Immediate.
x = y.f ; s′ By (wf-scheduled), 1.) Γ ` H, and 2.) Γ ;E; ρ ` 〈V, x = y.f ; s′〉 for some

E. By 2.) and (wf-stack-frame), 3.) E ` x = y.f ; s′;E′, and
4.) Γ ;E; ρ; θ ` V for some uninteresting θ. By 3.) and (select),
5.) x : τ ∈ E, y : α c ∈ E, and field(c.f) = α′ d. By 4., 5.) and (wf-frame),
6.) V (y) = v, and Γ ` v : θ′ c′ for some c′ s.t. ` c′ ≤ c.
There are two sub-cases v = ι and v = null. The latter case is handled by
(select-npe) which trivially satisfies the theorem for T ′=(NPE,ρ),T .

For the former, there are two sub-cases α = @Thread and α 6= @Thread. The
first case is uninteresting as (select-first-thread) allows taking a step
even if a @Thread field is undefined. Thus, we concentrate on the second.

By 1., 6.) and (wf-heap), 7.) H(ι) = (θ′ c′, F), i.e., there is an object ι on
the heap with fields F , and (8) Γ ; fields(c′); θ′ ` F . Clearly,
fields(c) ⊆ fields(c′), so by 5.) and (field-other), F (f) = v3—the field
exists.

x = y; s′ Similar to return y and therefore omitted.
y.f = z; s′ Similar to x = y.f ; s′ and therefore omitted.

τ x; s′ Similar to return y and therefore omitted.
x = new α c(); s′ By (wf-scheduled), 1.) Γ ;E; ρ ` 〈V, x = new α c(); s′〉 for some E. By 1.)

and (wf-stack-frame), 2.) E ` x = new α c(); s′;E′. By 2.) and (new),
3.) x : α d ∈ E and 4.) ` c ≤ d. By 4.) and (class) and (subclass-*), there
is a class c in P , so fields(c) 6= ⊥.

Notably, the initial configuration has V = [this 7→ ι] and
H = [ι 7→ (ρ Object,)] where ρ is the thread id of the first thread. Thus, as
(method-call) always puts a this in the stack, looking up H(V (this))
always succeeds.

x = y.m(z); s′ By (wf-scheduled), 1.) Γ ;E; ρ ` 〈V, x = y.m(z); s′〉 for some E. By 1.)
and (wf-stack-frame), 2.) E ` x = y.m(z); s′;E′, and 3.) Γ ;E; ρ; θ ` V
for some uninteresting θ. By 2.) and (method-call), 4.) x : τ ∈ E,
5.) y : α c ∈ E, 6.) mtype(c.m) = τ → τ ′, 7.) E ` z : α⊕ τ . By 2., 5.) and
(wf-frame), V (y) = v s.t. Γ ` v : d s.t. ` d ≤ c. If v = null,
(method-call-npe) satisfies the theorem for T ′ = (NPE, ρ), T . Clearly,
mbody(c) ⊆ mbody(d). Thus, by 6.) the method exists and so
mbody(c.m) 6= ⊥. Showing the existance z in V is similar to y and
therefore omitted.

x = start c(); s′ Forking a new thread is a copy-and-patch proof of (new) and
(method-call) and therefore omitted.

19

ut

References

1. A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Inf.
Comput., 115(1):38–94, 1994.

2. T. Wrigstad, F. Pizlo, F. Meawad, L. Zhao, and J. Vitek. Loci: Simple
thread-locality for java. Submitted.

20

