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Abstract Object-oriented programming relies on sharing and the mutable states of

objects for common data structures, patterns and programming idioms. Sharing and

mutable state is a powerful but dangerous combination. Uncontrolled aliasing risks

causing representation exposure, where an object’s state is exposed and modifiable out

of the control of its conceptually owning object. This breaks encapsulation, and hence,

in extension, abstraction.

Contemporary object-oriented programming languages’ support for alias encap-

sulation is mediocre and easily circumvented. To this end, several proposals have been

put forward that strengthen encapsulation to enable construction of more reliable sys-

tems and formally reasoning about properties of programs. These systems are vastly

superior to the constructs found in for example C++, Java or C#, but have yet to gain

acceptance outside the research community.

In this thesis, we present three constructs for alias management on top of a deep

ownership types system in the context of the Joline programming language. Our con-

structs are fully statically checkable and impose little run-time overhead. We show

the formal semantics and soundness proof for our constructs as well as their formal

and informal aliasing properties. We show applications and extensions and perform a

practical evaluation of our system with our implemented Joline compiler. The evalua-

tion suggests that our constructs are compatible with real-world programming, makes

use of some of our own proposed patterns, and encourages further practical studies of

programming with ownership-based constructs for alias management.
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Chapter 

Introduction

This thesis makes a contribution to the field of alias management. It presents lan-

guage constructs for dealing with aliasing in object-oriented programming lan-

guages and a formalisation, soundness proof and practical evaluation of these

constructs in the Joline programming language.

E,      ’  from out-

siders, is sometimes claimed to be the most distinguishing feature of object-orienta-

tion []. Proper use of encapsulation is necessary to achieve modular software with

stable abstractions that can change independently of each other. Originally, object

encapsulation meant the the enclosing of state and behaviour together in an object,

hiding irrelevant details about the implementation to external entities. In the evolv-

ing field of alias management, the notion of object encapsulation has been extended

to involve hiding references to an aggregate’s subobjects from its clients. Not being

able to access an object’s state directly, but being forced to use the defined protocol is a

property that distinguishes objects from mere records. This allows the formulation of

invariants on an object’s state, such as “salary is never negative”, which can be enforced

by placing appropriate checks in all methods that are involved in updating the salary

field.

Aliasing, or object sharing, is powerful. It allows several objects to share a single

data source and the modelling of situations with naturally occuring sharing. However,

aliasing is also problematic in that it makes programming more complex. Contempo-

rary programming languages outside the research community lack constructs to ex-
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press that an object is aliased, or should not be, or restrict the flow of references from

one part of the program to another. In languages where references are the only avail-

able way of passing and storing objects (for example Java [], Smalltalk [], Ruby

[] and Python []), it is difficult to determine the effects of a change made to an

object. This is because there is no direct way of knowing if parts of the object’s rep-

resentation, the sub-objects of which the larger object is built, is aliased and the effect

thus visible to other objects in other parts of the system. Uncontrolled sharing can

lead to an object becoming dependent on the inner workings of some other object, a

clear breach of encapsulation, and in extension, the principle of abstraction.

Aliasing is ubiquitous, or as some researchers [] phrase it, is “endemic”, in object-

oriented systems. Aliasing permits several objects to be built from shared subobjects,

which in combination with the mutable state of objects is a mixed blessing: it allows

powerful propagating changes, but may cause errors if the sharing is unintentional or

the updated object is no longer compatible with all its sharers. Thus, aliasing necessi-

tates good mechanisms for enforcing proper encapsulation to achieve modularity and

to protect abstractions and invariants of objects.

In this thesis, we present three language constructs for dealing with aliasing in the

context of the Joline programming language.

. LIVING WITH ALIASING

Aliasing is an important concern in well-structured software []. Aliasing and ref-

erence semantics have many benefits—they avoid time-consuming and memory-con-

suming copying, allow in-place updates and are vital in commonly used data struc-

tures and design patterns []. Modelling real-world concepts, a major selling point of

object-orientation, would be considerably more cumbersome without it, as sharing is

a common phenomenon in the real world.

In their seminal paper, “The Geneva Convention on the Treatment of Object Alias-

ing” [], Hogg, Wills, Lea, de Champeaux and Holt observe that aliasing can be a

source of error and frustration, not only for someone trying to formally prove a prop-

erty of a program, but also in practical programming situations. As an illustration

consider this simple example. If x and y can be aliases, the following, seemingly trivial

Hoare formula [] can be very hard to prove:


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{ x = true } y := false; { x = true }

As a more practical example, an aliased object may be subject to role confusion []

if different objects treat a shared object in different ways. If the different treatments

are compatible, problems should not arise, but if they are not (like freeing the shared

object before the other object is done with it), the object or its sharers may be put in

an inconsistent state.

If aliasing can allow a representation object to be visible outside its owning object,

it is possible to modify the representation object in ways not permissible by the proto-

col of its owner (such as setting salary to a negative number). Such an operation might

well invalidate the owner’s invariants. If the invariants are hidden inside the owner,

an external client with a reference to a representation object cannot tell what they are,

which makes them hard to respect. As it is generally not possible to tell from an object

what its owner is, it might not even be clear where to look for how an object may be

modified with respect to its owner.

Not being clear of ownership of objects can lead to other problems, such as dan-

gling pointers: if two objects independently believe they are the owner of a third, the

third object, or parts of its state, may be deleted before all of its clients were finished

using it. In a worst case scenario, one might have to consider every change to an object

as having a global effect. This is especially hard for formal models that suffer from the

combinatorial explosion of assertions whether or not an object is aliased. As has been

pointed out elsewhere [], immutable objects are immune to the first two problems,

but most objects are, however, mutable.

Sadly, the support for managing aliases is minimal in contemporary programming

languages (including Java [] and C# []). A programmer cannot express that an

object belongs to a specific set of other objects and should not be exported outside

this set, neither can she ban an object from being aliased or move references from one

place to another without possible residual aliasing. It is also not possible to express

that an object is immutable and therefore immune to most of the dangerous effects of

aliasing. Today, such behaviour has to be encoded manually, which is tedious, error-

prone and possibly hard to verify. The encapsulation mechanism commonly found in

most object-oriented programming languages, name-based encapsulation, does not
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suffice as the protection applies only to the field. As soon as the field’s value is read

and manipulated independently of the field, the value can be made visible in a non-

protected field or simply returned [, ]. Better models for encapsulation that allows

us to express constraints such as the ones just mentioned are needed. Several have

been suggested over the years [, , , , ], but they have yet to find widespread use

outside of the research community.

.. Alias Encapsulation and Pointer Restrictions

As pointed out in the Geneva convention [], as well as in Clarke’s [] disserta-

tion, it is hard to find the right model for alias encapsulation. One wants a model

that prevents the bad programs but does not restrict the underlying language in ways

that renders it useless for writing real-world programs []. The right model should

also be easy to understand, by both programmers and people trying to reason about

their code or prove a certain property of a program; the kind of “protection” from

unwanted aliasing provided by a certain proposal must be understood to be useful.

Entire papers [] have been devoted to understand what the properties of different

encapsulation schemes are and make these properties in some sense comparable.

Whereas the strategy of alias encapsulation is to allow aliases but bound their

scope, pointer restriction schemes manage aliasing by limiting the number of point-

ers to an object. Over the years, several such proposals have been put forward [, ,

, , ], most of which deal with some notion of unique object.

A unique object is an object to which only one reference exists. Thus, a unique

object is never aliased. Deleting a unique object is safe, they are not subject to things

like role confusion, and the effects of changes to uniques are local and easy to reason

about [, ]. The concept is easy to understand, but it has some hidden problems

in maintaining the uniqueness of a reference. On the positive side, the semantics of

unique pointers are very simple and some commercial compilers like Visual C++ []

even include a unique interface attribute to specify an alias-free pointer.

On the downside, the alias management offered by uniqueness scales poorly. Only

the unique object itself is effectively encapsulated but its subobjects may be arbitrarily

shared. The impact of uniqueness is small, unless all objects are unique, which, be-

sides introducing additional complexity to maintain pointer uniqueness, simply is not

possible since sharing is often desirable and necessary in object-oriented systems.


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One notable technique for alias encapsulation is ownership types, proposed by

Clarke et al. [] to realise Noble et al.’s Flexible Alias Protection proposal []. Own-

ership types was developed fully in Clarke’s dissertation []. The deep, strong form of

ownership types has a clear model of encapsulation, the owners-as-dominators prop-

erty: Any path from the root object to an object’s representation must go through

the object itself. One shortcoming of ownership types is the lack of a mechanism for

transfer of ownership—the encapsulation is strong, but in certain cases inflexible. For

example, an object’s representation cannot be initialised outside of the object itself nor

can the representation of two lists be merged into one. There is also a lack of practical

experience working with ownership types. This is less true of some of the weaker alias

encapsulation schemes [, , ].

To conclude, aliasing is necessary in object-oriented systems, but necessitates mech-

anisms for alias control and encapsulation. We now move on to describe our contri-

butions, three constructs for aliasing control presented in the context of the Joline

programming language.

. CONTRIBUTIONS OF THIS DISSERTATION

In this thesis, we propose three constructs that facilitate better alias control:

• Owner-polymorphic methods can express temporary permissions to reference

an object. This allows short-lived dynamic aliases that are guaranteed to be de-

stroyed after a certain point.

• Scoped regions can express statically stack-local objects and temporary objects

that are disjoint from representation objects. This extension also allows short-

lived dynamic aliases with a constrained life-time.

• Externally unique pointers is an extended variant of the unique pointer de-

scribed earlier that we believe fits better with object-oriented principles. Exter-

nally unique pointers have more lax restrictions without weakened invariants.

They also consider aggregates as opposed to the uninteresting single objects.

Externally unique pointers are implemented as a very simple extension to own-

ership types that also makes ownership types more usable.

The idea of external uniqueness and the initial Joline system was published together with Dave Clarke
[, ].
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The constructs are orthogonal in nature, working together using a combination

of pointer restrictions and alias prevention to facilitate alias management. Relying on

Clarke’s ownership types to do the encapsulation legwork, we present a novel form of

generational ownership, where stack-frames can be granted a temporary permission to

reference a set of objects for a defined duration. We also provide constructs to tie the

lifetime of objects to that of a stack frame, even though the objects live on the heap

and have static references to temporarily accessible objects, all without any dynamic

checks and with little syntactic baggage over what is already in ownership types.

We provide a formalisation of deep ownership types reminiscent of Joe1 [] for a

class-based Java-like programming language that maps closer to real-world program-

ming languages than the formalisation based on Abadi and Cardelli’s object calculus

[] in Clarke’s dissertation []. We also believe that the statement of the owners-

as-dominators property in our formalisation is easier to understand than its original

formulation [, ].

Last, we provide an implementation of our constructs in an ownership types set-

ting in the form of the programming language Joline and attempt a practical evalua-

tion of the language in non-trivial programs.

In conclusion, the contributions of this dissertation are as follows:

Language Constructs for Living with Aliasing Owner-polymorphic methods and

scoped regions enable preservation of separation between temporary objects

and representation objects. Owner-polymorphic methods also enable borrow-

ing and a more lax programming model where dynamic aliasing is allowed to

cross ownership boundaries provided they are explicitly allowed by someone

with the proper permissions. They also facilitate reuse of a piece of code with

objects with different owners.

Scoped regions gives generational ownership, which is a nice and easily gras-

pable model of encapsulation, and short-lived objects, tied to the life-time of a

stack frame.

External uniqueness is a form of uniqueness that enables multiple internal point-

ers to an object without weakening the uniqueness invariant. We reveal a prob-

lem with abstraction in existing uniqueness proposals and show how external

uniqueness overcomes it. External uniqueness also was the first construct to

enable ownership transfer in ownership types systems.


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Combined, these constructs allow a more powerful form of borrowing than

in previous proposals. As a side-effect, our constructs remove some previous

constraints in deep ownership types, making deep ownership more suitable for

writing real-world programs.

Our proposal contains a complete formalisation of the static and dynamic se-

mantics of our constructs, a soundness proof and proofs of the two important

structural properties. We also present an alternative formulation of the owners-

as-dominators property for deep ownership types that we believe is easier to

understand that previous formulations.

Joline Programming Language An artefact of this thesis is a compiler for the Joline

programming language implemented together with Johan Östlund. This lan-

guage embodies all our proposed constructs in a full-blown programming lan-

guage. The Joline compiler allows for experimentation with ownership types

and the proposed constructs in practise and is the first compiler encompassing

both deep ownership and external uniqueness.

Empirical Validation A presentation of our practical experiences from programming

with ownership types in four case studies, two of which were carried out to-

gether with masters students at Stockholm University. These are the first real

case-studies of programming with ownership types and external uniqueness.

Even though the programs studied are too small to draw any hard conclusions,

they suggest that our constructs are compatible with real-world programming

and encourages us to develop the Joline compiler further to facilitate the studies

of larger programs and longitudinal studies.

. OUTLINE

The upcoming chapter gives a detailed background on aliasing, encapsulation and rep-

resentation exposure. It surveys related proposals for alias encapsulation and control,

to prepare the reader for the remainder of the thesis.

Chapter  introduces the Joline programming language, our vehicle for the presen-

tation of our constructs for dealing with aliasing. This chapter presents the language,

its syntax and formal semantics and gives a proof of soundness and the owners-as-

dominators property. To avoid presenting a huge proof at the end of the thesis we
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prove as much as possible for the “vanilla flavoured” Joline system in this chapter and

subsequently extend the formalisms as new constructs are introduced.

Chapter  introduces owner-polymorphic methods, shows how these can be used

to enable preservation of separation between arguments and representation, describes

a form of borrowing and the Hide Owner pattern. We give a formal description and

soundness proof in the context of the Joline language.

Chapter  introduces the scoped regions construct, and shows how it can be used

to enable stack-based confinement in a way that preserves separation of temporary

objects from arguments and representation. We give a formal description and proof

in the context of the Joline language.

Chapter  recaps uniqueness and shows an inherent problem with abstraction

when introducing the unique pointer concept into an object-oriented setting. We show

how external uniqueness not only avoids this problem, but how it enables more lax re-

strictions while maintaining effective uniqueness. Last, we give its formal description

and proof in the context of the Joline language.

Chapter  discusses the impact of our proposed constructs, in particular the intro-

duction of generational ownership and how our constructs avoid some of the down-

sides of previous proposals.

Chapter  show cases a few practical applications for our constructs, such as trans-

fer of ownership, merging of representation, borrowing and initialisation. Most of

these were impossible in an ownership setting prior to our original proposal.

Chapter  briefly mentions three possible extensions and future directions for Jo-

line that would be possible to implement with a minimal effort—unique borrowing,

a proposal for downcasting without the need for a run-time representation of own-

ership and a way to enable iterator-like constructs in a system with deep ownership

while maintaining deep encapsulation.

Chapter  presents our Joline compiler and our experiences from putting it to

work in a few case studies of non-trivial programs of varying sizes.

Finally, Chapter  concludes with a summary, critique and directions for future

work.
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Chapter 

Background and Related Work

. ALIASING

A    - . Commonly used de-

sign patterns such as the Observer and Flyweight patterns [] are built on the con-

cept of object sharing, as are doubly-linked and circular linked lists. Without aliasing,

single-linked lists and hash-tables would require that their data objects are moved into

the them and become inaccessible to the outside world. This would, for example, pre-

vent data structures that share the same data set but are ordered or sorted differently

for fast access using different access methods. An example would be a FIFO queue that

describes some order of tasks and a hash-table that allows fast access to the tasks based

on their process ids. The ubiquitousness of aliasing in combination with the muta-

ble states of objects that are standard in imperative object-oriented languages makes

object-oriented systems particularly sensitive to aliasing.

Aliasing occurs when two or more references refer to the same object. Aliases can

be static or dynamic. Static aliases exist on the heap as part of object structures (fields

in an object) or as global variables. Dynamic aliases exist only on the stack frame and

are generally considered less harmful than static ones because of their volatile nature

[]. Although ubiquitous and indispensable in object-oriented programming, aliases

may break abstraction [], make programs more complex to understand [] and

make pretty much anything that relies on reasoning about state much, harder than in

an alias-free system.
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d

e f
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Figure .: Alias types. Object d is an aggregate (denoted by the dashed box), aggregat-
ing objects e and f. The reference a→d is an innocuous, incoming alias. The references
d→e and e→f are internal (within the aggregate). The reference e→b is an external
alias. The reference c→f is an incoming alias that directly accesses part of d’s represen-
tation without its knowledge, causing representation exposure (see next page).

.. Different Types of Aliases

In his dissertation, Clarke [] distinguishes between internal, external, outgoing and

incoming aliases, a terminology we adopt here as well. Internal aliases exist only within

an aggregate, a group of objects working together to form a whole; external aliases are

aliases from outside the aggregate to the aggregate itself; outgoing aliases are aliases

from within the aggregate to objects outside it; and incoming aliases are the converse.

Figure . shows a graphic presentation of the different types of aliases.

According to Clarke [], internal references are benign as they do not cross the

boundary of the aggregate. The problem is however making sure internally aliased

objects are not subject to incoming aliasing or dependent on outgoing aliases.

External references do not affect the implementation of the aggregate. As we shall

see later, this happens not to be the case for unique pointers, due to an inherent ab-

straction problem in existing proposals.

Outgoing aliases are interesting, as they denote a dependency on external objects

that are not under the control of the aggregate itself. Thus, the aggregate can only rely

on the external object’s invariants. If these are unknown, the aggregate must conserva-

tively assume that the referenced value can have any form its type allows. To this end

Noble, Vitek and Potter [] introduce the notion of an arg pointer, where the aggre-

gate may only depend on the parts of the external object that are immutable. This is

powerful, but far from a complete solution.

Finally, incoming pointers are the most dangerous ones [, ] as they allow di-

rect manipulation of the aggregate’s inners without going trough an interface or using
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the aggregate’s protocol, possibly violating invariants or witnessing the object in an

inconsistent state. This is called representation exposure.

.. Representation Exposure

Representation exposure or rep exposure for short, occurs when an alias to a mutable

part of the representation of an object is exported outside the representation [, ,

]. In other words, it occurs when an internal alias is leaked to an external object

or when an internal reference is created from an incoming alias that continues to ex-

ist outside the object. Corresponding code examples can be found in Figure ., see

getName( ) and setName( ) respectively. We now illustrate the problems caused by rep

exposure with an example based on the code in Figure ..

It is not uncommon for an aggregate to use a representation object in a way such

that the object assumes only a subset of its possible values or states during a program.

For example, a Person object might not allow its name, represented as a mutable string,

to be empty even though the empty string is a perfectly valid String. The construc-

tor and the method in the Person class that updates the name field perform a simple

check to prevent strings that are not valid names from being used (could perhaps be

expressed as a precondition). Should the name string be aliased outside the Person

object, it may be used however a string may be used (see the lines below the class dec-

laration in Figure .). It might, for example, be updated to become the empty string,

putting the Person object in an invalid state, violating the abstraction of Person [].

The second invariant of the Person class says that the value of len should be equal

to name.length( ). This invariant is protected by the implementation and internal use

of setName( ). As name is updateable without going through setName( ), this invariant

can be broken, though the name stays valid.

In most contemporary programming languages, it is impossible to declare that an

object belongs to the representation of another and should not be exposed outside

of it. Languages like C++ [] and Eiffel [] are notable exceptions. They allow

programming with value types (called expanded types in Eiffel), that is, objects that

have value semantics and are passed around by copy as opposed to by reference. A

field of such type will not hold a reference but an entire object. Thus, the object is

physically nested inside the memory of its enclosing object achieving some notion of

representation.
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class Person extends Object
{

// Invariant : name must never be an empty string
private String name = null;

// Invariant : len == name.length( ) at all times
private int len = -;

public Person( String name )
{

// If resulting instance is invalid, throw an exception
if (setName( name ) == false) { throw new CreationException( ); }

}

public boolean setName( String name )
{

// Protects the both invariants
if (name.isEmpty( )) { return false; }

this.name = name;
this.len = name.length( );
return true;

}

public String getName( )
{

return this.name; // Creates an outgoing alias to name
}

}

Person p = new Person( “Jane Fonda” );
String s = “Barbarella”;

p.setName( s ); // creates an outgoing alias in p.name to s
s.update( “Barbara” ); // not p.len == s.length( )—violates the nd invariant

String q = p.getName( ); // creates an outgoing alias in q to p.name
q.update( “” ); // p.name is now empty—violates the st invariant

Figure .: Representation Exposure. The two invariants of the Person class are broken
by seemingly valid external uses of aliases. Note that String is mutable. We ignore the
fact that name can be null for simplicity.
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class Aggregate extends Object
{

private Object internal;
private Object outgoing;

public Object getInternal( )
{

return internal;
}

}

Figure .: Contemporary programming languages cannot express aliasing properties
of fields, that a certain field should only be invokable from representation objects, or
that a field contains a reference to a representation object.

However, constructs such as these have other problems due to copying such as

keeping copies synchronised and the large overhead when passing objects around.

Clearly, value-semantics is also not compatible with many data structures, design pat-

terns and situations where sharing is necessary. Furthermore, in C++, which allows

pointers and pointer arithmetic, it is possible to create a pointer to the contents of a

field, and subsequently share a value that is supposedly copied when passed around.

See also the language Tako [] for a Java derivate with value semantics for simplifying

reasoning about programs.

A naive solution to this problem would have to do two things: prevent representa-

tion objects from being returned from methods (all fields being private) and prevent

argument objects from being stored in member fields. The last statement might not be

obvious, but consider the use of setName( ) in Figure . and the subsequent external

modification to s. These restrictions are overly strong as many aggregates need internal

sharing—parts of the rep should be exported to other parts of the rep. Thus, facilities

for reading rep must be kept and, again, for most contemporary languages, there is no

way of allowing such methods to only be invoked from inside the rep.

An illustration of this lack of expressiveness is shown in lines – of Figure ..

By simply looking at the code, there is no way of telling that the first field should

contain an internal alias and the second one an outgoing alias (nor any of the other

categories for that matter). Subsequently, it is also not possible to prevent the getInter-

nal( ) method from being invoked on an external alias without removing the method
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altogether. Apart for name-based encapsulation, we cannot make the programming

language work for us, but must ensure that no harmful aliasing occurs by manually

inspecting the code. This can be a daunting task and it is not fail-safe. The “infa-

mous HotJava bug” [] is an illustration of the short-comings of name-based alias-

ing. There, aliasing caused a serious security bug. An accessor method leaked refer-

ences to a private array of privileged signers thereby allowing external objects to add

themselves to the array. A recent study of the use of aliasing in “real programs” by

Hackett and Aiken [] also reveals bugs due to unintentional aliasing in PostgreSQL.

Aliasing is useful but comes at a price: When managed correctly and with care,

sharing enables natural modelling, in-place updates and memory efficient passing of

objects, and so forth. When misused or insufficiently controlled, aliasing may inval-

idate invariants, violate abstraction, create dangling pointers and cause role confu-

sion. We will now discuss encapsulation, the implementation-hiding principle at the

heart of object-orientation, survey the current encapsulation constructs and research

on strengthening encapsulation to enable safe sharing and control the effects of alias-

ing.

. ENCAPSULATION

Abstraction, information hiding, and encapsulation are different, but closely interrelated

concepts []. Abstraction makes programming easier and facilitates changes to a class’

implementation or replacing a whole class for another that has a compatible interface.

It also allows reasoning about a class or component separately from the rest of the

system. Information hiding is the practise of hiding the implementation details of a

class or module to its clients []. This raises the level of abstraction classes provide

and makes the software less complex []. Encapsulation, often used synonymously

with information hiding [, , ], is a technique for collecting things together and

minimising interdepenencies between separate modules by providing a strict external

interface []. Blair et al. [] state that encapsulation “implies the provision of mech-

anisms to support both modularity and information hiding”. Wirfs-Brock et al. []

state that “the concept of encapsulation [. . . ] refers to building a capsule, in the case

[of] a conceptual barrier, around some collection of things”. In the field of alias con-

trol, encapsulation has additionally come to mean the grouping of an object with its

representation objects and preventing these from escaping. In the C++ world encap-
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sulation is equated with data hiding []. Whatever the use of the word, in the end, it

is all about facilitating abstraction.

Encapsulation has been heralded as one of the distinguishing features of object-

oriented programming [] and has been a major selling point of object-orientation

[]. Classes encapsulate state descriptions and methods, just as the methods encap-

sulate their implementation [].

We now examine the predominant forms of encapsulation in contemporary pro-

gramming languages and follow with a survey of related proposals for dealing with

aliasing from the research community.

.. Name-based Encapsulation and Selective Export

Name-based encapsulation schemes for object-oriented programming languages have

been around for a long time. Virtually every object-oriented programming language

has some reminiscence of such a scheme. In Simula, keywords for hiding attributes to

external object as well as to subclasses was proposed by Jacob Palme in  [].

The idea of name-based encapsulation is simple; a field or method can be anno-

tated to reflect its visibility to the rest of the program. A private field or method is only

accessible from within the object itself whereas a public field is accessible from every-

where. Different languages have different interpretations of these keywords and offer

additional visibility modifiers at various levels of granularity for dealing with things as

modules and inheritance. In short, many variants exist. In some languages, such as

Smalltalk, all variables are private and must be accessed through methods.

Sadly, as only the name of the field or method is protected and not its contents,

circumventing name-based encapsulation is easy. As a matter of fact, we have already

snuck such an example under the radar in Figure .—the method getInternal( ). The

method is public, yet it returns the contents of the private field internal. Similarly, we

could define a public method that writes to internal and keep an alias to the argument

(see for example setName( ) in Figure .). We could even declare a public field with

a compatible type that aliases the contents of the private field. These examples illus-

trate that name-based encapsulation is not strong enough to prevent aliasing except in

rather trivial cases.

Selective export is a mechanism found in Eiffel [] that allows a more fine-grained

control over visibility of features (Eiffel’s terminology for field or method). While also
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class AGGREGATE
creation

. . . -- code omitted

feature {A,B,C}
m: OBJECT
n (arg: C) is

local
temp: C

do
!!temp.make -- equal to temp = new C( ); in Java
temp.escape( rep ) -- store reference to rep in C-instance
Result := temp -- equal to return temp; in Java

end

feature {NONE}
rep: LIST

end

Figure .: Selective Export in Eiffel. The features m and n are accessible to instances
of classes A, B and C whereas the feature rep is only accessible to the current instance.
Note that feature n breaks encapsulation of rep as it allows an aliasing to it to escape in
the object returned.

being a name-based scheme, it is much more powerful than the more common method

described above. In selective export, each feature, can be annotated with an exports

clause. The exports clause describes which classes may use the feature. An example of

selective export is found in Figure . that expresses that feature m is only accessible

from classes A, B and C, and their subclasses wheres feature rep is only accessible to the

current instance.

Eiffel’s method is powerful, but still much too coarse-grained and suffers from the

same problems as with private and protected variables. For example, instances of a class

might be used on both the inside and outside of an aggregate and nothing prevents a

class with rights to manipulate an aggregate’s internal objects from being exported out

of the aggregate. Indeed, this corresponds to the implementation of feature n.

In conclusion, the standard mechanisms for providing encapsulation in object-

oriented programming languages are solving a problem orthogonal to those of pre-
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venting unwanted aliasing and overcoming rep exposure. Hiding the names is not a

good enough solution for the latter problems, as the programming languages’ knowl-

edge of the protection is lost as soon as the reference is read and manipulated inde-

pendently of the variable. Hiding the actual reference seems like a more promising

approach.

We now continue with a survey of related work on encapsulation.

. RELATED WORK ON ENCAPSULATION

In this section, we survey recent work that addresses the confinement of references in

an object-oriented setting. We begin with uniqueness in the section below, and then

work our way more or less chronologically through various proposals giving short

descriptions, relations and pointing out strengths and weaknesses.

.. Unique Pointers

Unique pointers were originally proposed for functional languages to enable in-place

updates []. A unique pointer is alias-free, meaning that no other pointers to the

same object exists in the entire system. Subsequently, an object pointed to by a unique

pointer is effectively encapsulated in its enclosing object since it cannot be referenced

from elsewhere. The unique object can be moved to outside the object and will then

no longer belong to the first object but be encapsulated in the receiving object, or even

on the stack.

Hogg [] uses unique pointers to create Islands, an alias management system de-

scribed below, where variables, method parameters and method returns were anno-

tated with a unique or free keyword to denote alias-free references. Later systems for

alias managements have also used uniqueness but depended less on it to achieve en-

capsulation [, , , ]. Minsky [] proposes a similar uniqueness extension to Eif-

fel []. Boyland, Noble and Retert [] propose a capabilities system that can express

uniqueness as a combination of capabilities and exclusive capabilities. Some propos-

als [, ] have a notion of a free value, one that is not yet captured in a variable, a

weaker variant of uniqueness. Uniqueness has also been used in various ownership

types systems [, ] which will be described shortly and by Leino et al. to check side

effects in a modular fashion [].
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class Aggregate extends Object
{

unique Integer rep = null;

unique Aggregate setRep( unique Integer rep )
{

this.rep = rep--;
return this;--;

}

unique Integer addFrom( unique Integer temp )
{

rep.addToValue( temp.value );
return temp--;

}
}

Aggregate a = new Aggregate( );
unique Integer i = new Integer(  );
a = a.setRep( i-- ); // i and a are nullified, reinstating a, i is lost
i = new Integer(  );
i = a.addFrom( i-- ); // i and a are nullified, reinstating i, a is lost

Figure .: Programming with Unique Pointers. The operator -- denotes destructive
reading. It returns the value of the read variable and subsequently updates it with null.
The unique keyword denotes uniqueness.

Programming with unique pointers requires use of special techniques to maintain

uniqueness. One such technique is destructive read [, ], where a variable is nullified

when read, a natural and conceptually easy restriction. On the downside, destructive

reads make unique values “slippery”, in the sense that they are destroyed as soon as

they are read (the term is due to John Boyland), and other constructs such as borrowing

[] are required to allow passing uniques as arguments without having to manually

reinstate them. Borrowed pointers are confined to the stack and cannot flow to the

heap meaning that borrowed aliases will be destroyed after a method exits. An example

of programming with destructive reads without borrowing in a Java-like language is

found in Figure ..

Boyland [] proposes an alternative technique to destructive reads called alias

burying. It is essentially a live-variable analysis that can determine that, for example,

a stack-based alias will be destroyed when a method exists and thus will not invali-
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class Aggregate extends Object
{

unique Integer rep = null;

void setRep( unique Integer rep ) anonymous
{

Aggregate temp = this;
this.rep = rep; // No references to this are kept

}

void addFrom( borrowed Integer temp ) anonymous
{

rep.addToValue( temp.value ); // No references to this or temp are kept
}

}

Aggregate a = new Aggregate( );
unique Integer i = new Integer(  );
a.setRep( i ); // i is now null, a is not modified
i = new Integer(  );
a.addFrom( i ); // no need to destroy or reinstate i or a

Figure .: Programming with borrowing and alias burying. The borrowed anno-
tation denotes that the no static alias to the reference exists after the method exits.
The anonymous annotation means that this is borrowed in the method. Note that
setRep( ) creates a reference to this, but alias burying can determine that this reference
is dead when the method call exits. Also note that destructive reads are implicit.

date uniqueness. Other alternatives to destructive reads are copying [], or swapping

[, ]. An example of programming with alias burying and borrowing is found in

Figure ..

Outside the object-oriented setting, Girard’s linear logic [] created the oppor-

tunity for stronger control of resources in programming languages. However, a num-

ber of researchers have realised that programming with uniqueness or linearity in its

strictest form is painful, since it imposes heavy restrictions on data types (linear values

may not be stored in non-linear values), which requires excessive passing of unique

objects [, ]. Wadler’s let! construct, quasi-linear types [], and Vault’s adoption

and focus [], for example, introduce means for alleviating this pain.

Smith et al. [] propose alias types, a type system for low-level typed languages

like compiler intermediate languages. The alias types type system can express both
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that a location is uniquely pointed to and how updates to that location can change its

type. In a style similar to borrowing and Fähndrich and DeLine’s adoption and focus,

they allow linear types to be temporarily treated as non-linear. Memory described by

non-linear constraints may not be deallocated or used at different types (and thus,

linear types stored in non-linears are protected). This work has also been extended to

deal with recursive data structures, albeit not for an object-oriented setting [].

.. Systems offering Strong Encapsulation

One of the earliest proposals for strengthening encapsulation for object-oriented pro-

gramming languages was Islands, proposed for Smalltalk by John Hogg [].

An Island is an aggregate consisting of the transitive closure of objects reachable

from a bridge object. Objects are moved into an island using unique pointers and

destructive reads. As every object is an island, they can have no outgoing aliasing

that would create a dependency on external objects if moved into some other island.

The bridge object is a single entry point to the island and every access to objects in

the aggregate must go via it. This is called full encapsulation. Thus, Islands enables a

strong notion of aggregate.

Just as “no man is an island” [], neither are objects. Requiring objects to be self-

contained entities is a too strong restriction, and the resulting programming model

has proven to be too inflexible []. The Islands proposal was also never formalised nor

is it statically checkable.

Similar work with equally strong protection done by Almeida in Balloons [] had

considerably less syntactic baggage. Islands relied heavily on annotations whereas Bal-

loons relied on a brittle program analysis [] and copying to pass references between

Balloons. Copying is expensive and potentially harder to program with as copies must

be discarded correctly or kept in sync.

.. Systems offering Lightweight Encapsulation

Systems offering more lightweight encapsulation have been proposed. These systems

are less constraining and offers weaker encapsulation than full encapsulation systems.

Confined Types were proposed by Bokowski and Vitek [], and formalised by Zhao,

Palsberg and Vitek []. Confined types prevent instances of package-scoped classes

from being accessed or manipulated from outside instances of classes defined outside





CHAPTER . BACKGROUND AND RELATED WORK

the package. For the implementation of a list we could define a list package and make

the link class package scoped. This prevents aliases to links from outside the package

and if only classes belonging to the list implementation, such as List and Link, are con-

tained in the package, link instances are effectively confined to being referenced from

list objects. As the unit of confinement is packages, confined types cannot express that

one object belongs to the representation of another (which require per-object confine-

ment), which is the basis of the ownership-based systems that we describe below. For

our list example, this means that a link can be shared between lists, which can be seen

as both a feature and a flaw.

For a class to be confined to a package it must not be public; all inherited methods

must be anonymous (this will not be stored); it cannot appear in the type of a non-

private field it method of a non-confined type; and all its subclasses must be confined.

Additionally, a confined type can only be widened to types with the same level of

confinement.

The confinement inference tool Kacheck/J [] has been used to analyse programs

in the Purdue Benchmark Suite, around , classes. The results show that around

.% of all classes are effectively confined. Another interesting result is that % of

all methods are anonymous, a result relevant even for systems with unique pointers as

this suggests half of all method calls on unique receivers will require the receiver to be

nullified.

Confined types have also been successfully applied to Enterprise Java Beans to en-

able static confinement checking []. This system, by Clarke, Richmond and Noble,

has a slightly different set of rules than described above. Another important difference

is the use objects (beans) as the unit of confinement.

Related to confined types, Real-Time Scoped Java [] also have some interesting

light-weight aliasing guarantees with its scoped classes and portal classes. Instances of

scoped classes are only accessible to instances of classes defined in the same package or

sub packages. Instances of portal classes are accessible to instances of classes defined in

the immediate parent package. This achieves a nesting structure reminiscent of deep

ownership (see below).

All in all, recent research shows that practical results stands to gain from using

more lightweight systems.
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.. Ownership-Based Systems

A good number of proposals for alias encapsulation are based on the notion of ob-

ject ownership, conceived by Kent and Maung []. In ownership-based systems, every

object is owned by another object, or some special “root owner”. Depending on the

system’s containment invariant—the restrictions on references imposed on represen-

tation objects by their owners—different degrees of encapsulation are achieved.

Müller and Poetzsch-Heffter [] propose Universes, a system for controlling rep-

resentation exposure in Java. Universes associates a universe, or context, with each

component. A component’s universe is the partition of the heap where its represen-

tation is stored. As its representation objects can have representation themselves, uni-

verses form a nested structure. Two universes are either enclosing each other or are

disjoint.

In a universe system, intra-universe aliasing is allowed. For inter-universe aliasing,

references may only flow from objects in a universe to objects in a directly nested uni-

verse (the former are said to be the owners of the latter). The only exception to this

is read-only references which are unconstrained. This protects the rep of a compo-

nent from write-accesses, except from other objects in the component’s rep or from

the component’s owning objects.

Objects that provide interfaces to the component are not inside the universe, but

are the owning objects of the objects in the universe. Incoming aliases of a component’s

rep (that is, into its universe) may only originate from the universe’s owning objects.

All other inter-universe aliasing is banned, with the notable exception of read-only

references. This prevents representation exposure and deals, albeit in a crude fashion,

with the problem argument independence, when an object becomes dependent on an

argument object over which it has no control. Thus, universes systems do not restrict

the existance of aliases, but to where aliases through which updates may be performed

may flow.

The universe invariant is stated thus [, , ]:

If object o1 holds a direct reference to object o2, then, either o1 is the owner

of o2 (that is, o2 belongs to the rep of o1), o1 and o2 have the same owner,

or the reference is read-only.

The read-only references allows references to an object’s representation to be ex-

ported outside the object. This breaks encapsulation, but in a fairly controlled way
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as the references cannot be used to update an object. In particular, they can only be

used to invoke pure methods. A method is pure if it is side-effect free, does not update

any fields and only calls other pure methods, a pretty strict limitation. Read-only-

ness is transitive, and reading fields via a read-only reference always yields another

read-only reference. Pureness is tracked by annotation, and overriding must preserve

pureness. The containment invariant offered by the universes system is sometimes

called owners-as-modifier, as the owner can control modifications of owned objects,

but not read-only access [].

More recently, Leino and Müller have used universes to describe and check object

invariants [] and class invariants []. The encapsulation offered by these systems

is weaker than the original universes proposals. Notably, in “Modular verification of

static class invariants”, encapsulation is not per-object, but per-class. This make sense

for verification of class invariants as they depend on other class invariants for classes

of representation objects and not on invariants of specific objects. See also work by

Barnett et al. [].

A lightweight version of the Universes system [] has been implemented in the

compiler for JML, the Java Modelling Language [], to enable ownership-based veri-

fication techniques to programs specified in JML.

Flexible Alias Protection [] was the first system to present a flexible alias encap-

sulation (in relation to Islands) that overcomes representation exposure. It sports a rep

annotation to state that an object belongs to another’s representation an thus may not

be exported to outside objects. The rep annotation is used on types of fields, param-

eters, returns and on type parameters of a parametrically polymorphic class. Addi-

tionally, Flexible Alias Protection deals with dependence on outgoing aliases through a

special reference type, arg references, which only allow access to immutable parts of the

referenced object. Thus, an outgoing arg alias is safe to depend on as the only accessible

parts are immutable and therefore will not change under foot. Flexible aliasing also in-

cludes value objects, which are immutable and thus safe to share, and a free annotation

that captures uniqueness for values uniquely referenced from the stack.

Ownership Types [, , ] stem from Flexible Alias Protection. The contain-

ment invariant of ownership types is powerful and easily stated:

If an object o1 references another object o2, then either o1 is the owner of o2

or is internal to the owner of o2.





CHAPTER . BACKGROUND AND RELATED WORK

Root

e’

e
s

r

i f’

OwnershipInvalid refUnique refRef and Object

Figure .: Deep ownership. Reference kinds: f ′ – invalid (breaks deep ownership). s –
sibling. e, e ′ – external to grey object. i – internal. r – representation.

A nice theorem [, ] states that if that condition holds, then an object’s owner

will be on all paths from the root of the graph to that object, which is to say that an

object’s owner is its dominator. This property is called owners-as-dominators, and sys-

tems that have it provide deep encapsulation. Thus, external aliasing is only permitted

from inside the owning object and incoming aliasing is banned. Outgoing aliasing is

possible and there is no protection against argument dependence as in Flexible Alias

Protection. However, for every reference it is clearly visible in the program whether it

points to an external object or not, suggesting that programming with outgoing alias-

ing is made easier.

Deep ownership is illustrated in the second picture in Figure .. The objects an

object owns are nested inside it, as is depicted by the rounded box. The rounded box

is the grey object’s ownership bound containing all its representation. A graphical ex-

planation of the owners-as-dominators property is that references cannot pass through

an object’s boundary from the outside to the inside.

As owners are dominators, all paths from the root of the program to an object must

pass through the owner of that object. This means that if an object is removed, its en-

tire transitive representation becomes inaccessible since all paths to any such object are

broken. As is noted by Clarke in his dissertation [], and Clarke and Drossopoulou

[], this could have some positive side effects on garbage collection, somewhat similar

to region-based memory management.

No presently available ownership types system addresses the problem of argument

dependence. While external arguments cannot be mistaken for representation objects,

they can still be changed “under foot” in ways incompatible with the object holding

the outgoing aliases.
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The deep encapsulation of ownership types has been argued to be too restric-

tive [, ]. For example, it is impossible to create an iterator external to a list, as

outgoing aliasing is banned. Also, ownership is fixed for each object’s lifetime, pre-

venting external initialisation and the merging of the representation of two objects.

Clarke and Drossopoulou propose Joe1 [], an ownership types system with ef-

fects annotations that can be used to prove that two pointers are not aliases and that

two operations will not interfere.

Clarke’s dissertation [] provides an extensive treatment of the theory of owner-

ship types as well as a developed background an comparison of earlier work on alias

encapsulation. As our proposed constructs rely on ownership types to work, a more

detailed presentation of ownership types will follow in a later chapter.

Boyapati’s SafeJava [] and its predecessors [, ] build on Clarke’s ownership

and work by Flanagan and Abadi [] on types for safe locking. SafeJava allows a cru-

cial weakening of the containment invariant: incoming aliases are allowed to instances

of inner classes that share the rep of their enclosing objects. With this notable excep-

tion, Boyapati’s system enables deep encapsulation. Even though the systems permit

references which violate deep ownership, its effect system will prevent access through

these.

SafeJava sports unique pointers that allows ownership transfer, immutable objects

reminiscent of Flexible Alias Protection’s value objects. Relying on deep ownership, it

has been used to prevent data races and deadlocks in multi-threaded settings [, ],

to enable safe region-based memory management [] and safe upgrades in persistent

object stores [].

Inspired by Confined Featherweight Java [] and phantom types concept [],

Potanin et al. are using parametric polymorphism to encode deep ownership in Own-

ership Generic Java [].

Aldrich’s AliasJava [] and ArchJava [, ] builds a system for enforcing architec-

tural structure, which necessitates alias control, on top of an ownership types system.

The encapsulation offered by the system is shallow and there is no clear containment

invariant. This makes the system more flexible than systems with deep ownership, and

studies suggest that it can be incorporated in existing code with small changes []. The

downside and major difference between the ownership in Aldrich’s systems and those

that offer deep ownership [, ] is that the former lacks nesting relations between

the ownership domains (called contexts in [] and universes in []). Thus, it is not
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possible to express that an object with permission to reference object o’s rep may not

be exported outside o. This makes it possible for owned objects to escape by proxy:

if some object p is created internal to o and given the right to reference o’s rep, noth-

ing prevents p from being aliased outside o, causing (indirect) representation exposure

[].

Later work by Aldrich [] and Krishnaswami and Aldrich [], further develop

ownership domains. Access rights are specified as inter-domain relations: the right to

reference but not create objects in a domain, the right to reference and create objects

in a domain, and no right to refer to or create objects in a domain. The system can

express access rights policies that overcome the problem with escaping proxy objects

pointed out above. Thus, a stronger protection can be achieved, but in contrast to a

deep ownership system, protection of representation is not automatically preserved,

must be encoded explicitly, and requires additional annotations to the system. Krish-

naswami and Aldrich also propose methods that are owner-polymorphic, and allow

extended temporary permissions (for example, creating an object in a temporarily ac-

cessible context), similar to other work [, , ].

In conclusion, a wide variety of systems exist that offer different levels of encapsu-

lation. For a graphical comparison between the ownership systems, as well as unique-

ness, Islands and Balloons, see Noble et al. [].

. RELATED ALIAS MANAGEMENT TECHNIQUES

.. Effects and Read-Only

A lightweight technique that does not encapsulate aliases but instead aims to control

their effects is the concept of read-only references, generally transitive versions of C++’s

const construct []. Such references are used in Islands [] as well as Universes []

to overcome some of the aliasing restrictions and alleviate the pain of programming

under restrictive encapsulation schemes. Quite a few proposals for read-only refer-

ences have been been put forward [, , , , , ]. They mostly have only minor

differences. Notably, Skoglund and Wrigstad [, ] have a more lax definition of

a read-only method than most other schemes; it is only guaranteed not to modify

its receiver when invoked on a read-only reference. This is flexible, but as Birka and

Ernst [] point out, somewhat ad hoc.
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Leino [] proposes data groups which is basically an effects system that can ex-

press what modifications a method may do to groups of variables. The partition

of variables into groups is clever and enables smooth treatment of inheritance and

method overriding. A similar system is proposed by Boyland and Greenhouse [].

While these systems neither encapsulate aliases nor control their effects, they some-

what facilitate programming with aliasing and the possible effects of for example a

method call is visible from the an object’s interface.

Clarke and Drossopoulou’s previously mentioned Joe1 system [] also makes use

of an effects system based on ownership.

.. Separation Logic and Representation Independence

Reynolds’ Separation Logic [] is a logic for reasoning about shared mutable data

structures. The spatial conjunction operator, ∗, can express that different formulas

hold for disjoint parts of the heap and that parts of the heap are disjoint. For example,

P ∗ Q states that a heap can be split into disjoint subheaps, one satisfying P and one

satisfying Q and the extended Hoare formula {P} c {Q} specifies that after evaluating

of a command c, in a heap satisfying P, the resulting heap satisfies Q.

The fact that the formula refers to specific heaps enables the frame rule []. The

frame rule allows extension of the pre- and postconditions with arbitrary disjoint

heaps that wont be modified by the command.

{P} c {Q}

{P ∗ R} c {Q ∗ R}

For example, if {x 7→ 2} x = x + 1 {x 7→ 3}, then {H ∗ x 7→ 2} x = x + 1 {H ∗ x 7→ 3},

for any H, where x 6∈ dom(H).

Using separation logic, it is possible to prove that parts of a program will not affect

certain parts of the heap. This facilitates reasoning about pointers and programs that

alter data structures as a proof can concentrate on only the parts of the heap that a

(sub)program accesses.

O’Hearn et al. [] use a hypothetical frame rule to reason about static modularity

but cannot express abstract data types or classes. Parkinson and Bierman [], over-

come this limitation, but note a downside in that the proofs become less compact. On

a side note, Drossopoulou and Smith [] extend a Hoare logic with frame properties

relying on the aliasing restrictions of a deep ownership types system.
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The goal of separation logic is verification, even though there are ideas of using as

a typing discipline.

A good example of the benefits of abstraction is that one class’ implementation

can be replaced by another class with a compatible interface. If representation ex-

posure can occur, this is no longer possible as external objects may well depend on

implementation details, such as which classes are used in the internal representation.

Thus, it is no longer possible to rely on compatible interfaces for replacement, suggest-

ing that abstraction is broken. Banerjee and Naumann’s [] work on representation

independence tackles this problem. They formulate representation independence for

classes in an object-oriented programming languages with pointers, subclassing and

dynamic dispatch. Classes which satisfy a certain confinement condition are proven to

have “representation independence”. Their results are achieved using a static analysis

rather than relying on annotating code with qualifiers to control alias encapsulation.

. CONCLUDING REMARKS

In this and the previous chapter, we have introduced the alias problem and discussed

why aliasing in indispensable to object-oriented programming. We have discussed

static and dynamic aliasing, the different kinds of aliases, and described specifically

how incoming aliasing can lead to representation exposure and violate abstraction.

We have also surveyed recent work on encapsulation and alias management.

In the next chapter, we present Joline, a programming language built on ownership

types with deep encapsulation serving as our vehicle for the rest of the thesis. We

show the language’s syntax, its static and dynamic semantics, and parts of its sound-

ness proof and proof of the owners-as-dominators property. The language is in itself

interesting as it incorporates deep ownership in a Java-like language with subtyping

and dynamic binding. Subsequent chapters will extend Joline with our proposed alias

control constructs and show their effects on the language as well as their aliasing prop-

erties.
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Chapter 

The Joline Programming

Language

I   ,      to the alias problem

in an object-oriented setting, and to why alias control is hard to achieve, and we sur-

veyed previous work on this topic. This chapter introduces the syntax and semantics of

the Joline programming language, our vehicle for the proposed alias control constructs

presented in subsequent chapters.

Joline is a class-based object-oriented Java-like programming language with deep

encapsulation due to ownership types. It is based on Clarke and Drossopoulou’s

Joe1 [], but lacks some of its constructs, such as the effect annotations which are

not needed for our purposes here, and add others, most notably ownership nesting in

the class headers. Joline supports inheritance, overriding, subsumption and dynamic

binding. While not the main contribution of this thesis, Joline is the only class-based lan-

guage with deep ownership to have all these properties and to be formally proven sound

in one place.

We refrain from discussing trivial and well-understood constructs like conditionals

and loops as they have the standard semantics, even in the presence of ownership types.

This chapter proceeds as follows. First, we describe ownership types and how own-

ership is implemented in Joline. We then discuss the syntax piece by piece, and con-

clude with the the language’s static and dynamic semantics and soundness proof.
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. OWNERSHIP TYPES IN JOLINE

Joline offers deep ownership. Deep ownership types [] enforces the conceptual

structural property that an object’s representation is inside its enclosing object and can-

not be exported outside it.

Ownership types introduces the notion of an owner and representation objects are

owned by their enclosing objects. Classes are parameterised by ownership information

and types are formed by instantiating these parameters with actual owners similar to

Clarke’s thesis [].

Deep ownership enable constraining of the object graph by capturing the nest-

ing of objects in the types in a simple and elegant manner. Representation objects

are ordered inside their enclosing objects, and references to representation are not al-

lowed to flow to the outside world. As the nesting is captured in the class declarations,

the nesting information is propagated through the program, giving control over the

global structure of the object graph. By prohibiting references owned by some owner

x to flow to objects outside x, a strong, but flexible, containment invariant is achieved

that cannot be circumvented as in shallow ownership, causing indirect representation

exposure [].

The existence of nesting relations between owners in a system with deep ownership

types is the big difference from shallow ownership—they allow the formulation of a

stronger containment invariant and thus additional restrictions of the object graph.

Furthermore, ownership nesting allows us to distinguish between the outside and in-

side of an object.

.. Implementing Deep Ownership

Joline offers deep encapsulation through deep ownership types. Deep ownership types

enable a strong notion of aggregate. Every object has an owner that is fixed for life and

every object is an owner and can be the owner of other objects. An object owned by

some object o is part of o’s representation. Representations are either nested or dis-

joint, meaning that an object cannot belong to two different objects’ representations.

Ownership information is captured in types and ownership nesting is captured in class

headers.

An owner can be seen as the permission to reference a group of objects. Types

are formed from classes and owner parameters, which serve as placeholders to give
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permissions to reference external objects. Thus, a type does not denote a set of possible

instances of a class, but a set of possible instances of a class with a particular set of

permissions to reference other objects. Types with different owner parameters are not

compatible and references of types with different owners cannot be aliases [].

We now describe ownership nesting, relations between owners and how types are

formed from classes and owner parameters.

Classes with Ownership Information

To be able to statically determine ownership nesting, class declarations are extended

with assumptions which describe the relations between owner parameters to thread

nesting information through the program. As an example, the class Example below

takes two owner parameters where the first parameter is nested inside the second.

class Example< owner outside owner, owner outside owner > { . . . }

Ownership parameters of a class must always be outside owner, the owner of the in-

stance. This is key to avoiding the problem of indirect representation exposure in shal-

low ownership—an object belonging to some owner x cannot be allowed to reference

objects owned by owner y if y is inside x.

The omnipresent owner world is outside all owners, is visible in all scopes and

denotes global objects, accessible everywhere in the object graph. In addition to owner

and world, a class body has access to the owners declared in its class header, and the

owner this, which denotes itself and is inside owner.

The owner of a type is written before the class name and needs no explicit dec-

laration in the class header, just like receivers in method declarations in most object-

oriented programming languages.

For subclasses, an entirely new class header is specified along with a mapping rela-

tion from the owners of the subclass to those of the superclass. The number of owner

parameters in a subclass may grow or shrink depending on the relations between the

owners in the super class.

class Super< some outside owner > extends Object { . . . }

class Example< owner outside owner, owner outside owner >

extends Super< owner > { . . . }
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The owner must be preserved through subtyping as it acts as the permission govern-

ing access to the object. Preserving it by subsumption is a key to achieving a sound

system []. In the example above, Example’s second owner parameter will be mapped

to some when viewed as its super class. This is valid if owner is outside owner, a re-

quirement derived from Super’s class header. That the requirement is fulfilled can be

derived from the class header of Example as nesting is a transitive relation (owner is

outside owner and owner is outside owner implies owner is outside owner).

Forming Types

Types have following the syntax:

owner : ClassName< owner1, . . . , ownern >

where owner is the owner of the type, ClassName is a normal class name and owner1..n

are visible permissions (in the current context) to reference external objects.

When forming types from a class, the nesting requirements of the class’ header

must be satisfied by the owners in scope. The object graph is well-constructed with

respect to the nesting requirements specified in the classes. A more formal syntax

description follows shortly.

Below are a few examples of Joline types with ownership using the recent class

declaration examples.

class Example< owner outside owner, owner outside owner >

extends Super< owner >

{

this : Example< owner, owner > representation;

owner : Example< owner, owner > outgoing;

// owner : Example< this, owner > illegal;

// world : Example< this, owner > alsoIllegal;

owner : Super< owner > super = outgoing;

}

In the code example above, the third and fourth variable declarations are illegal as the

owners in scope do not satisfy the requirements of the class header of Example as this

is inside both world and owner.





CHAPTER . THE JOLINE PROGRAMMING LANGUAGE

The variable representation holds a representation object with permission to refer-

ence back to the object itself as it is parameterised with owner.

The variable outgoing has the same type as the current instance. As the type of

outgoing does not have this as its owner, it cannot point to a representation object

as all representation objects are owned by this and types with different owners are

not assignment compatible. Furthermore, the type is not given explicit permission to

reference this (this is not an owner in the type). This means that references to repre-

sentation cannot be stored in an object referenced by the variable. Such violations are

statically checkable and will not compile. Actually, having this in the type of outgoing

would not be valid as that would give an external object permission to reference the

current representation. This is prevented by the restriction that the owner must be

inside all other owner parameters.

Last, super shows a concrete example of subsumption. owner : Super< owner > is

a super type of owner : Example< owner, owner > and we can therefore assign from

outgoing to super. Note the remapping and hiding of owner parameters as discussed

on the previous page.

Remarks

The ownership relation forms a tree, where an object is inside the object which owns

it. Owners other than objects are possible. For example, Boyapati et al. [] have

introduced threads as owners to enable thread-local objects.

The inside relation is transitive, meaning that as this is inside owner and owner is

inside owner in the previous example, this is also inside owner. Ownership is however

not transitive—an object’s representation may only be accessed by the object itself,

or by the objects inside the representation who’s types were parameterised with the

appropriate permission.

This section has introduced the owner concept, shown class declarations with own-

ership nesting and shown how types are formed. Now, we move on to a more elaborate

example to show the flexible encapsulation model of ownership types, and discuss the

containment invariant of deep ownership.
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class List< listdata outside owner >
{

this : Link< listdata > head, tail; // remember: this is inside owner
}

class Link< data outside owner >
{

owner : Link< data > next;
data : Object obj;

}

Figure .: A linked list and links using ownership types

.. Encapsulation Example

The classic example of ownership types is a list class. It has been used many times [,

, , , , , , ] to introduce ownership and ownership nesting. As opposed to

for example Islands [], ownership types allows the data in the list links to be external

to the list and shared with other external objects that have the right permissions. As an

example, this allows two lists sorted in different ways to share the same data objects.

The code in Figure . shows the class declarations of a linked list and its links,

omitting methods for brevity. The list class is parameterised by an owner for the data

objects that will be contained in the list. This gives the list permission to reference

the data objects, a permission which is passed on to the links. The head and tail links

are owned by the list object itself and are thus part of the list’s representation. Sub-

sequently, the links cannot escape the list boundary (as shown in the picture of Fig-

ure .), not even by proxy. Storing a reference to a link in a data object is not possible

since the data object cannot be given the appropriate permission (the link’s owner is

not external to the data object). This precludes the possibility of any external object

getting hold of a reference to the individual links. Thus, it becomes impossible for any

outside object to manipulate the links other than via the protocol of the list object.

As the links are parameterised by the listdata owner, they have permission to ref-

erence list data objects and data objects may be stored in and retrieved from the list as

long as the data objects have that same owner.

In ownership types, owners are fixed for life. Thus, is it not possible to merge the

set of links for two lists as they will belong to different representations. Ownership
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Owner of data objects
(not shown in code example)

Link

List

Data object

OwnershipInvalid refUnique refRef and Object

Figure .: Object graph for the linked list example Figure in .. The dotted line
indicates the presence of zero or more boundaries between the list object and the data
objects in the list. To satisfy the containment invariant, the list object is nested inside
the owner of the data objects.

types also preclude the returning of an iterator with access to the links to external ob-

jects as the necessary type would not have the owner inside all its owner parameters

(its permissions to reference non-rep objects) and would thus be invalid.

We have now shown how deep ownership types is implemented in Joline. Confident

that the reader understands the concepts of owners and nesting, we move on to de-

scribe the rest of Joline.

. JOLINE, STATICALLY

We now describe the syntax and static semantics of Joline. The dynamic semantics

follow in Section .. Note that the formal description of Joline in this chapter is only

partially complete and will be extended in subsequent chapters when our proposed

constructs for alias control are introduced. To avoid explaining things thoroughly

twice, with the second explanation invalidating the first, some aspects of the formalism

will be glossed over in this initial description. For the same reason, parts of the proofs

are left out as proofs of more general constructs will fill in the gaps later.
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Table .: Syntax of Joline

c ∈ ClassName f ∈ FieldName md ∈ MethodName
x, y ∈ TermVar α, β ∈ OwnerVar R ∈ {≺∗,�∗}

P ::= classi∈1..n s e Program

class ::= class c〈αi Ri pi∈1..m〉 extends c ′〈p ′
i′∈1..n〉 Class

{ fdj∈1..r methk∈1..s }

fd ::= t f = e; Field

meth ::= t md(ti xi∈1..n) { s return e } Method

lval ::= l-value
x variable
e.f field

e ::= Expression
this this
lval l-value
new t new
null null
e.md(ei∈1..n) method call

s ::= Statement
skip; skip
t x = e; variable declaration
e; expression
lval = e; update of lvalue
s1; s2 sequence
if (e) { s1 } else { s2 } if-statement

p, q ::= Owners
this this
α owner parameter
world world
owner owner

t ::= Type
p :c〈pi∈1..n〉
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.. Joline’s Syntax

The syntax of Joline is displayed in Table .. It is basically a subset of Java extended

with ownership types and should be familiar to anyone with some experience of Java.

A program is a collection of classes followed by a statement and a resulting ex-

pression that are the equivalent of Java’s main method. We could have followed Java’s

example and use a static main method etc., but chose this way out for simplicity.

As described in the previous section, classes are parameterised with owner param-

eters. Each owner parameter (except the implicit, first, parameter owner) must be re-

lated to either owner or some previously declared parameter of the same class. Classes

contain fields and methods. Fields must be initialised. Object creation requires the

owner parameters specified in the class header to be bound to actual owners.

.. Joline’s Type System

In this section, we present the static semantics of Joline. First, we introduce owner

substitutions, a few helper functions as well as field and method look-up. We then

present the type rules, beginning with the rules for well-formed environments, owner

orderings, classes, methods and programs. We then proceed with types and subtypes.

Last, we present the type rules for Joline’s statements and expressions.

Owner Substitutions

Substitution is denoted σ, where σ is a map from owner variables to owners.

We will write σp to mean σ∪ {owner 7→ p} and σn to mean σ∪ {this 7→ n} and

σ
p
n for the combination. Applying a substitution to an owner is written σ(p). For

brevity, we write σ(α Rp) for applying a substitution to a pair of owners related with

R. The application is defined thus:

σ(p) = q, if p 7→ q ∈ σ

σ(p) = p, if p 7→ q /∈ σ

σ(p Rq) = σ(p) Rσ(q) if p ∈ dom(σ)

σ(p Rq) = p Rq if p 6∈ dom(σ)
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Applying a substitution to a type is written σ(t) or σ(t → t ′) and is defined thus:

σ(p :c〈pi∈1..n〉) = σ(p) :c〈σ(pi) i∈1..n〉

σ(t → t ′) = σ(t) → σ(t ′)

Sometimes, we compose several substitution maps. We write ◦ for composition of

substitution maps:

σ1 ◦ σ2 = {p 7→ σ1(q) | p 7→ q ∈ σ2}

As an illustration, if type p :List〈q〉 is formed from the class definition

class List< data outside owner > { . . . }

we sometimes write p :List〈σ〉 for the same type where σ = {data 7→ q}.

Field Look-up

For any class c, Fc is a map from the names of all fields defined in c and all of its

superclasses to their corresponding types. For example, for class

class Super< some outside owner > extends Object

{

owner : Link< some > f;

}

class Example< data outside owner, other outside data >

extends Super< other >

{

this : Link< data > f;

}

we have FExample = { f 7→ owner :Link〈other〉, f 7→ this :Link〈data〉 }. Note that the

map contains f and that the type of f has been translated using the superclass mapping

into using the owner names defined in Example, not the names used in Super.





CHAPTER . THE JOLINE PROGRAMMING LANGUAGE

Field look-up is formally defined as:

Fc(f) =


⊥, if c ≡ Object

t, if class c · · · { · · · f t · · · } ∈ P

σ(Fc′(f)), if class c〈_〉 extends c ′〈σ〉 { fd..n · · · } ∈ P ∧

f /∈ dom(fd..n)

The ⊥ means that the method is not defined for class c.

The σ on the third line is a map from the superclass’ parameters to the parameters

used in the subclass. When looking up a field variable for class c on the third line, the

types in Fc′ use owner names in the class definition of class c ′. Thus we apply the

substitution σ(Fc′(f)) to bind the owner parameters of c ′ to the owners in c. This

gives us a type for f in c.

As is standard, we write _ for an uninteresting variable.

Method Look-up

Method look-up is similar to the field look-up mechanism described above. For any

class c, Mc is a map from all names of all methods defined in c and all of its super-

classes to a tuple containing the argument types and return type of the method. Again,

we give an example.

class Super< some outside owner > extends Object

{

some : Object get(owner:Int pos) { . . . }

}

class Example< data outside owner, other outside data >

extends Super< other >

{

data : Int add(data:Object obj) { . . . }

}

Given these class definitions, we have the following map for Example:

MExample = {get 7→ (owner : Int → other :Object), add 7→ (data :Object → data : Int)}
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Just as for field look-up, superclass owner parameters are bound to subclass owners

using σ-substitution. Thus, when looking up a method in class c, the types returned

will use owner names defined in c.

Method look-up is formalised as:

Mc(md) =


⊥, if c ≡ Object

(ti∈1..n → t ′), if class c · · · { · · · t ′ md(ti xi∈1..n){· · ·} · · · } ∈ P

σ(Mc′(md)), if class c〈_〉 extends c ′〈σ〉 · · · ∈ P

(For the last case, we implicitly assum that md is not in the body of class c.) In coming

chapters, this definition is extended to accept other kinds of parameters.

.. Well-formedness Rules

In this section, we present the static semantics of Joline. An overview of the different

judgements used is found in Table .. In the type rules, P is the complete program and

a global constant for all rules except ` P to reduce the syntactic overhead necessary to

thread P from the top level to all the rules where it is required.

Static Type Environment

The type environment E records the types of free term variables and the nesting rela-

tion on owner parameters:

E ::= ε | E, x :: t | E, α �∗ p | E, α ≺∗ p

Above, ε is the empty environment, x :: t is a variable to type binding and α �∗ p

means that owner parameter α is outside owner p. Conversely, α ≺∗ p means that

owner parameter α is inside owner p.

Good environment

(-ε)

ε ` 3

(-x)

E ` t x /∈ dom(E)

E, x :: t ` 3
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Table .: Judgements used in the static semantics.

E ` 3 Good environment
E ` p Good owner
E ` pRq Owner p is R-related to q (R ∈ {≺∗,�∗})
E ` t Good type
E ` t 6 t ′ Type t is a subtype of type t ′

E ` v :: t Value v has type t

E ` e :: t Expression e has type t

E ` lval :: t ref l-value lval has type t

E ` s; E ′ Statement s is well-formed and extends E to E ′

E ` meth Good method
` Class Good class
` P Good program

(-α �∗)

E ` p α /∈ dom(E)

E, α �∗ p ` 3

(-α ≺∗)

E ` p α /∈ dom(E)

E, α ≺∗ p ` 3

The rules for good environment are straightforward. (-ε) states that the empty

environment, ε, is well-formed. (-x) states that adding a variable name to type

binding, x :: t to a good environment E produces another good environment provided

x is not already bound to a type in E and t is a well-formed under E. The rules (-

�∗) and (-≺∗) deal with inside and outside orderings of owners—(-�∗) states

that adding a α �∗ p ordering of two owners to a good environment E produces a

good environment if p is a good owner under E and α is not in E. The (-≺∗) rule

states the same, but for the ≺∗ relation.

Good owner

(-)

α R _ ∈ E

E ` α

(-)

this : t ∈ E

E ` this

(-)

E ` 3

E ` world

The rules for good owners state that an owner is well-formed if it is defined in the

static environment. Also, if present in the environment, the special variable this is

also a good owner. The owner world is globally defined, and thus always valid.
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Owner Orderings

(-)

α ≺∗ p ∈ E

E ` α ≺∗ p

(-)

α �∗ p ∈ E

E ` p ≺∗ α

(-)

E ` p

E ` p ≺∗ world

(-)

this :: t ∈ E

E ` this ≺∗ owner

(-)

E ` p

E ` p ≺∗ p

(-)

E ` p ≺∗ q E ` q ≺∗ q ′

E ` p ≺∗ q ′

The inside and outside relations are derived from the owner orderings in E. The rela-

tions are transitive and reflexive and each others’ inverses. Owners and their ordering

form a tree (since an owner can only be ordered inside one owner by (-)). From

(-), we see that all owners are inside world. Importantly, if this is a valid

owner, it is always ordered inside owner, which is the owner of the object denoted by

this.

Program and Class

()

` classi∈1..n ` s ; E E ` e :: t

` classi∈1..n s; return e :: t

(-)

` class Object { }

()

E0 = owner ≺∗ world, αi Ri pi∈1..m E0 ` owner ≺∗ αi∈1..m

E0 ` owner :c ′〈σ〉 E = E0, this : owner c〈αi∈1..m〉
{fi∈1..n} ∩ dom(Fc′) = ∅ E ` ei :: ti E ` methj∈1..s

∀md ∈ names(methj∈1..s) ∩ dom(Mc′). Mc(md) ≡ σ(Mc′(md))

` class c〈αi Ri pi∈1..m〉 extends c ′〈σ〉 {ti fi = ei∈1..r methj∈1..s}

By (), a program is well-formed if all the classes it defines are well-formed and

all statements in the body of main, s;return e, are well-formed. By (-), the

empty root class Object is always well-formed.

The rule for well-formed class, (), is a little more complex. First, owner must

be inside all owner parameters of the class. Secondly, the supertype to the class must

be valid (remember σ is a map from owner names used in the class header of c ′ to
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the owner names αi∈1..m used in c). Shadowing fields is not permitted as the names

of the fields declared in c must not be in set of fields declared by any superclass to

c. Any expression initialising a field must be valid under the class’ environment E,

constructed from the owner class’ header, adding owner and the this variable. Finally,

all methods declared in the class must be well-formed under E and, notably, for all

overridden methods (a method with the same name as one defined in any superclass

to c), the types must be invariant modulo σ-substitution which binds the names of

the owner parameters of c ′ into the corresponding names in c.

Good method

()

E, x1 :: t1, . . . , xm :: tm ` s; E ′ E ′ ` e :: t0

E ` t0 md(tj xj∈1..m){ s return e; }

A method is well-formed under environment E if the statements and return expression

of its body are well-formed with respect to E extended with the parameter variables de-

clared in its header. Again, observe that () will be extended later in Section .

when the method construct is extended with owner parameters.

Types

()

class c〈αi Ri pi∈1..n〉 · · · ∈ P

σ = {owner 7→ q, αi 7→ qi∈1..n} E ` σ(αi Ri pi)i∈1..n

E ` q :c〈qi∈1..n〉

A type is well-formed whenever the substituted owner arguments satisfy the ordering

on parameters specified in the class header.

Subtyping

Subtyping in Joline must care to preserve the owner to protect the containment in-

variant. A supertype is allowed to “forget” owners, which is governed by (). The

subtyping rule states that the owner must remain the same.
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(-)

E ` p :c〈σp〉 class c〈. . .〉 extends c ′〈p ′
i∈1..n〉 · · · ∈ P

E ` p :c〈σ〉 6 p :c ′〈σ(p ′
i∈1..n)〉

Subtyping is derived from subclassing, modulo names of the owner parameters. As

this corresponds to the composition of two order-preserving functions, it is order-

preserving. This is required to preserve deep ownership, see Clarke’s dissertation [].

In particular, subtyping preserves the owner that is fixed for life. Letting the owner

vary, as in Cyclone [], would be unsound in our system, as observed by Clarke and

Drossopoulou [].

(-)

E ` t

E ` t 6 t

(-)

E ` t 6 t ′ E ` t ′ 6 t ′′

E ` t 6 t ′′

As expected, the subtype relation is reflexive and transitive.

Statements

(-)

x /∈ dom(E) E ` e :: t

E ` t x = e; ; E, x :: t

(-) describes the conditions for variable declaration. The variable name must

not be in use in the same environment and the initial expression must have the same

type as the declared type of the variable (modulo subsumption). The resulting envi-

ronment is extended with a binding from the variable name to its type to record the

type information of the declared variable.

(-)

E ` 3

E ` skip; ; E

(-)

E ` e :: t

E ` e; ; E

(-)

E ` lval : t ref E ` e :: t

E ` lval = e; ; E

From (-), skip is a valid statement under any valid environment. From (-

), a well-formed expression can be treated as a statement. The rule (-)

simply enforces that updates can be performed to l-values only if the types match,
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modulo subtyping of e. Recall that lval is either x or x.f.

(-)

E ` s1 ; E ′′ E ′′ ` s2 ; E ′

E ` s1 s2 ; E ′

From (-), statements can be sequenced in the standard fashion.

l-values

(-)

x :: t ∈ E x 6= this

E ` x :: t ref

(-)

E ` e :: p :c〈σ〉 Fc(f) = t

this ∈ owners(t) ⇒ e ≡ this

E ` e.f :: σp(t) ref

(-)

E ` lval :: t ref

E ` lval :: t

The rules above give the types of l-values, which are variables (other than this) and

fields. Their type of a variable is its recorded type in the environment, and the type of

a field is the declared type in its class modulo substitution of the owner parameters in

the object where the field is accessed. l-values may be updated or read.

The ref annotations on types in (-) and (-) prevent them from

taking part in subsumption. The rule (-) can be used to treat an l-value as an

expression.

The helper function owners is defined for types and static type environments.

When applied to a type, it returns a set of all owners used to form that type; when

applied to an environment, it returns a set of all owners defined in that environment:

owners(p1 :c〈pi∈2..n〉) = {p1, . . . , pn}

owners(ε) = world

owners(E, x :: t) = owners(E)

owners(E, α �∗ p) = owners(E) ∪ {α}

owners(E, α ≺∗ p) = owners(E) ∪ {α}

The condition this ∈ owners(t) ⇒ e ≡ this, which was called the static visibil-

ity in the original ownership types system [], ensures that types that contain this in





CHAPTER . THE JOLINE PROGRAMMING LANGUAGE

them, that is types of representation objects, can only be accessed internally to the ob-

ject. It amounts to saying that fields (and methods) which yield, return or require that

representation objects are private. This is not essential; we could have used dynamic

aliasing as in Joe1 [], but the resulting type system would have been too complex to

present our ideas.

Expressions

(-)

this :: t ∈ E

E ` this :: t

(-)

E ` t

E ` null :: t

(-)

E ` e :: t E ` t 6 t ′

E ` e :: t ′

From (-), this has its declared type. From (-), null can have any well-

formed type. By (-), an expression of type t can be said to be of any

type t ′ such that t ′ is a supertype of t.

(-)

E ` p :c〈σ〉
E ` new p :c〈σ〉 :: p :c〈σ〉

By (-), any well-formed class can be instantiated.

(-)

E ` e :: p :c〈σ〉 Mc(md) = tj∈1..m → t0

this ∈ owners(Mc(md)) ⇒ e ≡ this E ` ej :: σ ′(σp(tj)) for all j ∈ 1..m

E ` e.md(ej∈1..m) :: σ ′(σp(t0))

The rule for method performs a static visibility test, just as for field access, which

restricts expressions containing this in their type (as declared in the class) to being

used only internally, that is, on this. The owners of the target type forms a substitution

to translate the owners in the method’s argument’s types and return types into the

corresponding types using the owners in scope. The value supplied to each argument

of the method must have the type expected by the method.

This concludes the description of Joline’s static semantics. The upcoming section deals

with the dynamics before getting into the soundness proofs on page .
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. JOLINE, DYNAMICALLY

Heaps in Joline are nested to model the ownership nesting of deep ownership types.

The store consists of a stack of frames, each frame corresponding to an executing

method. The bottom frame contains the heap nested inside world. Nested inside this

heap are all subheaps of all objects nested inside world.

Joline’s dynamic semantics are formulated as a big-step operational semantics.

This section presents the dynamic semantics of Joline, explaining as we go along.

.. Syntax definitions

Metavariables n, m, p, q range over owners and ids of objects or blocks. As in the

static semantics, x is a variable, α is a static owner name and t is a type, a class with its

owner parameters bound.

The syntax for heaps, stacks and values are shown in Figure .. We write S •
to mean S • nil. Stacks and store types have parallel structure. Stacks, S, consist of

ordered frames, F. Frames consist of variables x 7→ v and owners α 7→ n ordered

by ⊕. Figure . describes the syntax for stacks and stores. The syntactic category V

denotes zero or more fields, f 7→ v. The region construct models the region world,

with a nested subheap. The symbol H denotes zero or more objects, n 7→ cσ[V ; H], in

a nested subheap. Additionally, a region has a nested frame, and the⊕ operator pushes

its right-hand side to the innermost compartment of the left-hand side, just as in the

store-type. Thus, Rn[H; nil]⊕ F is equivalent to Rn[H; F].

We now describe the rules for well-typed configurations roughly in the same order

as the syntactic definitions in Figure .. An overview of the judgements is found in

Table ..

Additional syntax for the store type is shown in Figure ..

.. Store Type

The store type is ordered in generations separated by •, where each generation contains

owner bindings and variable typings. For now, think of generations as stack frames.

The store type and the stack have parallel structures. Objects, variables and owners on

a frame are ordered by ⊕ which is an order-preserving concatenation operator.
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Syntax terms:

S ::= stack
F frame
S • F

F ::= frame
nil nil
x 7→ v, F variable
α 7→ n, F owner biding
Rn[H; F] region

H ::= subheap
nil nil
n 7→ o, H id to object

V ::= fields
nil nil
f 7→ v, V field

o ::= object (shorthand)
cσ[V ; H] object

v ::= value
null null
↑n pointer

Figure .: Syntax for stacks, heaps and values.

As is common, we assume that variable names, owner names and object ids are

unique.

Note that the owner of an object is not encoded in its type but is implicit in the

nesting. Thus, an object of class c with owner parameters σ nested inside some object

m will have the “owner-less type” c〈σ〉 in the store type. However, we can derive its

“complete type” m :c〈σ〉 from the nesting. The type R denotes a region, a container in

which a store-type is nested. It is used in Joline to encode world, the top-most owner

and can be thought of as the initial stack frame for the program’s “main method”, but

its use will be extended in later chapters. For now, all store-type information is nested
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Syntax terms:

Γ ::= Store type
nil nil
n :: T [ Γ ], Γ ′ object with subheap
x :: t, Γ variable
α 7→ n, Γ owner
Γ • Γ ′ generation

T ::= Owner-less type
c〈σ〉 object type
R region

Γ〈 〉 ::= Store type with hole
〈 〉 hole
n :: T [ Γ〈 〉 ], Γ ′

n :: T [ Γ ], Γ ′
〈 〉

x :: t, Γ〈 〉
α 7→ n, Γ〈 〉
Γ〈 〉 • Γ ′

Γ • Γ ′
〈 〉

Figure .: Store type. We write Γ • to mean Γ • nil.

inside the region corresponding to world and no other regions exist in the system.

Figure . shows a sample object graph and its corresponding store-type.

The syntactic category Γ〈 〉 describes a store type with a hole. The syntax Γ〈· · ·〉m
means the stack Γ extended by · · · inside the subheap of some object m. We sometimes

write Γ = Γ ′〈H〉m to mean that Γ can be factored into some stack Γ ′ with a hole in

m and H, which are part of the contents of m in Γ , or, equivalent, that stack Γ ′ can

be extended by H inside m to yield stack Γ . As an example, if Γ is the resulting store-

type of Figure ., then Γ can be factored into, for example, Γ ′〈o :: c3〈σ3〉〉m, where

Γ ′ equals Γ but where o :: c3〈σ3〉 is replaced by a hole.

We now proceed by defining a few helper functions.
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o

q

m

p

n

Figure .: An object graph. Its corresponding store-type, for some owner-less types
ci〈σi〉 for i = 1..5 is n :: c1〈σ1〉[ m :: c2〈σ2〉, o :: c3〈σ3〉, p :: c4〈σ4〉[ q :: c5〈σ5〉 ] ].
As is visible from the picture, the owner of objects m, o and p is n. This is mirrored
by the nesting structure of store-type.

Definition of defs, owners and vars for Γ

We define the function defs(Γ) to be the set of all identities of objects typed in Γ and

names of variables typed in Γ . Formally:

defs(nil) = ∅

defs(n :: T [Γ ], Γ ′) = {n} ∪ defs(Γ) ∪ defs(Γ ′)

defs(x :: t, Γ) = {x} ∪ defs(Γ)

defs(α 7→ n, Γ) = defs(Γ)

defs(Γ • Γ ′) = defs(Γ) ∪ defs(Γ ′)

We define the function owners(Γ) to be the set of all owner variables mapping to iden-

tities of objects on the topmost stack frame Γ .

owners(nil) = ∅

owners(n :: T [Γ ], Γ ′) = owners(Γ) ∪ owners(Γ ′)

owners(x :: t, Γ) = owners(Γ)

owners(α 7→ n, Γ) = {α} ∪ owners(Γ)

owners(Γ • Γ ′) = owners(Γ ′)

We define the function vars(Γ) to be the set of all variable names mapping on the

topmost stack frame Γ .
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vars(nil) = ∅

vars(n :: T [Γ ], Γ ′) = vars(Γ) ∪ vars(Γ ′)

vars(x :: t, Γ) = {x} ∪ vars(Γ)

vars(α 7→ n, Γ) = vars(Γ)

vars(Γ • Γ ′) = vars(Γ ′)

Definition of ⊕ for Γ

As previously explained, ⊕ is an operator that pushes a Γ to the top of another Γ . For

example, (x :: t, α 7→ n)⊕ z :: t ′ = x :: t, α 7→ n, z :: t ′ and (Γ • x :: t, n :: R[α 7→
n])⊕ z :: t ′ = Γ • x :: t, n :: R[α 7→ n, z :: t ′].

nil⊕ Γ = Γ

(α 7→ n, Γ ′)⊕ Γ = α 7→ n, (Γ ′⊕ Γ ′)

(x :: t, Γ ′)⊕ Γ = x :: t, (Γ ′⊕ Γ)

(n :: R[Γ ′])⊕ Γ = n :: R[Γ ′⊕ Γ ]

(n :: c〈σ〉[Γ ′], Γ ′′)⊕ Γ = n :: c〈σ〉[Γ ′], (Γ ′′⊕ Γ)

(Γ ′ • Γ ′′)⊕ Γ = Γ ′ •(Γ ′′⊕ Γ)

Rules for Well-formed Store Type

(--)

nil ` 3

(-)

Γ ` 3 p ∈ defs(Γ)

Γ ` p

By (--), the empty store type is well-formed. By (-), p is a

good owner under Γ if it is in the set defs(Γ), the set of all ids of all objects, blocks and

variables in Γ .
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(--)

Γ ` n α 6∈ owners(Γ)

Γ ⊕α 7→ n ` 3

(--)

Γ ` t x 6∈ vars(Γ)

Γ ⊕ x :: t ` 3

By (--), a static-name to actual owner binding α 7→ n may be added

to Γ , if Γ is well-formed, n is a good owner and α is not in the set owners(Γ), the set of

static owner names already in Γ .

By (--), a variable name to type binding x :: t may be added to Γ if Γ

is well-formed, t is good type under Γ and x is not in the set vars(Γ), that is the set of

variable names used in Γ .

(--)

Γ ` 3 n 6∈ defs(Γ)

Γ ⊕n :: R ` 3

(--)

Γ ` m :c〈σ〉 n 6∈ defs(Γ)

Γ〈n :: c〈σ〉〉m ` 3

By (--), a region without a nested subheap can be pushed onto Γ if Γ

is well-formed and n is not in use in Γ .

By (--), an object n of class c with owner parameters σ can be

added to a subheap of some object (or region or borrowing block) m in Γ , if the type

m : c〈σ〉 (m must be the owner of n’s type as n is nested directly inside m) is well-

formed under Γ , and n is not in use in Γ .

(--)

Γ ` ↑n :: σp(t)

Γ •σ
p
n⊕ this :: t⊕ this 7→ n ` 3

The (--) rule governs the well-formedness of generations in Γ . A

new generation corresponds to a stack frame created by method invocation on some

reference ↑n. It contains the owners of type of ↑n, the static type of this, and a

variable to ↑n binding to make the receiver accessible on the frame.

Owner Orderings

Owner orderings are crucial to keeping the strong containment invariant of ownership

types. Naturally, we can derive some of the orderings directly from the nesting of own-
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ers in Γ . However, in presence of generations this becomes a little more complicated.

(-)

Γ ` p ≺∗ q

Γ ` q �∗ p

(-)

Γ ` p

Γ ` p ≺∗ p

Trivially, by (-), outside and inside are inverse relations; if owner p is inside

q then q is outside p. By (-), the inside relation is reflexive.

(-)

Γ ` 3 Γ = Γ ′〈Γ ′′〉q p ∈ defs(Γ ′′)

Γ ` p ≺∗ q

(-)

Γ ` q Γ • Γ ′ ` p p ∈ defs(Γ ′)

Γ • Γ ′ ` p ≺∗ q

By (-), every owner p nested inside some owner q is ordered inside q. Triv-

ially, the owners corresponding to objects in a subheap of some object n are inside

n. By (-), any owner in a generation is inside an owner of any previous

generation. For now, ignore (-). We will return to it later.

(-)

Γ ` 3 Γ(α) = n

Γ ` α = n

(--)

Γ ` p = p ′ Γ ` p ′ ≺∗ q ′ Γ ` q ′ = q

Γ ` p ≺∗ q

The last two rules are special and deal with the conversion between static owner names

and actual owners without overly complicating the formalism. By (-), If α

is a static owner name bound to the actual owner n on the top generation in Γ , then we

can consider α and n as equal. The rule (--) simply applies this equality

to the inside ordering. For example, if Γ(α)=n, Γ(β)=m and Γ ` n≺∗ m, then, by

(--), Γ ` α ≺∗ β.

.. Configurations

As we saw in Figure ., heaps are nested inside stacks. Starting configurations have the

form 〈S | s〉, where S is a stack and s is a statement, and resulting configurations are

either 〈S | v〉, where v is the resulting value of evaluating an expression, or 〈S〉, a single

stack. The initial configuration where s;e is the “main method” of the program is:
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〈 Rworld[nil; nil] | s;e 〉

The rules for well-formed configurations are slightly unorthodox. To the left of

the turnstile is the store-typing for the entire store. To the right of the � operator is a

subset of said store-typing, namely the subset that exactly corresponds to the structure

which the judgement is typing. This will be used later to deal with certain visibility

restrictions.

Definition of ⊕ for Ss and Fs

The ⊕ operator works on stacks and frames just as for Γ ’s. It pushes a F into the

innermost F on the top of the stack. For any stack, this is a unique position.

nil⊕ F = F

(α 7→ n, F ′)⊕ F = α 7→ n, (F ′⊕ F ′)

(x 7→ v, F ′)⊕ F = x 7→ v, (F ′⊕ F)

(Rn[H; F ′])⊕ F = Rn[H; F ′⊕ F]

(S • F ′)⊕ F = S •(F ′⊕ F)

Configurations

(-)

Γ ` S

Γ ` 〈S〉

(-)

Γ ` S Γ ` s; Γ ′

Γ ′ ` 〈S | s〉

By (-), a final configuration is well-formed if its stack is well-formed under

the current store type. For (-), the statement s must be well-formed under

the current store-type and result in a store type possibly extended by the variables de-

clared in s. The configuration’s stack must also be well-formed, without the extension

to the store type from s.
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Table .: Table over judgements

Γ ` 〈S〉 Configuration is well-formed under store-type Γ

Γ ` 〈S | v〉 :: t Configuration is well-formed and v has type t under store-type Γ

Γ ` 〈S | e〉 :: t Configuration is well-formed and e has type t under store-type Γ

Γ ` 〈S | s〉 Configuration is well-formed and s produces store-type Γ

Γ ` S Stack S is well-formed and its contents are typed by Γ

Γ ` F � Γ ′ Frame F is well-formed under Γ , and is parallel with Γ ′

Γ ; n ` H � Γ ′ Heap H with owner n is well-formed under Γ , and typed by Γ ′

Γ ` v :: t Value v has type t in Γ

Γ ` t Type t is well-formed under Γ

Γ ` t = t ′ Types t and t ′ are equal under Γ

Γ ` p p is a good owner
Γ ` α = p Static owner α and dynamic owner p are equal under Γ

(-)

Γ ` S Γ ` e :: t

Γ ` 〈S | e〉 :: t

(-)

Γ ` S Γ ` v :: t

Γ ` 〈S | v〉 :: t

The rules (-) and (-) are straightforward.

Stacks

(-)

nil ` nil

(-)

Γ ` S Γ • Γ ′ ` F � Γ ′

Γ • Γ ′ ` S • F

By (-), the empty stack is typed by the empty store type. By (-),

the store type must correspond to the ‘sum’ of the store type for each generation in

the stack. Every generation has access to the store type of all previous generations plus

itself. Note that Γ and S are constructed in parallel.
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Frames

(-)

Γ ` 3

Γ ` nil � nil

()

Γ ` F � Γ ′ Γ ` v :: t

Γ ` F⊕ x 7→ v � Γ ′⊕ x :: t

()

Γ ` F � Γ ′

Γ ` F⊕α 7→ n � Γ ′⊕α 7→ n

By (-), an empty frame is valid and is parallel to an empty piece of the

store type. The rules () and () control variable and owner bindings

on the stack. The uniqueness of the names x and α respectively are guaranteed by the

well-formedness of Γ in both cases. A variable with type t is well-formed if its value

also has type t. Note that the structures on the left and right side of the� are parallel.

Heaps and objects

(-)

Γ ` m

Γ ; m ` nil � nil

(-)

Γ ; m ` n 7→ o � Γ ′ Γ ; m ` H � Γ ′′

Γ ; m ` n 7→ o, H � Γ ′, Γ ′′

By (-), an empty subheap is valid in m if m is well-formed under the current

store type. By (-), a subheap in m is well-formed if its contents is well-

formed in m under the current store type. Again, the structures on the left and right

side of the � are parallel.

()

Γ(n) = m :c〈σ〉 Γ ; n ` H � Γ ′ Γ ` V :: σm
n (Fc)

Γ ; m ` n 7→ cσ[V ; H] � n :: c〈σ〉[Γ ′]

By (), an object is well-formed inside m under Γ if it has m as an owner in Γ , its

subheap is well-formed inside the object itself, and its fields have good types using:

()

Γ ` v :: t Γ ` V � Γ ′

Γ ` f 7→ v, V � f ::t, Γ ′

Fields work like variables, but their order is insignificant.
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Values

The looking up of types in Γ is a recursive function that remembers the object of the

previous level of nesting and uses that for owner.

nil(n)p ::= ⊥ no valid type for n

(Γ • Γ ′)(n)p ::=

{
Γ(n)p if n ∈ defs(Γ)

Γ ′(n)p otherwise

(α 7→ m, Γ)(n)p ::= Γ(n)p

(x :: t, Γ)(n)p ::= Γ(n)p

(m :: T [Γ ], Γ ′)(n)p ::=


p :c〈σ〉 if n = m where T = c〈σ〉
Γ(n)m if n ∈ defs(Γ)

Γ ′(n)m otherwise

(Rp[Γ ])(n) ::= Γ(n)p

Γ(n) ::= Γ(n)world

A more informal definition of the same function that might be more easily understood

is Γ(n) = p :c〈σ〉 iff Γ = Γ ′〈n :: c〈σ〉[ _ ]〉p, that is, if Γ can be factored into a Γ ′ with

a hole in p (possibly world) such that the object n is directly inside with (incomplete)

type c〈σ〉, then the type of n in Γ is p :c〈σ〉.

(-)

Γ ` t Γ(m) = t

Γ ` ↑m :: t

(-)

Γ ` t

Γ ` null :: t

(-)

Γ ` v :: t ′ Γ ` t ′ 6 t

Γ ` v :: t

By (-), a pointer is well-formed if its type derived from looking its id up in

Γ is well-formed in Γ . By (-), null can have any well-formed type. By (-

), a value can be viewed as having a supertype to that of its actual type.

Static and Dynamic Types

(-)

Γ ` p1 :c〈pi=2..n〉 Γ ` pi = qi for i = 1..n

Γ ` p1 :c〈pi=2..n〉 = q1 :c〈qi=2..n〉
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Again, due to the existence of both static and actual owners in our system, we need

rules to treat these as equal. Recall (-); basically, a type with static owners

is equal to a type with the equivalent actual owners.

(--)

Γ ` t ′1 6 t ′2 Γ ` t ′1 = t1 Γ ` t ′2 = t2

Γ ` t1 6 t2

(--)

Γ ` e :: t ′ Γ ` t = t ′

Γ ` e :: t

Similar to (-) above, (--) defines subtyping relations that take

static and actual owner equality into consideration and (--) does the

same for types of expressions.

.. Operational Semantics for Joline

We now describe Joline’s operational semantics.

Variable Look-up and Assignment

The look-up-function used in (-) and (-), looks up the variable on the

top-frame in the stack and is defined thus (⊥ denotes that the look-up or update was

unsuccessful):
nil(x) ::= ⊥

(S • F)(x) ::= F(x)

(F⊕α 7→ n)(x) ::= F(x)

(F⊕y 7→ ↑n)(x) ::= F(x) x 6= y

(F⊕ x 7→ ↑n)(x) ::= ↑n

We write S[x 7→ v] to mean the stack S where the variable x in the topmost frame

is updated with the value v.

nil[x 7→ v] ::= ⊥

(S • F)[x 7→ v] ::= S •(F[x 7→ v])

(x ′ 7→ v ′, F)[x 7→ v] ::= x ′ 7→ v ′, (F[x 7→ v])

(x 7→ v ′, F)[x 7→ v] ::= x 7→ v, F

(α 7→ n, F)[x 7→ v] ::= α 7→ n, (F[x 7→ v])





CHAPTER . THE JOLINE PROGRAMMING LANGUAGE

Field Look-up and Assignment

The helper functions (S)n.f and (S)n.f :=v are shorthands for reading respective up-

dating the field f in the object with id n in stack S with null. They are formally defined

thus:
(nil)n.f ::= ⊥

(S • F)n.f ::=

{
(S)n.f if n ∈ defs(S)

(F)n.f otherwise

(F⊕ x 7→ _)n.f ::= (F)n.f

(F⊕α 7→ _)n.f ::= (F)n.f

(n ′ 7→ cσ[V ; H], H ′)n.f ::=


V(f) if n = n ′

(H)n.f if n 6= n ′ and n ∈ defs(H)

(H ′)n.f otherwise

respective (for field update):

(nil)n.f :=v ::= ⊥

(S • F)n.f :=v ::=

{
(S)n.f :=v • F if n ∈ defs(S)

S •(F)n.f :=v otherwise

(F⊕ x 7→ v ′)n.f :=v ::= x 7→ v ′, (F)n.f :=v

(F⊕α 7→ m)n.f :=v ::= α 7→ m, (F)n.f :=v

(n ′ 7→ o, H)n.f :=v ::=

{
n ′ 7→ o, (H)n.f :=v if n 6= n ′ and n ∈ defs(H)

(n ′ 7→ o)n.f :=v, H otherwise

(n ′ 7→ cσ[V ; H])n.f :=v ::=

{
n ′ 7→ cσ[V[f 7→ v]; H] if n = n ′

n ′ 7→ cσ[V ; (H)n.f :=v] otherwise

Dispatch

The help function Dt(md) returns a (b, t ′) tuple where b = s;return e correspond-

ing to the body of the method that the message md is bound to when passed to an

object of type t, and t ′ is the type of the receiver, as viewed by the b body.

Dp:c〈σ〉(md) =


⊥, if c ≡ Object

(b, p :c〈σ〉), if class c · · · { · · · _ md(_){b} · · · } ∈ P

Dp:c′〈σ(σ′)〉(md), if class c〈_〉 extends c ′〈σ ′〉 · · · ∈ P
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Just as is the definition of Mc, we omit md not in the body of c in the bottom case,

for presentation reasons.

Expressions

(-)

S(this) = ↑n
〈S | this〉 → 〈S | ↑n〉

(-)

〈S | null〉 → 〈S | null〉

(-)

S(x) = v

〈S | x〉 → 〈S | v〉

Without loss of generality, we use “named form” for the expressions in order to

simplify the formal account of Joline. We only allow field look-up, field update and

method calls to be performed local variables and not directly on the result of an ex-

pression. Thus, instead of writing e.f, we write x = e;x.f, where x is a variable of the

appropriate type. Clearly, the forms are equivalent.

(-)

S(x) = ↑n (S)n.f = v

〈S | x.f〉 → 〈S | v〉

Given the definitions of variable and field look-up above, (-) is straight-

forward. We look-up the value of x in S, which must be a pointer, and then perform a

field look-up on field f on the appropriate object using the helper function (S)n.f.

(-)

V = f 7→ null for all f ∈ dom(Fc) n is fresh

〈S | new p :c〈σ〉〉 → 〈S〈n 7→ cσ[V ; nil]〉p | ↑n〉

On creation, the object is given a fresh id, the owner p, an empty subheap, and all its

fields are initialised with null. The object is then stored in the heap in the subheap of

its owner. The result of the expression is a pointer to the object.
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(-)

〈S | e〉 → 〈S1 | v〉 S1(x) = ↑n
S1 = S2〈n 7→ cσ[_]〉m Dm:c〈σ〉(md) = (s;return e ′, m :c2〈σ2〉)
〈S1 •σ2

m
n ⊕ this 7→ ↑n⊕y 7→ v | s〉 → 〈S3〉 〈S3 | e ′〉 → 〈S4 • F | v ′〉

〈S | x.md(e)〉 → 〈S4 | v ′〉

The dynamic semantics for the method call is pretty straightforward. A new stack

frame is created with the owner parameters of the receiver’s type and the receiver as

this. The reference argument is pushed onto the stack as well.

The Dt(md) function returns the actual method body invoked by the message md

when sent to the type t and the type of this in that method body. Informally the type

is the most specific supertype p : c〈σ〉 of t such that t 6 p : c〈σ〉 and c defines

method md and the method body of that definition. Note that we write σ2
m
n for

σ2 ∪ {owner 7→ m} ∪ {this 7→ n}.

Last, the method body is evaluated; the resulting value v ′ is returned and the top-

most frame is removed.

Statements

(-)

〈S | e〉 → 〈S ′ | v〉
〈S | t x = e〉 → 〈S ′⊕ x 7→ v〉

(-)

〈S | e〉 → 〈S ′ | v〉
〈S | x := e〉 → 〈S ′[x 7→ v]〉

Local variable declaration and initialisation is straightforward: a binding from the

variable name to its value is appended to the stack. Local variable update is equally

trivial and works as expected.

(-)

〈S | e〉 → 〈S ′ | v〉 S ′(x) = ↑n S ′′ = (S ′)n.f :=v

〈S | x.f := e〉 → 〈S ′′〉

Field update works as expected, using the previously described (S)n.f := v helper

function.
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(-)

〈S | skip〉 → 〈S〉

(-)

〈S | e〉 → 〈S ′ | v〉
〈S | e〉 → 〈S ′〉

(-)

〈S | s1〉 → 〈S ′′〉 〈S ′′ | s2〉 → 〈S ′〉
〈S | s1;s2〉 → 〈S ′〉

The skip statement is trivial and (-) just evaluates an expression and discards

the resulting value. From (-), statements can be sequenced in an unsur-

prising fashion.

Having described Joline’s dynamic semantics, we move on to the showing the sound-

ness of our system and, in particular, that it enjoys the owners-as-dominator property.

. SOUNDNESS OF THE JOLINE LANGUAGE

Just as the rest of the formal account of Joline’s semantics, the presentation of the

soundness proof is complicated by the upcoming extensions to the language with ad-

ditional constructs to deal with unique pointers, etc. To avoid presenting two proofs,

we omit certain details from this chapter that would otherwise be deprecated by the

extended versions. A few constructs and lemmas should also be ignored upon a first

read as they relate to constructs not yet introduced. We try to point these out.

.. Helper Functions

Definition of ;

The symbol ; describes the relation between store-typings of different configurations.

We only define ; for well-formed store-typings.

Γ ` 3 and Γ ; Γ

Γ ` 3 and Γ ; Γ〈n :: c〈σ〉〉 and Γ〈n :: c〈σ〉〉 ` 3

Γ ` 3 and Γ ; Γ ′ if there exists Γ ′′ s.t. Γ ; Γ ′′ and Γ ′′ ; Γ ′

Note that this means that within all existing stack frames, only new objects are added.
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Definition of 6

The symbol 6 describes the how a store-typing may grow during the evaluation of a

configuration.

Γ 6 Γ

Γ 6 Γ ′, if Γ ; Γ ′

Γ 6 Γ ⊕ x :: t

Γ 6 Γ ⊕α 7→ n

Γ 6 Γ ⊕n :: R

Γ 6 Γ ⊕n :: B

Γ 6 Γ •n :: R

Γ 6 Γ •n :: B

Γ 6 Γ ′, if there exists Γ ′′ s.t. Γ 6 Γ ′′ and Γ ′′ 6 Γ ′

For now, ignore the cases containing n :: B. They correspond to constructs added

in later chapters. We only define 6 for well-formed store-typings, so Γ 6 Γ ′ implies

Γ ` 3 and Γ ′ ` 3 in our system. We omit this for brevity.

.. Lemmas

Many proofs or formulas in this chapter include “borrowing blocks” and unique point-

ers (introduced in Chapter ), and other extensions. The reader can think of a borrow-

ing block as a region, like the one corresponding to the all-enclosing, top-level owner

world for now, but parts of the proof regarding non-introduced constructs should be

skipped on a first reading.

The Extension lemma shows that extensions to a valid judgement produces an-

other valid judgement.

Lemma .. (Extension).

. If Γ ⊕ Γ ′′ ` F � Γ ′′ and Γ〈Γ ′〉p ` 3, then Γ〈Γ ′〉p⊕ Γ ′′ ` F � Γ ′′.

. If Γ〈Γ ′′〉m; m ` n 7→ o � Γ ′′ and Γ〈Γ ′〉p ` 3, then
(Γ〈Γ ′〉p)〈Γ ′′〉m; m ` n 7→ o � Γ ′′.

. If Γ〈Γ ′′〉m; m ` H � Γ ′′ and Γ〈Γ ′〉p ` 3, then (Γ〈Γ ′〉p)〈Γ ′′〉m; m ` H � Γ ′′.
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. If Γ `m V :: Γ ′′ and Γ 6 Γ ′, then Γ ′ `m V :: Γ ′′.

. If Γ ` v :: t and Γ 6 Γ ′, then Γ ′ ` v :: t.

. If Γ ` t and Γ 6 Γ ′, then Γ ′ ` t.

. If Γ ` n and Γ 6 Γ ′, then Γ ′ ` n.

. If Γ ` n Rm and Γ 6 Γ ′, then Γ ′ ` n Rm.

. If Γ(n) = t and Γ 6 Γ ′, then Γ ′(n) = t.

. If Γ ` e :: t and Γ ; Γ ′, then Γ ′ ` e :: t.

. If Γ ` s � Γ ⊕ Γ ′′ and Γ ; Γ ′, then Γ ′ ` s � Γ ′⊕ Γ ′′.

Note that Γ ′ ` 3 is implicit in Γ 6 Γ ′ and Γ ; Γ ′. Also remember the unique variable

names assumption that takes care of any potential name clashes due to uniques in

F, o,H, V, v in (-) above.

Proof. Follows by straightforward derivation of the well-formedness rules.

Lemma .. (Well-formed construction).

. If Γ ` p Rq, then Γ ` p and Γ ` q.

. If Γ ` =, then Γ ` 3 (= means any possible judgement).

. If Γ ; p ` =, then Γ ` 3 and Γ ` p (= means any possible judgement).

. If Γ • Γ ′ ` 3, then Γ ` 3.

. If Γ ⊕ Γ ′ ` 3, then Γ ` 3.

. If Γ ` v :: t, then Γ ` t.

. If Γ ` ↑n :: t, then Γ ` n and Γ ` t.

. If Γ ` t, then Γ ` p for all p ∈ owners(t).

. If Γ ` S and Γ(n) = p :c〈σ〉, then S = S ′〈n 7→ cσ[V ; H]〉p.

Proof. Follows by straightforward derivation of the well-formedness rules.
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Lemma .. (Generation Removal).

. If Γ • Γ ′ ` t and Γ ` p, then Γ ` t where t = p :c〈σ〉 or t = uniquep :c〈σ〉.

. If Γ • Γ ′ `n v :: t and Γ ` p, then Γ `n v :: t where t = p :c〈σ〉 or

t = uniquep :c〈σ〉.

. If Γ • Γ ′; p ` H � Γ ′′ and Γ ` p, then Γ ; p ` H � Γ ′′.

. If Γ ` p Rq, Γ • Γ ′ ` 3, Γ ′(m) = p and Γ ′(n) = q, then Γ • Γ ′ ` m Rn.

Proof. Cases  and  are independent. Cases  and  are proven with mutual induction.

Case ) By () and (), Γ • Γ ′ ` p ≺∗ q for all q ∈ rng(σ). By (-*), this

implies Γ ` q and Γ ` p ≺∗ q. Thus, Γ ` t.

Case ) By case analysis on the shape of v. There are three cases: (a) v = null, (b)

v = ↑m and (c) v = Un[v ′; H].

Case a) Follows immediately from (-) and case  of this lemma.

Case b) By (-), Γ • Γ ′ ` t and (Γ • Γ ′)(m) = t. By def. of lookup from

Γ , Γ(m) = t. By case  of this lemma , Γ ` t. Thus, Γ `n ↑m :: t.

Case c) By (-), Γ1 = Γ〈n :: U[Γ2]〉 • Γ ′ s.t. Γ1 `n ↑m :: n :c〈σ〉 and

Γ1; n ` H � Γ2. Clearly, Γ〈n :: U[Γ2]〉 ` n. Thus, by part  of this lemma,

Γ〈n :: U[Γ2]〉 `n ↑m :: n :c〈σ〉 and Γ〈n :: U[Γ2]〉; n `n H � Γ2 by

induction. Thus, by (-), Γ `n Un[↑m; H] :: uniquep :c〈σ〉.

Case ) By induction on the shape of H. There are two cases, (a) H = nil and (b)

H = n 7→ o, H ′.

Case a) Immediate from (-).

Case b) By (-), Γ • Γ ′; p ` n 7→ o � n :: c〈σ〉[Γ1] and

Γ • Γ ′; p ` H ′ � Γ2 where Γ ′′ = n :: c〈σ〉[Γ1], Γ2. By (),

o = cσ[V ; H ′′] s.t. Γ • Γ ′ ` ↑n :: p :c〈σ〉, Γ • Γ ′; n ` H ′′ � Γ1 and

Γ • Γ ′ `n V � σ
p
n(Fc). By induction, Γ ` ↑n :: p :c〈σ〉 and thus, Γ ` n.

By induction hypothesis, Γ ; n ` H ′′ � Γ1. By () and (),

Γ ` n ≺∗ q for all q ∈ rng(σp). Thus, Γ ` q for all such q’s. Thus, by

induction Γ • `n V � σ
p
n(Fc). By (),
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Γ ; p ` n 7→ o � n :: c〈σ〉[Γ1]. By induction, Γ ; p ` H ′ � Γ2 and thus,

by (-), Γ ; p ` H � Γ ′.

Case ) Follows immediately from (--).

Look-up Lemmas

This section presents lemmas dealing with the look-up of variables, fields and objects

on a stack.

Lemma .. (Variable Look-up). If Γ ` S, Γ ` x :: t ref and S(x) = v, then Γ `x v ::

t.

Proof. By case analysis on the shape of S. There are two cases, as S clearly cannot be

nil: (a) S = F and (b) S = S ′ • F.

Case a) Assume Γ ` F, Γ ` x :: t ref and F(x) = v. By (-), Γ ` F � Γ . By

(-), x :: t ∈ Γ . The proof relies on the following fact.

If Γ ` F � Γ ′, x :: t ∈ Γ ′ and F(x) = v, then Γ `x v :: t.

This fact follows simply by induction on the shape of F, observing that if

F = F ′⊕ x 7→ v, then by (), Γ ` F ′ � Γ ′′ and Γ `x v :: t where

Γ ′ = Γ ′′⊕ x :: t.

Case b) Assume Γ ` S ′ • F, Γ ` x :: t ref and (S ′ • F)(x) = v. By (-), Γ ′ ` S ′

and Γ ` F � Γ ′′ where Γ = Γ ′ • Γ ′′. By (-), x :: t ∈ Γ ′′ By def. of S( ),

F(x) = v. The rest is similar to Case a).

Lemma .. (Object Look-up). If Γ ` S, and Γ(n) = p :c〈σ〉, and S(n) = o, then

Γ ; p ` n 7→ o � n :: c〈σ〉[Γn], for some Γn.

Proof. By case analysis on the shape of S. There are two cases, as S clearly cannot be

nil: (a) S = F and (b) S = S ′ • F.
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Case a) Assume Γ ` F, and Γ(n) = p :c〈σ〉, and S(n) = o. By (-), Γ ` F � Γ .

Clearly, F(n) = o. Proof continues by induction on the shape of F. The cases

F = F ′⊕α 7→ m and F = F ′⊕ x 7→ v follow by induction. The cases

F = Rm[H; F ′] and F = Bb
m[H; F ′] are similar and rely on the following fact:

If Γ ; q ` H � Γ ′, and Γ(n) = p :c〈σ〉, and H(n) = o, then

Γ ; p ` n 7→ o � n :: c〈σ〉[Γn], for some Γn.

This fact follows simply by induction on the shape of H observing that if

H = n 7→ o, H ′, then by (-), Γ ; q ` n 7→ o � Γ1 and

Γ ; q ` H ′ � Γ2, where Γ ′ = Γ1, Γ2. By (), p = q and Γ1 = n :: c〈σ〉[Γn].

Thus Γ ; p ` n 7→ o � n :: c〈σ〉[Γn].

Case b) Assume Γ ` S ′ • F, and Γ(n) = p :c〈σ〉, and S(n) = o. By (-),

Γ ′ ` S ′ and Γ ` F � Γ ′′ where Γ = Γ ′ • Γ ′′. By def. of S( ), there are two cases,

(i) S ′(n) = o and (ii) F(n) = o. Case (i) follows by induction. Case (ii) is

similar to Case a) above.

Lemma .. (Field lookup). If Γ ` S, Γ ` x :: p :c〈σ〉, t = σp(Fc(f)),

this ∈ owners(Fc(f)) ⇒ x ≡ this, S(x) = ↑n and (S)n.f = v, then S `n.f v :: t.

Proof.

. By Lemma .. (Variable Look-up), Γ ` ↑n :: p :c〈σ〉.

. By .) (-) and (-),

(a) Γ(n) = p :c1〈σ1〉 where

(b) Γ ` p :c1〈σ1〉 6 p :c〈σ〉.

. By .a) and Lemma .. (Object Look-up), Γ ; p ` n 7→ c
σ1 [V ; H] � c1〈σ1〉[Γ1],

(Note that (S)n.f = v implies S(n) = o, where o = c
σ1 [V ; H] for some

c1, σ, V and H.)

. By .a), and (O),

(a) Γ(n) = p :c1〈σ1〉,


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(b) Γ `n V :: σ1
p
n(Fc1

).

(c) Γ ; n ` H � Γ1.

. By .b) and (), Γ `n.f v :: σ1
p
n(Fc1

(f)).

. By .b) and Lemma .. (See just below), σp(Fc(f)) = σ1
p(Fc1

(f)).

. By Lemma .. (See just below), if this ∈ owners(Fc(f)), then Γ ` n = this.

Thus, if this ∈ owners(t), Γ ` σp(Fc(f)) = σ1
p
n(Fc1

(f)) by .).

. By -.), Γ `n.f v :: σp(Fc(f)).

Lemma .. (Subtyping Preserves Field Typing). If Γ ` p : c〈σ〉 6 p : c1〈σ1〉 and

Fc(f) 6= ⊥, then σp(Fc(f)) = σ
p
1 (Fc1

(f))

Proof. Follows immediately from the def. of field look-up and (-).

Lemma ... If Γ ` S and S(this) = ↑n, then Γ ` this = n.

Proof. Follows immediately from def. of variable look-up and (--).

Update Lemmas

The subsequent lemmas deal with updating variables on the stack.

Lemma .. (Variable Update). If Γ ` S, and Γ ` x :: t ref, and Γ `x v :: t, then

Γ ` S[x 7→ v].

Proof. By induction case analysis on the shape of S. There are two cases, as S clearly

cannot be nil: (a) S = F and (b) S = S ′ • F.

Case a) Assume Γ ` F, and Γ ` x :: t ref, and Γ `x v :: t. By (-), Γ ` F � Γ .

By (-), x :: t ∈ Γ . The proof relies on the following fact:

If Γ ` F � Γ ′, and x :: t ∈ Γ ′, and Γ `x v :: t, then

Γ ` F[x 7→ v] � Γ ′.
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The fact follows simply by induction on the shape of F, observing that if

F = F ′⊕ x 7→ v ′, then by (), Γ ` F ′ � Γ ′′ and Γ `x v ′ :: t where

Γ ′ = Γ ′′⊕ x :: t. By (), Γ ` F ′⊕ x 7→ v � Γ ′, which is equivalent to

Γ ` F[x 7→ v] � Γ ′.

Case b) Assume Γ ` S ′ • F, and Γ ` x :: t ref, and Γ `x v :: t. By (-), Γ ′ ` S ′

and Γ ` F � Γ ′′ where Γ = Γ ′ • Γ ′′. By (-), x :: t ∈ Γ ′′. The rest is

similar to Case a).

Lemma .. (Object Update). If Γ ` S〈n 7→ o〉, Γ ; p ` n 7→ o � c〈σ〉[Γ ′], and

Γ ; p ` n 7→ o ′ � n :: c〈σ〉[Γ ′, Γ ′′], then Γ〈Γ ′′〉n ` S〈n 7→ o ′〉.

Proof. By case analysis on the shape of S〈 〉. There are three cases: (a) S〈 〉 = F〈 〉, (b)

S〈 〉 = S ′
〈 〉 • F and (c) S〈 〉 = S ′ • F〈 〉.

Case a) Assume Γ ` S〈n 7→ o〉, Γ ; p ` n 7→ o � c〈σ〉[Γ ′], and

Γ ; p ` n 7→ o ′ � n :: c〈σ〉[Γ ′, Γ ′′]. By (-), Γ ` F〈n 7→ n〉 � Γ . Proof

continues by induction on the shape of F〈 〉. The cases F = F ′
〈 〉⊕α 7→ n,

F = F ′
〈 〉⊕ x ′ 7→ v ′, F = Rm[H; F ′

〈 〉] and F = Bb
m[H; F ′

〈 〉] follow by

induction. The cases F = Rm[H〈 〉; F
′] and F = Bb

m[H〈 〉; F
′] are similar and

rely on the following fact:

If Γ ; q ` H〈n 7→ o〉 � Γ ′, Γ ; p ` n 7→ o � c〈σ〉[Γn], and

Γ ; p ` n 7→ o ′ � n :: c〈σ〉[Γn, Γ ′′], then

Γ〈Γ ′′〉n; q ` H〈n 7→ o ′〉 � Γ ′〈Γ ′′〉n.

This fact follows by induction on the shape of H〈 〉. The cases:

H = n ′′ 7→ o ′′, H ′
〈 〉 and H = n ′′ 7→ o ′′

〈 〉, H
′ follow by induction. The case

H = 〈 〉 is immediate. The case H = 〈 〉, H ′ follows by the following reasoning:

Clearly, p = q. By (-), Γ ; q ` n 7→ o � Γ1 and Γ ; q ` H ′ � Γ2

where Γ ′ = Γ1, Γ2. Clearly, n 6∈ defs(Γ2). Thus, by Lemma .. (Extension),

Γ〈Γ ′′〉n; q ` H ′ � Γ2. By (-),

Γ〈Γ ′′〉n; q ` n 7→ o ′, H ′ � Γ ′〈Γ ′′〉n.

Case b) Assume Γ ` S ′〈n 7→ o〉 • F, Γ ; p ` n 7→ o � c〈σ〉[Γ ′], and

Γ ; p ` n 7→ o ′ � n :: c〈σ〉[Γ ′, Γ ′′]. By (-), Γ1 ` S ′〈n 7→ o〉 and

Γ ` F � Γ2, where Γ = Γ1 • Γ2. The result follows by induction.
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Case c) Assume Γ ` S ′ • F〈n 7→ o〉, Γ ; p ` n 7→ o � c〈σ〉[Γ ′], and

Γ ; p ` n 7→ o ′ � n :: c〈σ〉[Γ ′, Γ ′′]. By (-), Γ1 ` S ′ and

Γ ` F〈n 7→ o〉 � Γ2, where Γ = Γ1 • Γ2. The rest is similar to case a).

Lemma .. (Field Update). If Γ ` S, S(n) = o, Γ ` ↑n :: p :c〈σ〉 and

Γ `n.f v :: σp
n(Fc(f)), then Γ ` (S)n.f :=v.

Proof.

. By (-) and (-),

(a) Γ(n) = p :c1〈σ1〉 s.t.

(b) Γ ` p :c1〈σ1〉 6 p :c〈σ〉.

. By .b) and def. of field lookup, σ1
p
n(Fc1

(f)) = σ
p
n(Fc(f)).

. By .a) and Lemma .. (Object Look-up), Γ ; p ` o � p :c1〈σ1〉[Γ ′].

. By .) and (),

(a) Γ(n) = p :c1〈σ1〉,

(b) Γ ` V :: σ1
p(Fc1

) and

(c) Γ ; n ` H � Γ ′ where

(d) o = c
σ1 [V ; H].

. By .b) and (),

(a) Γ `n.f v ′ :: σ1
p
n(Fc1

(f)) and

(b) Γ `n V ′ :: Γ ′′ where

(c) V = f 7→ v ′, V ′ and

(d) σ1
p(Fc1

(f)) = f :: σ1
p(Fc1

(f)), Γ ′′.

. By .), .b-d) and (), Γ `n V[f 7→ v] :: σ1
p(Fc1

).

. By .a,c-d), .) and (), Γ ; p ` o[f 7→ v] � p :c1〈σ1〉[Γ ′].

. By .), .) and Lemma .. (Object Update), Γ ` (S)n.f :=v.
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.. Subject Reduction

Soundness is proven as a standard subject reduction theorem that states that types are

preserved under evaluation.

Theorem .. (Subject Reduction).

. If Γ ` 〈S | e〉 :: t and 〈S | e〉 → 〈S ′ | v〉, then there exists a Γ ′ such that Γ ; Γ ′

and Γ ′ ` 〈S ′ | v〉 :: t.

. If Γ ` 〈S | s〉 and 〈S | s〉 → 〈S ′〉, then there exists a Γ ′ such that Γ ; Γ ′ and

Γ ′ ` 〈S ′〉.

Proof. By structural induction over the shapes of e and s. Note that the owner free

never appears in Γ ; it is clearly not in Γ in the starting configuration, and when a

unique with free as id is stored in a field or variable, the id always changes to that of

the field or variable.

Case (EXPR-VAR) Assume Γ ` 〈S | x〉 :: t.

. By (-),

(a) Γ ` S and

(b) Γ ` x :: t.

. By .b) and (-),

(a) Γ ` x :: t ref and

(b) ¬isunique(t).

. By .a), .a), Lemma .. (Variable Lookup), Γ `x v :: t.

. By .b), .) and Lemma .. (Omit qualifiers, not yet introduced), Γ `free v :: t.

. By .a), .) and (-), Γ ` 〈S | v〉 :: t.

Case (EXPR-THIS) Proof is similar to (-).
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Case (STAT-UPDATE) Assume Γ ` 〈S | x := e〉.

. By (-),

(a) Γ ` S and

(b) Γ ` x := e ; Γ .

. By .b) and (-),

(a) Γ ` x :: t ref and

(b) Γ ` e :: t.

. By .a), .b) and (-), Γ ` 〈S | e〉 :: t.

. By .) and the induction hypothesis, if 〈S | e〉 → 〈S ′ | v〉, there exists a Γ ′ such
that

(a) Γ ; Γ ′ and

(b) Γ ′ ` 〈S ′ | v〉 :: t.

. By .b) and (-),

(a) Γ ′ ` S ′ and

(b) Γ ′ `free v :: t.

. By .a), .a) and Lemma .. (Extension), Γ ′ ` x :: t ref.

. By .b) and Lemma .. (Omit qualifiers), Γ ′ `x v :: t.

. By .a), .), .) and Lemma .. (Variable Update), Γ ′ ` S ′[x 7→ v].

. By .) and (-), Γ ′ ` 〈S ′[x 7→ v]〉.

Case (EXPR-NULL) Immediate.

Case (EXPR-FIELD) Assume Γ ` 〈S | x.f〉 :: t.

. By (-),

(a) Γ ` S, and

(b) Γ ` x.f :: t.

. By .b) and (-),

(a) Γ ` x.f :: t ref.

(b) ¬isunique(t).
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. By .a), and (-),

(a) Γ ` x :: p :c〈σ〉,
(b) σp(Fc(f)) = t, and

(c) this ∈ owners(Fc(f)) ⇒ x ≡ this.

. By .a), .a,b,c), and Lemma .. (Field Look-up), Γ `n.f v :: t.

. By .b), .) and Lemma .. (Omit qualifiers), Γ `free v :: t.

. By .a), .) and (-), Γ ` 〈S | v〉 :: t.

Case (UPDATE-FIELD) Assume Γ ` 〈S | x.f := e〉.

. By (-),

(a) Γ ` S, and

(b) Γ ` x.f := e; Γ .

. By .b) and (-),

(a) Γ ` x.f :: t ref, and

(b) Γ ` e :: t.

. By .a), .b) and (-), Γ ` 〈S | e〉 :: t.

. By .) and induction hypothesis, if 〈S | e〉 → 〈S ′ | v〉, then there exists Γ ′ s.t.

(a) Γ ; Γ ′ and

(b) Γ ′ ` 〈S ′ | v〉.

. By .a), .a) and Lemma .. (Extension), Γ ′ ` x.f :: t ref.

. By .) and (-),

(a) Γ ′ ` x :: p :c〈σ〉,
(b) σp(Fc(f)) = t, and

(c) this ∈ owners(Fc(f)) implies x ≡ this.

. By .b) and (-),

(a) Γ ′ ` S ′ and

(b) Γ ′ `free v :: t.

. By .a), .a) and Lemma .. (Variable Look-up), Γ ′ `x ↑n :: p :c〈σ〉.

. By .a,b,c), .a,b), .) and Lemma .. (Field Update), Γ ′ ` (S ′)n.f :=v.

. By .) and (-), Γ ′ ` 〈(S ′)n.f :=v〉.
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Case (STAT-SKIP) Assume Γ ` 〈S | skip〉.

. By (-),

(a) Γ ` S and

(b) Γ ` skip� Γ .

. By .a) and (-), Γ ` 〈S〉

Case (STAT-LOCAL) Assume Γ ` 〈S | t x = e〉.

. By (-),

(a) Γ ` S, and

(b) Γ ′ ` t x = e; Γ where Γ = Γ ′⊕ x :: t

. By .b) and Lemma .., and (-),

(a) x 6∈ vars(Γ ′) and

(b) Γ ′ ` e :: t.

. By .a), .b) and (-), Γ ′ ` 〈S | e〉 :: t.

. By .) and the induction hypothesis, if 〈S | e〉 → 〈S ′ | v〉, then there exists a Γ ′′

s.t.

(a) Γ ; Γ ′′ and

(b) Γ ′′ ` 〈S ′ | v〉 :: t.

. By .b) and (-),

(a) Γ ′′ ` S ′, and

(b) Γ ′′ `free v :: t.

. By .a) and (-),

(a) Γ1 ` S ′′ and

(b) Γ ′′ ` F � Γ2 where

(c) Γ ′′ = Γ1 • Γ2 and S ′ = S ′ • F.

. By .b) and Lemma .. (Omit Qualifiers), Γ ′′ `x v :: t.

. By .b), .) and (), Γ ′′⊕ x :: t ` F⊕ x 7→ v ′ � Γ2⊕ x :: t.

. By .a,c), .) and (-), Γ ′′⊕ x :: t ` S ′⊕ x 7→ v ′.

. By .) and (-), Γ ′′⊕ x :: t ` 〈S ′⊕ x 7→ v ′〉.
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Case (STAT-EXPR) Assume Γ ` 〈S | e〉 :: t.

. By the induction hypothesis, if 〈S | e〉 → 〈S ′ | v〉, then there exists a Γ ′ s.t.,

(a) Γ ; Γ ′ and

(b) Γ ′ ` 〈S ′ | v〉 :: t.

. By .b) and (-),

(a) Γ ′ ` S ′ and

(b) Γ ′ ` v :: t.

. By .a) and (), Γ ′ ` 〈S ′〉.

Case (STAT-SEQUENCE) Assume � Γ ` 〈S | s1;s2〉

. By (-),

(a) Γ ` S, and

(b) Γ ′ ` s1;s2 � Γ where Γ = Γ ′⊕ Γ ′′.

. By .b) and (-),

(a) Γ ′ ` s1; Γ1, and

(b) Γ1 ` s2; Γ .

. By .a), .a) and (-), Γ1 ` 〈S | s1〉.

. By induction hypothesis, if 〈S | s1〉 → 〈S ′′〉, then there exists a Γ2 s.t.,

(a) Γ1 ; Γ2 and

(b) Γ2 ` 〈S ′′〉.

. By .b) and (-), Γ2 ` S ′′.

. By .b), .a) and Lemma .. (Extension), Γ2 ` s2 � Γ3 (where Γ3 is Γ2

extended with the delta between Γ1 and Γ).

. By .), .) and (-), Γ3 ` 〈S ′′ | s2〉.

. By .) and the induction hypothesis, if 〈S ′′ | s2〉 → 〈S ′〉, then there exists a Γ4

s.t.,

(a) Γ3⊕ Γ4 and

(b) Γ4 ` 〈S ′〉.
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Case (EXPR-NEW) Assume Γ ` 〈S | new p :c〈σ〉〉 :: p :c〈σ〉.
We ignore this case for now, as (-) is updated to deal with uniqueness in
Chapter .

Case (EXPR-CALL) Chapter  will extend method definitions and method
invocations. We thus postpone the proof of this case to the formal treatment in that
chapter.

.. Canonical Forms

Lemma .. (Canonical Forms). If Γ ` S and Γ ` v :: t, then the following holds for

the possible forms of v:

. If t = p :c〈σ〉, then either

(a) v = null, or

(b) v = ↑n and, Γ(n) = p :c ′〈σ ′〉, dom(Fc) ⊆ dom(Fc′),

S(n) = c ′σ
′
[V ; H] and f ∈ dom(V) for all f ∈ dom(Fc),

dom(Mc) ⊆ dom(Mc′) and

arity(Mc(md)) = arity(Mc′(md)) for all md ∈ dom(Mc)

(Arity is trivially defined as arity(ti∈1..m → t) = m).

. If t = uniquep :c〈σ〉, then either,

(a) v = null, or

(b) v = Un[v; H].

Proof. From the syntax of v, there are three cases corresponding to the ones above. .a)

and .a,b) are immediate from (-) and (-). For .b), by (-)

and (-), Γ(n) = p :c ′〈σ ′〉 and Γ ` p :c ′〈σ ′〉 6 p :c〈σ〉.
From Γ ` S and Γ(n) = p : c ′〈σ ′〉, clearly S(n) = o, for some o, as Γ and S are

parallel. By Lemma .., Γ ; p ` n 7→ o � Γ ′ for some Γ ′. By (), f ∈ dom(V)

for all f ∈ dom(Fc′) where o = c ′σ
′
[V ; H].

By () and definition of F, dom(Fc) ⊆ dom(Fc′). Similarly, () and defi-

nition of M implies dom(Mc) ⊆ dom(Mc′) and arity(Mc(md)) = arity(Mc′(md)).
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.. Progress

In this section, we present the progress lemma. First, however, we introduce additional

evaluation rules for the dynamic semantics, that deal with trapping and propagating

errors in the system. For now, we trap only one kind of errors, null-pointer errors.

(Please note that some of these error handling rules deal with constructs not yet intro-

duced.)

Error Trapping Rules

(-)

S(this) = null

〈S | this〉 → 〈S | ERROR〉

The rule (-) captures an attempt to look-up this is a context where this is not

defined.

(--)

S(x) = null

〈S | x.f〉 → 〈S | ERROR〉

(---)

S(x) = null

〈S | x.f := e〉 → 〈S | ERROR〉

The rules (--) and (---) trap looking up, or updating, a

field on a null-pointer.

(---)

S(x) = null

〈S | x.f--〉 → 〈S | ERROR〉

(---)

S(x) = null

〈S | x.md〈_〉(e)〉 → 〈S | ERROR〉

The rule (---) traps destructively reading a field on a null-pointer.

Similarly, (–--) traps invoking a method on a null-pointer receiver.

(---)

S(x) = null

〈S | borrow x t as 〈p〉 y { s }〉 → 〈S | ERROR〉

By (---), borrowing a null value will not be successful.
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Error Propagating Rules The error propagating rules capture errors occuring in

subexpressions or substatements, and propagate them.

(---)

〈S | e〉 → 〈S | ERROR〉
〈S | x.md〈_〉(e)〉 → 〈S | ERROR〉

The rule (---) states that errors occuring in the evaluation of the argu-

ment expressions will be propagated and the call not dispatched.

(---)

〈S | e〉 → 〈S1 | v〉 S1(x) = ↑n S1 = S ′〈n 7→ cσ[_]〉m
Dm:c〈σ〉(md) = (α R _, _ y → _, s;return e ′, m :c2〈σ2〉)

〈S1 •σ2
m
n ⊕ this 7→ ↑n⊕α 7→ p⊕y 7→ v | s;return e〉 → 〈S2 | ERROR〉

〈S | x.md〈p〉(e)〉 → 〈S2 | ERROR〉

The rule (---) states that errors occuring in the evaluation of a method

will be propagated.

(--)

〈S | s〉 → 〈S ′ | ERROR〉 ∨ 〈S | s〉 → 〈S ′′〉 ∧ 〈S ′′ | s ′〉 → 〈S ′ | ERROR〉
〈S | s;s ′〉 → 〈S ′ | ERROR〉

The rule (--) states that errors occuring in sequences of statements

will be propagated.

(---)

〈S | e〉 → 〈S ′ | ERROR〉
〈S | (p) e〉 → 〈S ′ | ERROR〉

(--)

〈S | s〉 → 〈S ′ | ERROR〉
〈S | 〈p〉 { s }〉 → 〈S ′ | ERROR〉

By (---) and (--), errors occuring in the subex-

pressions or body of the scoped region will be propagated.

(---)

〈S⊕ x 7→ null⊕Bp
n[H[n/x]; y 7→ v] | s〉 → 〈S ′ | ERROR〉 where n is fresh

〈S⊕ x 7→ Ux[v; H] | borrow x t as 〈p〉 y { s }〉 → 〈S ′ | ERROR〉
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By (---), errors occuring inside a borrowing block will be propagated.

(---)

〈S | e〉 → 〈S | ERROR〉
〈S | x.f := e〉 → 〈S | ERROR〉

(--)

〈S | e〉 → 〈S | ERROR〉
〈S | x := e〉 → 〈S | ERROR〉

(--)

〈S | e〉 → 〈S | ERROR〉
〈S | t x := e〉 → 〈S | ERROR〉

The rules above propagate errors occuring in the evaluation of the RHS expression.

Following Ernst et. al [], we define a finite evaluation relation thus:

Definition .. (Finite Evaluation). An evaluation relation →k, which is a copy of

the rules in the operational semantics (including the ones for error handling), where

each occurrence of → in a premise is replaced by →k−1. For axioms and conclusions,

replace → with →k and add the following axioms:

(-)

〈S | s〉 →0 〈S | ERROR〉

(-)

〈S | e〉 →0 〈S | ERROR〉

This means that the evaluation will return with a “kill error”, if the derivation is

more than n derivations deep []. This allows us to state a progress lemma for a finite

n and thus need not account for diverging evaluations due to infinite loops, which

would terminate with a kill error when the number of derivations exceeded n.

Lemma .. (Progress).

. If Γ ` 〈S | s〉, then for all natural numbers n, there exists a S ′ such that either

〈S | s〉 →n 〈S ′〉 or 〈S | s〉 →n 〈S ′ | ERROR〉.

. If Γ ` 〈S | e〉, then for all natural numbers n, there exists a S ′ such that either

〈S | e〉 →n 〈S ′ | v〉 or 〈S | s〉 →n 〈S ′ | ERROR〉.

Following Ernst et al., a terminating expression is one for which there is an n such that

the evaluation does not result in a kill error. If the application does not result in a kill
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error, then it cannot have used (-) or (-) (the kill error would have

been propagated), and thus, the derivation in →n can be translated to a derivation in

→.

Proof. By mutual induction over the possible shapes of s and e. The key property is

the completeness of the rules, that is, capturing all possible errors during evaluation

and propagating them properly. Assume Γ ` 〈S | s〉 or Γ ` 〈S | e〉 :: t.

Case (EXPR-THIS) Immediate.

Case (EXPR-NUL) Immediate.

Case (LVAL-VAR) Immediate.

Case (LVAL-FIELD) By (-) and (-), x has non-unique type t. If

S(x) = null, then the configuration is reduced to 〈S | ERROR〉 by (--

). Otherwise, S(x) = ↑n, and by Lemma .. (Canonical Forms), (S)n.f =

v so the configuration is reduced to 〈S | v〉.

Case (EXPR-NEW) Immediate.

Case (EXPR-DREAD-LOCAL) Immediate.

Case (EXPR-DREAD-FIELD) Similar to (-).

Case (EXPR-LOSE-UNIQUENESS) Straightforward from (---*), (-

--) and the induction hypothesis.

Case (EXPR-CALL) Similar to (-), except that (---) also handles

the propagation of null-pointer errors in argument expressions and (--

-) in the body of the invoked method.

Case (STAT-SKIP) Immediate.

Case (STAT-EXPR) Straightforward from (-), (--) and the induc-

tion hypothesis.

Case (STAT-SEQUENCE) Follows immediately from the induction hypothesis.

Case (STAT-LOCAL) Straightforward from the definition of (--*), (--

) and the induction hypothesis.
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Case (STAT-UPDATE) Straightforward from the definition of (--*), (-

-) and the induction hypothesis.

Case (STAT-SCOPED-REGION) Straightforward from (--) and the induc-

tion hypothesis.

Case (STAT-BORROW) Straightforward from (-), (--) and the

induction hypothesis.

Case (UPDATE-FIELD) Similar to (-), except that the expression on the RHS

may result in an error. In this case, the result follows from (---).

. OWNERS-AS-DOMINATORS

In this section, we formalise and prove that the owners-as-dominators property holds

for our system. In a well-formed configuration, all external aliasing of an object comes

from its owner or siblings. We model this fact using holes—in a well-formed config-

uration that can be factored as a stack with a hole containing an object, there are no

references from objects outside the hole on the same or previous frame to the con-

tents of the object in the hole. We give some auxillary definitions before presenting the

result.

.. Helper Functions

The helper function uses denotes the set of all ids of all objects referenced by fields and

variables in a stack. It is defined thus:

uses(nil) = ∅

uses(S • F) = uses(S) ∪ uses(F)

uses(F⊕α 7→ n) = uses(F)

uses(F⊕ x 7→ v) = uses(F) ∪ uses(v)

uses(F⊕Rn[F ′; H]) = uses(F) ∪ uses(F ′) ∪ uses(H)

uses(F⊕Bb
n[F ′; H]) = uses(F) ∪ uses(F ′) ∪ uses(H)
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uses(n 7→ cσ[V ; H], H ′) = uses(V) ∪ uses(H) ∪ uses(H ′)

uses(f 7→ v, V) = uses(v) ∪ uses(V)

uses(Un[↑m; H]) = {m} ∪ uses(H)

uses(↑n) = {n}

uses(null) = ∅

The cases Rn[F ′; H], Bb
n[F ′; H] and Un[↑m; H] deal with constructs not yet intro-

duced. Ignore them for now.

As an example, for the stack frame

S = n1 7→ o • owner 7→ n1⊕ this 7→ ↑n1⊕Rn2
[nil; n3 7→ cσ[f 7→ n4; n4 7→ o ′]]

where o = c ′σ
′
[nil; nil] and o ′ = c ′′σ

′′
[nil; nil], uses(S) = {n1, n4}, as the only fields

and variables in S are this on the top-generation and the field f in object n3.

Similarly, we define defs(S) to be the set of all identities of all objects, regions,

borrowing blocks and uniques in S.

defs(S • F) = defs(S) ∪ defs(F)

defs(x 7→ v, F) = defs(F)

defs(α 7→ n, F) = defs(F)

defs(Rn[H; F]) = {n} ∪ defs(H) ∪ defs(F)

defs(Bn[H; F]) = {n} ∪ defs(H) ∪ defs(F)

defs(n 7→ cσ[V ; H], H ′) = {n} ∪ defs(V) ∪ defs(H) ∪ defs(H ′)

defs(f 7→ Un[v; H]) = {n} ∪ defs(H)

defs(f 7→ ↑n) = ∅

defs(f 7→ null) = ∅

defs(nil) = ∅

Last, we define the binary relation # for sets to mean that they are disjunct. For sets A

and B are, A # B is defines to be A ∩ B = ∅.

We can now define the structural invariants, owners-as-dominators and extenal-

uniqueness-as-dominating-edges in terms of uses, defs, and #.
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.. Owners-as-Dominators

To recapitulate, the owners-as-dominators property states that all paths from the root

of the object graph to an objects must pass through the object’s owner.

Let ι denote an object and r the root of an object graph. Paths have the shape

r → ι1 → ι2 . . . → ιn. Thus, all paths start with r. In a system satisfying the

owners-as-dominators property, all paths from r to any object always goes through

the object’s owner. For example, if ιj is the owner of ιi, ιj will be on all paths from r

to ιi. Furthermore, for all objects ιk with a reference to ιi, ιj will be on all paths from

x to ιk. The latter assures that only objects internal to the representation to which ιi

belong, ιj in our example, can reference ιj. Consequently, for an object to manipulate

ιi, it must either be internal to ιi’s owner, or invoke the change through ιj’s protocol.

We now prove owners-as-dominators for Joline using a slightly different formu-

lation than the one found in Clarke’s thesis []. We believe that our formulation is

easier to understand as it is more clearly based on what parts of a stack or heap may

reference an object.

Theorem .. (Owners-as-Dominators). If Γ ` S • F〈n 7→ cσ[V ; H]〉, then

defs(H) #(uses(S) ∪ uses(F)).

Proof. We prove this in two steps; ) defs(H) # uses(S) and ) defs(H) # uses(F). Note

that we do not consider the case when n is nested inside a unique, as this case is

covered by the stronger external-uniqueness-as-dominating-edges property,

introduced in Chapter .

. By contradiction. Assume the existance of a pointer ↑m to an object of type t

in H.

By (-), Γ1 ` S and Γ1 • Γ2 ` F〈n 7→ cσ[V ; H]〉 � Γ2 where

Γ = Γ1 • Γ2. Note that as Γ2 and S • F〈n 7→ cσ[V ; H]〉 have parallel structure,

n ∈ defs(Γ2)

Without loss of generality, we consider only the top-level of H. Thus,

owner(t) = n. There are two possible cases, either a) Γ1 ` ↑m :: t, or b)

Γ1〈Γ3〉 ` ↑m :: t for some Γ3. The latter covers the case when ↑m originates

from within a unique, in which case additional type information is available

where the pointer is typed (see Chapter ). In case a), n ∈ defs(Γ1), by Lemma

.., which contradicts the unique names assumption as n ∈ defs(Γ2). Case b)
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gives rise to a similar contradition as it requires n ∈ defs(Γ1〈Γ3〉). Thus, the

pointer ↑m cannot exist as it cannot be well-typed.

. By contradiction. Assume a) some x on F points into H or b) a field f in some

object on F points into H.

Without loss of generality, we consider only objects on the top-level of H. Let

↑m be a pointer to such an object. By (), the type of ↑m has owner n.

Case a) F〈 〉(x) = ↑m. For x to hold ↑m, the owner of the type of x must be n. By

(-), Γ1 ` S and Γ1 • Γ2 ` F〈n 7→ cσ[V ; H]〉 � Γ2 where

Γ = Γ1 • Γ2 and Γ2 = Γ3〈n :: c〈σ〉[_]〉. Thus, n ∈ defs(Γ2). It is clear

from the static semantics that the only owners accessible on a stack frame

are i) the owners of the type of the receiver or owner parameters (denoted

Σ) and ii) owners of blocks created on the frame. Then:

i) By (-), the type of the receiver and any owner parameters

must be well-formed on the previous frame. Thus, n ∈ Σ implies

Γ1 ` n, i.e., n ∈ defs(Γ1). As n ∈ defs(Γ2), and object identities are

unique, we have a contradiction.

ii) By (-) and (-), either Γ2 = Γ4〈n :: R[_]〉 or

Γ2 = Γ4〈n :: B[_]〉 which contradicts Γ2 = Γ3〈n :: c〈σ〉[_]〉.

Clearly, the reference of kind a) cannot exist as x cannot be well-typed.

Case b) Let ↑n1 of type p :c1〈σ1〉 be the id of the object that contains f. By

() and (), owner(t) ⊆ rng(σ1)∪ p∪n1 ∪ {world} where t is

f’s type. Clearly, Γ ` p :c1〈σ1〉. By () and (), Γ ` n1 ≺∗ p and

Γ ` p ≺∗ q for all q ∈ rng(σ1). Thus, by (-) and (-),

Γ ` n1 ≺∗ q for all q ∈ owners(t). This means that if t has owner n,

then n1 must be nested inside n. By (-*), this implies that either

n1 = n, n = world (which is clearly not the case), or that n1 is defined

in H which contradicts that n1 is defined in F. Thus, an object with such

a field f cannot exist.

As an example, consider the picture in Figure .. There are three possible paths to

the grey object from the root: q → u → r, q → d → s → r and q → d → f. By

the structural invariant, there may be no pointers to objects inside n from outside of
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Figure .: Possible paths. The 〈 〉 denotes a hole in the store with n and its subheap as
its contents. n is an object or a uniqueness wrapper.

n and thus, the path q → d → f is invalid. As all other paths to the grey object go via

n, n is a dominating node for it, meaning that the property is satisfied.

In a stack that satisfies the owners-as-dominators-property, any path to an object

from the root of the object hierarchy must contain the object’s owner. This means that

the owner is a dominating node for all objects nested inside it [].

We express that in the theorem as no fields or variables on the stack outside an ob-

ject (outside the hole) can hold a reference to the contents of the object. The theorem

does not deal with subsequent generations, as they are allowed full access to the object.

We believe that this formalisation of the containment invariant is easier to under-

stand than the original containment invariant from Clarke’s thesis []: ι → ι ′ ⇒
ι ≺∗ owner(ι ′), that is, “if object ι references the object ι ′, then ι is inside the owner

of ι ′. It is not trivial to understand what this means in terms of valid aliases in a system.

Additionally, our system also deals with stack variables on previous generations, whereas

the original formulation only considered paths from the root object in the system.

. CONCLUDING REMARKS

We have now presented the Joline programming language, the vehicle for our presen-

tation. The next three chapters introduce our proposed constructs, owner-polymorphic

methods, scoped regions and external uniqueness, and how they work together to enable

alias control. In these chapters, we fill in a few of the blanks in the formalism of this

chapter and give the required cases for the soundness proof.
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Chapter 

Owner-Polymorphic Methods

. OWNERSHIP AND DYNAMIC ALIASING

T      is only concerned with owners on

paths from the root of the object graph []. This excludes dynamic aliases in stack-

based variables or aliases in objects not reachable from the root. Relaxing constraints

on dynamic aliases is sensible as they exist only for a limited scope and are destroyed

when the scope is exited, which makes them less troublesome than static ones [].

Ownership types places equal restrictions on dynamic and static aliases. Specifi-

cally, arguments to a method must have types that use only owners from the receiver’s

type. As an object only has a fixed set of owners, reusing a method on arguments with

different owners is not even possible.

This chapter presents a way of relaxing the restrictions on dynamic aliases in a

controlled way using owner-polymorphic methods. They protects the encapsulation

and are expressive enough to enable a programmer to express that an argument will

not be statically aliased or that a return value will not be an alias to a representation

object. Thus, this solution aids preservation of separation between an object’s internals

and the input and output from methods.

But first, the following section shows how ownership types limits the power of

polymorphism.
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.. Ownership and Argument-Polymorphic Methods

Many languages place convenience methods in classes. In Java, for example, methods

for converting strings into numbers are class methods in the Integer class. This allows

for easy conversion of strings into integers and also makes conceptual sense—asking

the class to create an instance of itself from another object. As a static method in Joline

only has access to world, such a method would look like this:

static world:Integer parseInt( world:String )

{

. . . // Code omitted for brevity

}

Thus, it cannot be used to operate on strings that belong to an object’s representation

and can only produce globally accessible integers. This is far too restrictive.

Not only class methods suffer from this restriction. If a utility method that is sup-

posed to operate on its argument is to be used with arguments belonging to different

representations, we need different instances of the object defining the utility method.

One needs only to consider a method such as System.out.println( ) to realise that this

situation is unacceptable—we would need multiple copies of out, one for each owner

that need’s its representation printed.

Our final example considers the implementation of structural equality tests, such

as the Java equals( ) methods. In ownership types systems, objects with different own-

ers are guaranteed not to be aliases, but may still be structurally equivalent. This raises

the interesting question of what the owner of the type of the parameter of an equals( )

method should be. Regardless of what we choose, we are still prevented from compar-

ing objects of different owners. Again, this is simply not acceptable.

Ownership types systems prior to our original Joline proposal [] only allowed

types to be formed using owners in scope. This is a powerful restriction that prevents

static aliases to objects not part of an aggregate’s representation unless the aggregate

is given explicit permission to reference the object. This requires that the aggregate’s

type is parameterised with the necessary permission which is given for and fixed for

an object’s lifetime.

As the above examples show, even types of dynamic aliases suffer from only being

created from owners in scope, as types must have the same owners to be assignment

compatible. This rule applies to method parameters, method returns and local vari-
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ables as well as fields. Thus, a class’ methods can only reference objects that are safe to

be statically aliased by an instance of itself. As an object has a fixed set of owners, this

is very inflexible.

In conclusion, the ownership information in the types is limiting the polymor-

phism of variables and method parameters.

.. Borrowing and the Preservation of Separation

Borrowing, used in uniqueness proposals to avoid manual reinstatement of unique

receivers and arguments [, , , , , , , , ], effectively enables a form of

preservation of separation between an object’s inners and the input and output of a

method. An argument annotated with the borrowed keyword will not be statically

aliased (see for example addFrom( ) in Figure . on page ). This annotation is useful

for both clients of a method and the implementer of a class. Borrowed references

have been proposed by several researchers but has yet to find its way into mainstream

languages.

In existing programming languages, it is not possible to express that an argument

is not supposed to be captured by the method. This can lead to rep exposure through

incoming aliasing and to faulty assumptions on how a method aliases argument objects

by clients of a method.

In Joline, it is immediately visible from a argument’s type if belongs to the object’s

representation, or to some external objects, but this says nothing about whether the

argument is captured or not. As any type that is a valid argument type is also valid field

type, we cannot express borrowing and therefore not the separation of an argument to

an object and the object’s state.

Consider the example in Figure .. From a client’s perspective, by looking at the

interface of the class Example, we cannot determine if arg will be statically aliased or

not by method( ). From an implementer’s perspective, we cannot determine anything

about what client methods will assume about how method( ) aliases its arguments.

Furthermore, if we by mistake create an alias to arg or return an alias to field, the

compiler will not prevent it. This is to be expected, but the opportunity for this error

is likely to arise more often, as we are forced to use the object’s owner parameters even

for temporary variables.

In conclusion, this is inexpressive.
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class Example< data outside owner >
{

data:Object field = null;

data:Object method( data:Object arg )
{

. . . // omitted for brevity
}

}

Figure .: Cannot express that arg should be borrowed

.. Problem Analysis

Perhaps unsurprisingly, the problems discussed in Section .. and Section .. share

a common root: the inability to temporary give an object the permission reference

a set of objects for the duration of a method. If a method can be passed the neces-

sary permissions, a single method in one object can be reused on several arguments

with different owners. Furthermore, if these owners are different from the owners in

the class headers, we are effectively prevented from confusing representation for argu-

ments or vice versa, as these will have different owners and no longer be assignment

compatible.

The next section presents owner-polymorphic methods that enable a flexible dy-

namic alias management and preservation of separation while still retaining the own-

ers-as-dominators property for static aliases.

. OWNER-POLYMORPHIC METHODS

Following the pattern proposed by Clarke [], we introduce methods in Joline that

allows the creation of both stack-based and heap-based aliases with a constrained life-

time without requiring that the necessary owners are present in the receiver’s type.

We allow a method to take owners as parameters to enable flexible dynamic alias

management—the necessary permissions to hold dynamic aliases are provided by the

caller. This also allows the same method to be reused on arguments with different

owners.

Owner-polymorphic methods are similar to regular, type-polymorphic methods.
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They were first proposed in Clarke’s dissertation [] where they were called context-

polymorphic methods and formalised in the object calculus of Abadi and Cardelli [].

A similar proposal can also be found in Buckley’s dissertation [], but as this proposal

lacks the relationships between the owner parameters, it is severly limited.

Subsequent to our original Joline proposal [] that included owner-polymorphic

methods, Boyapati included owner-polymorphic methods very similar to ours in Safe-

Java [], but with no formalisation. Recently, Krishnaswami and Aldrich [] intro-

duced owner-polymorphic methods for a shallow ownership setting.

.. Informal Syntax and Semantics

The syntax for owner polymorphic methods is similar to the parametrically polymor-

phic methods in Java . [] and slightly reminiscent of the polymorphic λ-calculus:

< borrowed inside foo > void aMethod( borrowed:Object o ) { ... }

The < borrowed inside foo > declares a temporary owner variable named borrowed for

the scope of the method. It does not introduce a new owner, but must be bound to an

owner visible to the caller when the method is invoked. The clause works just like the

ownership parameter clause in the class header. Owners to the right of the relation,

here foo, are either owner variables declared in the same clause, world, or an owner

from the header of the declaring class. Just as for class headers, the ordering relation

can be both inside and outside (corresponding to ≺∗ and �∗ in the formalism).

Invoking aMethod( ) requires passing the owner of the first reference argument as

an owner argument:

x.aMethod< b >( new b:Object( ) );

We allow owner arguments to be used as regular owners. They may be used to form

types, instantiate new objects and may be passed as owner arguments to other owner-

polymorphic methods. Figure . shows the use of owner parameters in a factory-like

method where the caller specifies the “target owner” of the result. As the target owner

is inside the owner mydata, we can populate the list with data from an existing list.

This is a useful pattern that we expect will come in handy.
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<res inside mydata> res:List< mydata > almostFactory( )
{

res:List< mydata > temp = new res:List<mydata>( );
// mylist has type this:List< mydata >
temp.populateWithList( mylist );
return temp;

}

Figure .: Owner-Polymorphic Factory Method that creates a list instance and popu-
lates it with elements from an existing list

.. Solutions to the Problems in Sections .. and ..

As was pointed out earlier in this chapter, class methods suffer by only having access

to the world owner. Thus, class methods can only reference globally accessible objects,

which is very restrictive as we showed in Section ...

Luckily, this is easily overcome by our owner-polymorphic methods by passing in

the owner of the string to be converted:

<temp inside world> static temp:Integer parseInt( temp:String )

{

. . . // Code omitted for brevity

}

Here, temp is an owner parameter that can be bound to any owner inside world. When

the method is called, the caller supplies the owner arguments as well as the reference

arguments and the type system makes sure that the owner arguments respect the nest-

ing requirements of the method header. In this case, checking is trivial as all owners

are inside world. Thus, our conversion method can be used on all strings in a system,

which is exactly what we want.

In a similar fashion, owner-polymorphic methods allow an equals( ) method to

reference an object with different owners which is essential to its implementation. The

code below shows an example of an equals method that compares two Person instances.
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<borrowed inside world> world:Boolean equals( borrowed:Person person )

{

// Cannot alias person, but is allowed to use it

borrowed:String name = person.getName();

borrowed:String birthDate = person.getBirthDate();

return this.name.equals< borrowed >( name ) and

this.birthDate.equals< borrowed >( birthDate );

}

this:Person p = new this:Person( “Barbarella”, “--” );

world:Person p = new world:Person( “Jane Fonda”, “--” );

p.equals< this >( p );

The last line gives a world-owned object temporary permission to reference rep of the

instance enclosing the last three lines. For this example to work, the types of name and

birthDate in Person have owner owner.

Interestingly, person cannot be statically aliased in the enclosing object. As the

owner borrowed is only defined for the scope of the method, it cannot be used in a

type of a field in the object. Thus, the owner-polymorphic method allows the pro-

grammer to express that an argument object cannot be captured by the object, or that

an argument object may not store capture references to the receiver’s state. Thus, we

achieve a preservation of separation between argument objects and the receiver’s state.

In our proposal, owner parameters are regular owners. Thus, we can even imple-

ment factory methods in classes that create objects of a desired owner:

<target inside world> static target:Object factory( )

{

return new target:Object();

}

In previous systems with deep ownership, factory class methods were almost unusable

as they were constrained to return only global objects.

We now proceed by describing how owner-polymorphic methods can be used to

simulate a form of borrowing, and how they can be used with proxies and subtyping

to create quite useful static aliases in the absence of the correct owner in the type of

the receiver.
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.. Borrowing and Preservation of Separation

An Owner-polymorphic method enables the caller to grant the receiver permission to

reference any object outside the receiver.

Depending on the owner parameter’s relation to the owner this in the receiver, the

permission can be temporary: the value of the reference argument may not flow into

a field on the heap whose life-time exceeds that of the stack-frame. This is similar

to how borrowed references work—a parameter annotated with a borrowed keyword

may not be stored in a field or passed as a non-borrowed argument to another method,

effectively confining the reference to stack-local variables [, ].

The expected behaviour of many methods is that they will not statically alias their

arguments. For example, a map method that applies something to every object in a

list should not keep a reference to the list nor should a method (such as the max(Int

a, Int b) method) that returns one of its two arguments depending on some relational

property. Again, if argument objects cannot be statically aliased we can uncondition-

ally guarantee preservation of separation: argument objects cannot be mixed up with

representation, as the types are incompatible.

We define borrowed owners, borrowed types and borrowed references thus:

Definition .. (Borrowed Owner). An owner parameter to the current method that

cannot be statically determined to be outside the current this.

Clearly, this does not cover all possible owner parameters. Owner-parameters

known to be outside this are safe to statically alias under deep ownership. Section

.. shows how subtyping can be used to create a static path from the receiver to such

an object. Thus, we do not count these owners, or types or references that use them,

as borrowed.

Definition .. (Borrowed Type). A type that uses a borrowed owner for one of its

owner parameters.

Definition .. (Borrowed Reference). A reference that has a borrowed type.

As borrowed owners are in scope only for the duration of the method, the receiver

cannot declare fields to be of borrowed types. Thus, the borrowed references cannot

be statically aliased in the receiver. As a borrowed owner is also not outside any other

owner statically known to the class, we cannot even create a statically aliasable proxy
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object that stores a static alias to the borrowed reference. This is discussed in more

detail in Section ...

Below is the declaration of an Person class with its implementation details hid-

den. The owner parameter some is a borrowed owner as is it (statically) not outside

any owner accessible to the Person class. Thus, inc is a borrowed reference and subse-

quently, without any knowledge of the implementation of incSalary or the rest of the

class, we know the following: the method will not statically alias inc, nor will it return

a representation object, even if the salary is represented by an Int internally.

class Person

{

<some inside world> some:Int incSalary( some:Int inc )

{

. . . // implementation hidden

}

}

This is similar to most previous borrowing proposals [, , , , , , , , ],

but actually even more flexible. There is nothing to prevent incSalary( ) from creating

static aliases to inc in itself, or creating an object with some as its owner and statically

alias inc in that object. Allowing this makes sense as such objects will also be bor-

rowed and unless returned from the method or stored in inc, all aliases to them will be

destroyed (buried in Boyland’s terminology []) when the method exits.

Note that we achieve this without introducing an additional kind of borrowed ref-

erence or owner, which is required in all other borrowing systems. We will revisit this

topic in Section ...

Declaring methods like in the example above makes sense, even if you expect

them to be used with only owners that are in the receiver’s type. For one, it makes

the class less sensible to changes in the ownership structure, but it also prevents the

method from mixing the arguments with the receiver’s representation, even if the own-

ers bound to the parameters are the receiver’s own at run-time.

The aliasing properties of borrowed references can be stated thus:

Aliasing Property .. (Borrowed Reference). A borrowed reference cannot be con-

fused for representation, or vice versa, as the types are incompatible. Thus, is it im-

possible to make a borrowed object part of the representation or violate rep exposure

by creating aliases to parts of the representation in borrowed objects.
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Where desirable, borrowed references can be used to preserve separation of an

object’s inners from the input and output from its methods.

Some of the above properties apply to non-borrowed references with owners from

owner parameters to a method. The types will be incompatible, preventing argument

objects to be mistakenly treated as representation. However, as the next section will

show, static aliases can still be created.

Aliasing Property .. (Borrowed References). A method can only store static aliases

to a borrowed object in objects obtained from the borrowed object or in objects created

by the method using the borrowed owners.

Clearly, objects obtained from borrowed objects are also borrowed and suffer the

same static alias restrictions. Thus, no static path can be created from the receiver

object (or its rep) to any borrowed object.

While not as strong as for unique references, we feel that these are useful properties.

Also, for the last property, the cases when static aliases may be created are exceptions

rather than rule. Generally, a method only reads arguments and is concerned with

modifying its receiver. Passing objects in to be updated and methods that modify the

structure of their argument objects are generally considered “bad smells” []. Such

methods should probably be moved into the argument object, which fits better with

object-orientation [].

We now explain why not all ownership parameters are borrowed owners and how

this can be used to overcome lack of explicit right to reference using the proxy design

pattern [].

.. The “Hide Owner” Pattern

The encapsulation model of ownership types allows outgoing references to enclosing

objects. The nesting of ownership information is crucial to maintaining this invariant.

This is a powerful scheme. However, it can also be limiting, as the necessary ownership

parameters to reference an outside object, again, perfectly legal, might not be present

in the object. The following method declaration allows the manipulation of enclosing

objects (at some level of indirection) using the owner parameter some passed to the

method by the caller.

<some outside this> void doSomethingWith( some:Stream stdout ) { ... }
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As we know that some is outside this we can easily instantiate a wrapper object of the

following type:

this:StreamWrapper< some > wrapper = new this:StreamWrapper< some >( );

wrapper.setObject( stdout );

The instantiated object is part of the representation and will exist on the heap with

the permission to statically alias stdout. As some is only defined for the scope of the

method, we cannot have fields in the current object using some in their type. We

can however use subsumption to hide some making it possible to store a reference

to the wrapper in the current object. Assuming the following class header of the

StreamWrapper class:

class StreamWrapper< w outside this > extends IOWrapper { ... }

we can cast wrapper to an IOWrapper hiding the use of some.

this:IOWrapper field = (this:IOWrapper) wrapper;

Now, a static path from the receiver to the argument object has been created and the

wrapper can be used by the object to write things to the underlying stream via the

wrapper without knowledge of the actual owner. This is a powerful mechanism that

makes ownership types a lot more flexible as it is no longer necessary to to statically

know all owners of outgoing aliases. We particularly expect this pattern to come in

handy during maintainence when changes to ownership could otherwise propagate

through the system forcing many changes. On the negative side, the difference between

a borrowed reference and a non-borrowed reference becomes subtle, which might pos-

sibly be overcome by introducing a “capturable keyword” to mean that an owner is

outside this.

Note that owner parameters declared inside world can be bound to any possible

owners in a system. As such an owner is not statically know to be outside anything, it

is always a borrowed owner. This means that we can never be forced into a situation

where the system requires us to use non-borrowed owners, except when we want the

ability to statically alias an argument. If we wanted to preclude non-borrowed owners

altogether, for example for the above-metioned reasons, it would be easy—just prevent

owners parameters that are outside this.

The the use of non-borrowed owner parameters and the hide-owner pattern is an

extension of previously published results [, ].
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.. Discussion

Owner-polymorphic methods enable flexible dynamic alias management and preser-

vation of separation. As the aliases are dynamic and cannot flow to the heap except in

case just described, the owners-as-dominators property still holds.

We now compare the borrowing enabled by owner-polymorphic methods with

the “traditional” form of borrowing [, , , , , , , , ] that we covered in

Chapter . The following code snippet shows an example of uniqueness and traditional

borrowing:

class Example

{

Object field = null;

Object method( borrowed Object arg ) anonymous

{

field = arg; // not okay (*)

List temp = new List();

temp.add( arg ) // not okay (**)

temp.destroy( );

return arg; // not okay (***)

}

void test( ) anonymous

{

unique Object o = new Object();

Object temp = method( o ); // borrows o

}

}

The example above shows that a borrowed reference cannot be captured in a field (lines

(*) and (**)). It would be okay to pass arg as a parameter to add( ) on line (**), if the

argument to add( ) was borrowed. As temp is a list, this is naturally not the case, as

the list would not be permitted to store the argument object. On line (***), we are not

allowed to return a borrowed object. The reason why most proposals do not allow this,

is because they would then lose track of the borrowed pointer. If it was allowed, the

method test would create two pointers to a unique object, one in o and one in temp,

after the invocation of method( ).
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As is visible from the code in method( ), the list stored in temp is stack-local. When

the method returns, the list is no longer reachable by the program. Thus, storing arg

in the list would not violate borrowing. Existant borrowing proposals cannot express

this (even if temp is borrowed) and subsequently cannot allow borrowed pointers from

appearing in any field on the heap. As our example shows, this is overly restrictive.

Our proposal is an improvement on the following points:

. We enable borrowing without introducing an additional kind of pointer that

must be treated differently than other pointer kinds. Borrowed references are

simply regular references, and the owners-as-dominators property makes sure

that they do not escape. Thus, our proposal has no need for borrowed or anony-

mous annotations as in the previous example.

The above is a result of owner-polymorphic methods being an orthogonal addi-

tion to our system. (This is discussed further in Section ..) This is also the case

in DeLine and Fähndrich’s Vault system [, ]. The gains are less complexity

and increased flexibility.

. The type system in Joline is strong enough to allow borrowed references to be

stored on the heap, still guaranteeing that these references will not be captured

by static aliases in the receiver. This avoids the overly restrictive situation on line

(**) in the previous example. In addition, we can allow borrowed references

to be returned as the owner keeps track of to what representation the returned

object belongs.

Upcoming chapters will make borrowing and return of borrowed objects even

more powerful, and allow return of borrowed pointers, even in the presence of

uniqueness.

. Owner parameters outside this allows argument objects to be statically aliased

by the receiver, even if the receiver does not have the proper owners in its type.

The owners-as-dominators property is still preserved. While not strictly bor-

rowing in the traditional sense, we can use owner-polymorphic methods in a

way that allows the situation on line (*) in the example.

Subsequent to our proposal, Krishnaswami and Aldrich [] proposed owner-

polymorphic methods as an orthogonal addition, similar to ours but without the own-

ership nesting as it is done in a shallow ownership setting. Having have several kinds
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owners, their methods are more flexible than ours as they can restrict owner parame-

ters from being used to instantiate objects. Adding a “mode on owners” to achieve the

same flexibility in our system would be straightforward. However, we believe that it

would be less useful in a system offering deep ownership, as the containment invariant

of deep ownership prevents the created objects from escaping except as parts of the

borrowed aggregate or back to the caller.

. FORMALISING OWNER-POLYMORPHIC METHODS

Below we extend the Joline formalisation with owner-polymorphic methods.

.. Static Semantics

The extended syntax for method declaration and method call is shown below. To em-

phasise differences between new and previous versions, we highlight extensions thus.

The syntax for methods and method calls are replaced for the following:

meth ::= 〈αi Ri pi∈1..m〉 t md(ti xi∈1..n) { s return e } Method

e ::= Expression

e.md 〈pj∈1..m〉 (ei∈1..n) method call

Below are the extended versions of () and (-) that includes owner pa-

rameters.

()

E ′′ = E, αi Ri pi∈1..n , xj : tj∈1..m E ′′ ` s; E ′ E ′ ` e : t0

E ` 〈αi Ri pi∈1..n〉 t0 md(tj xj∈1..m){ s return e; }

A method is well-formed under environment E if the statements and return expres-

sion of its body are well-formed with respect to E extended with the owner parameters

declared in the method header and the regular parameter variables. This takes care of

the well-formedness of the arguments as E ′′ ` s;E ′ requires E ′′ ` 3.

The (-) is extended to handle the owner arguments passed to the method.
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(-)

E ` e :: p :c〈σ〉 Mc(md) = ( αi Ri pi∈1..n , tj∈1..m → t0)

this ∈ owners(Mc(md)) ⇒ e ≡ this σ ′ = {αi 7→ qi∈1..n}

E ` σ ′ (σp(αi Ri pi∈1..n)) E ` ej :: σ ′ (σp(tj)) for all j ∈ 1..m

E ` e.md 〈qi∈1..n〉 (ej∈1..m) :: σ ′ (σp(t0))

In this version, the owner arguments of the target type and the owner arguments sup-

plied to the method form two substitutions to transform the method’s argument and

return types into types in terms of the owners in scope. The additional substitution,

σ ′, translates the names of owner parameters used internally in the method to the ac-

tual owners at the call-site. The helper function Mc for looking up parameters and

method bodies is extended in a straightforward fashion to also include owner param-

eter lists.

As pointed out by Clarke [], owner argument passing could be replaced by an

inference mechanism that infers the σ ′ binding of owners to the parameters of the

method, just as in GJ []. That would introduce unnecessary complexity for our

purposes here so we chose this way out for simplicity. A possible inference mechanism

would look at the owner parameters of the method header and where these are used

in the parameter types. It would then match the types of the arguments with the types

of the parameters to derive the mapping.

.. Dynamic Semantics

The new rule for method call is presented here. The big difference is the passing in of

the owner parameters which are then stored on the stack.

(-)

〈S | e〉 → 〈S1 | v〉 S1(x) = ↑n S1 = S ′〈n 7→ cσ[_]〉m
Dm:c〈σ〉(md) = ( α R _ , _ y → _, s;return e ′, m :c2〈σ2〉)

〈S1 •σ2
m
n ⊕ this 7→ ↑n⊕ α 7→ p ⊕y 7→ v | s〉 → 〈S2〉 〈S2 | e ′〉 → 〈S3 • F | v ′〉

〈S | x.md 〈p〉 (e)〉 → 〈S3 | v ′〉

As can be seen in the above rule, the extensions are simple and straightforward. Again,
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to simplify the formal account, we limit the number of owner and value arguments to

one. The helper function Dt(md) is extended with owner parameters in a straightfor-

ward fashion.

The subject reduction proof for (-) is as follows:

Proof. Assume Γ ` 〈S | x.md〈p〉(e)〉 :: t ′, and 〈S | x.md〈p〉(e)〉 → 〈S ′ | v〉.

. By (-),

(a) Γ ` S, and

(b) Γ ` x.md〈p〉(e) :: t ′.

. By .b) and (-),

(a) Γ ` x :: m :c1〈σ1〉,
(b) Mc1

(md) = (α Rq, t2 → t3, y),

(c) this ∈ owners(Mc1
(md)) implies x ≡ this,

(d) Γ ` p Rσm
1 (q) and

(e) Γ ` e :: t4 where

(f) t ′ = σ2(t3),

(g) t4 = σ2(t2) and

(h) σ2 = σm
1 ∪ {α 7→ p}.

. By .a), .e) and (-), ` 〈S | e〉 :: t4 � Γ .

. By .) and the induction hypothesis, if 〈S | e〉 → 〈S1 | v〉, there exists a Γ1 s.t.,

(a) Γ ; Γ1 and

(b) Γ1 ` 〈S1 | v〉 :: t4.

. By .b) and (-),

(a) Γ1 ` S1 and

(b) Γ1 ` v :: t4.

. By .a), .a) and Lemma .. (Extension), Γ1 ` x :: m :c1〈σ1〉.

. By .d), .a) and Lemma .. (Extension), Γ1 ` p Rσm
1 (q).

. By .a), .) and Lemma .. (Variable Lookup), Γ1 ` ↑n :: m :c1〈σ1〉.

. By .), (-) and (-),
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(a) Γ1(n) = m :c〈σ〉 and

(b) Γ1 ` m :c〈σ〉 6 m :c1〈σ1〉.

. By .) and Lemma .. (Well-Formed Construction), Γ1 ` p.

. By .a) and def. of dispatch, Γ ` m :c〈σ〉 6 m :c2〈σ2〉. (m :c2〈σ2〉 is the type
of the receiver of md)

. By .b), () and Lemma ..,

(a) Γ1 • Γ ′′ ` meth where

(b) Γ ′′ = σ2
m
n ⊕ this :: t7, and

(c) meth = 〈α Rq1〉 t5 md(t6 x){ s;return e } where

(d) σ2
m(t7) = m :c2〈σ2〉.

. By .b,f-h) def. of method look-up,

(a) σm
2 (q1) = σp(q) and

(b) (σm
2 ∪ {α 7→ p})(t6) = t4,

(c) (σm
2 ∪ {α 7→ p})(t5) = t ′.

. By .a,b,d), Lemma .. (Well-Formed Construction), Lemma ..
(Generation Removal), () and (),

(a) Γ1 • Γ ′′ ` F � Γ ′′, where

(b) F = σ2
m
n ⊕ this 7→ ↑n.

. By .), .a), Lemma .. (Extension), (--) and (),
Γ1 • Γ ′′⊕α 7→ p ` F⊕α 7→ p⊕ � Γ ′′⊕α 7→ p.

. By .b), .b), .) Lemmas .. and .. (Extension and Well-formed
Construction) and Lemma .. (Generation Removal),
Γ1 • Γ ′′⊕α 7→ p ` v :: t6. (Clearly, owners(t6) ⊆ σm

2 ∪ {α 7→ p}.)

. By .), (--) and (),
Γ1 • Γ ′′⊕α 7→ p⊕ x :: t6 ` F⊕α 7→ p⊕ x 7→ v � Γ ′′⊕α 7→ p⊕ x :: t6.

. By .a), .), .) (-),

(a) Γ1 • Γ ′ ` S1 • F ′ � Γ ′ where

(b) Γ ′ = Γ ′′⊕α 7→ p⊕ x :: t6 and

(c) F ′ = F⊕α 7→ p⊕ x 7→ v.

. By .d), .b), Lemma .. (Extension) and (-), (--),
Γ1 • Γ ′ ` α Rq1.





CHAPTER . OWNER-POLYMORPHIC METHODS

. By .b,c), .b), .) and (),

(a) Γ1 • Γ ′ ` s; Γ • Γ ′⊕ Γ ′′′ and

(b) Γ ′′′ • Γ ′⊕ Γ1 ` e :: t5.

. By .a), .a) and (-), Γ1 • Γ ′⊕ Γ ′′′ ` 〈S1 • F ′ | s〉.

. By .) and induction hypothesis, if 〈S1 • F ′ | s〉 → 〈S2〉, then there exists Γ2 s.t.

(a) Γ1 • Γ ′⊕ Γ ′′′ ; Γ2 and

(b) Γ2 ` 〈S2〉.

. By .b) and (), Γ2 ` S2.

. By b.), .a) and Lemma .. (Extension), Γ2 ` e :: t5.

. By .), .) and (-), Γ2 ` 〈S2 | e〉 :: t5.

. By .) and induction hypothesis, if 〈S2 | e〉 → 〈S3 | v ′〉, then there exists Γ3 s.t.

(a) Γ2 ; Γ3 and

(b) Γ3 ` 〈S3 | v ′〉 :: t3.

. By .a) and (-),

(a) Γ3 ` S3 and

(b) Γ3 ` v ′ :: t5.

. By .a) and (-),

(a) Γ4 • ` S4,

(b) Γ3 ` F ′′ � Γ5 where

(c) Γ3 = Γ4 • Γ5 and

(d) S3 = S4 • F ′′

. By .b), .b), .a.), .a), .c) and def. of ;,

(a) Γ1 ; Γ4 and

(b) Γ ′′⊕α 7→ p ; Γ5.

. By .b), .b) and Lemma .. (Generation Removal),
Γ4 ` v ′ :: (σ2

p
n ∪ {α 7→ p})(t5). (Clearly Γ5(t5) = (σ2

m
n ∪ {α 7→ p})(t5) as

owners(t5) ⊆ rng(σ2
m
n ∪ {α 7→ p}).)

. By .c) and .), Γ4 ` v ′ :: t ′.
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. By .a), .) and (-), Γ4 ` 〈S4 | v ′〉 :: t ′.

Lemma ... If Γ ` ↑n :: p : c〈σ〉 and class c · · · { fd1..l meth1..m } ∈ P, then

Γ ′ ` fd1..l and Γ ′ ` meth1..m where Γ ′ = Γ •σ
p
n⊕ this :: t s.t. σ(t) = p :c〈σ〉.

Proof. . By (),

(a) E ` fd1..l and

(b) E ` meth1..m where

(c) E = owner ≺∗ world, Pc, this ≺∗ owner, this :: t and

(d) t = owner :c〈Pc〉.

. By (-), Γ ` ↑n :: p :c〈σ〉.

. By .) and (--),

(a) Γ •σ
p
n⊕ this :: t ` 3 where

(b) σp(t) = p :c〈σ〉.

. By .a,b) and (), Γ •σ
p
n⊕ this :: t ` Pc.

. By Lemma .. (Well-formed construction), Γ ` n.

. By .), (-) and (-), Γ •σ
p
n⊕ this :: t ` owner ≺∗ world.

. By (-), Γ(n) = p :c〈σ〉. By def. of type look-up, Γ = Γ ′〈n :: p〈σ〉[_]〉p.

Thus, by (-), Γ ` n ≺∗ p.

. By .a) and .) and (-), Γ •σ
p
n⊕ this :: t ` this ≺∗ owner.

. By .a,b), .), .), and .), clearly Γ •σ
p
n⊕ this :: t satisfies the orderings and

typings in E and therefore,

(a) Γ •σ
p
n⊕ this :: t ` fd1..l and

(b) Γ •σ
p
n⊕ this :: t ` meth1..m.
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. CONCLUDING REMARKS

In this chapter, we introduced owner-polymorphic methods, and showed how they

could be used to preserve the separation of argument objects and representation using

borrowed references. We also presented a pattern for adding references to external ob-

jects using implicit permissions and proxies, and discussed related proposals. We con-

cluded by extending the formalisation of Joline with support for owner-polymorphic

methods.

The next chapter presents another extension to the Joline language, scoped regions,

that can be used for confining heap-allocated objects to the stack and for additional

preservation of separation.
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Scoped Regions

. STACK-BASED CONFINEMENT

T -       facilitates

preservation of separation—preventing arguments to methods from being mistaken

for representation and representation objects mistakenly returned from a method. In

this chapter, we introduce scoped regions, which allow methods to create stack-local

objects with access to any object visible at the point of creation. Similar to the owner-

polymorphic methods, the scoped region introduces a temporary owner, that guaran-

tees that stack-locals will not leak or even be visible when the scoped region exits.

It is not uncommon for a method to create stack-local, temporary objects whose

life-times are tied to that of the method body. A frequently occuring example is in-

termediate values of a computation. As another example, a library might require data

to be passed in in the form of a specific structure or object that can be discarded once

the result is obtained. Generally, we would want to preserve separation of such ob-

jects from representation and also prevent them from being exposed or returned from the

method—if a temporary object escapes, even if it is not part of the rep, it effectively

breaks abstraction as it might expose details of the receiver’s implementation.

As a consequence of these two points, we could then, and would like to be able to,

automatically garbage collect them when the method exists without creating any dangling

pointers. However, as we shall see, our present system is not strong enough to express

this type of confinement, not even in the presence of owner-polymorphic methods.
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The following section shows how our present system fails to express the points

above including a brief analysis of the problem. We then move on to describe some

related work in this area, before showing our proposal of scoped regions.

.. Stack-Based Confinement in Joline

The unit of confinement in our current Joline system is not fine-grained enough to

confine an object to a specific stack-frame, making it a stack-local object. Sure enough,

owner parameters could be used to instantiate borrowed objects inside the method,

but these can still escape, either by the addition of a back-pointer to an argument

object, or be returned. Thus, locally created objects with borrowed owners are not

necessarily stack-local.

Consider the method below that serialises the contents of an object to a stream.

The object connects an object-writing stream to the borrowed byte stream. In the

programmer’s mind, the ObjectStream instance is supposed to be stack-local and could

thus be destroyed when the method exists. Our current Joline system lacks the means

to express this as the ObjectStream must be in io’s representation to be allowed to refer

to the ByteStream.

< io inside world > void serialiseContents( io:ByteStream bs )

{

// create a temporary stream that write entire objects linked to bs

io:ObjectStream< io > w = new io:ObjectStream< io >( bs );

. . . // actual writing omitted

// GC.free( w ); // garbage collect the object stream

}

Sadly, in the eyes of the compiler, there are several ways the ObjectStream instance can

escape the method. The constructor of ObjectStream might create an alias to this in bs

or an exception may be thrown that keeps a reference to the object stream. Thus, the

method in the last line, GC.free( w ), if it existed, could create dangling pointers. In any

case, determining that no aliases to the object in w has escaped is tricky at best, and

impossible at worst. So-called Escape Analysis deals with this problem, see Blanchet

[] and Gay and Steensgaard [].

In our example above, the owner of w must be io in order to allow the object

stream to statically reference the byte stream. The reason for this is that the only owner
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statically known to be inside io is io itself (by reflexivity of the inside relation). If w was

owned by this, the object stream could not be returned or aliased in io. However, this

would force us to declare io as outside this in the method header, losing the borrowing.

Furthermore, the temporary stream could still be aliased by representation objects or

the current receiver, losing its intended temporality.

In conclusion, the unit of confinement for deep ownership types is not fine-grained

enough to express stack-based confinement of an object. This is not surprising, as the

unit of confinement is objects, which are heap-based.

.. Value Objects

Both C++ and Eiffel support value objects that can be used to implement stack-local

objects. Value objects are located physically inside the enclosing object or stack frame.

This might improve locality as a value objects and its subobjects would most likely

reside on the same memory page and causes value objects to destroyed automatically

when the enclosing object or frame is destroyed. In C++, this can result in dangling

pointers as the language allows pointers to value objects to allow in-place updates and

avoid costly copying, but it also allows destructors to run properly.

Eiffel addresses this problem with expanded types [], which must be copied. Eiffel

thus avoids C++’s problem of dangling pointers but increases the cost of dealing with

expanded types.

As value objects are included in their enclosing objects, the size of a value object

must be statically known as the corresponding number of bytes must be allocated to

make room in the enclosing object of frame. This makes value objects sensitive to

subtyping. In C++, polymorphic treatment of a value object can result in slicing. For

example, let T be a type of a value object of some size n and T ′ a subtype of T of size

n + m for some additional fields declared in T ′. If a value object of type T ′ is stored

in a field of type T , the field will not be large enough to hold the additional variables,

effectively cutting off a slice of the object.

Eiffel avoids this problem by preventing expanded types from participating in

polymorphism. Thus, Eiffel does not suffer from slicing, but the flexibility of poly-

morphism, crucial to object-oriented systems, is lost. For an account of additional

problems with expanded types in Eiffel, and ways to overcome them, see work by Kent

and Howse [].
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In conclusion, the value objects of Eiffel and C++ are useful and can be used to

simulate stack-based confinement. On the downside, they are quite problematic. They

can either cause dangling pointers or lose polymorphism entirely. Thus, in our mind,

the value object solutions are insatisfactory.

Stack-based confinement aids garbage collection as confining a temporary object to a

scope such as a method or a block makes it possible to statically determine the sites

where the object can be removed []. For similar reasons, it would also help reasoning

about aliasing, as the life-time time of an alias to a temporary object is known. Most

importantly, as the owner of the scoped objects is disjoint from all other owners in

scope, the temporary object is guaranteed not to be statically aliased, mistaken for

representation or escape the enclosing method. It is guaranteed to be separated from

argument objects and representation. We now move on to describe scoped regions, our

implementation of stack confinement in Joline.

. SCOPED REGIONS

This section describes the scoped region construct, its aliasing guarantees and its for-

malisation in the context of the Joline language. It also discusses related work.

A scoped region is a block that introduces a new, scoped owner for its scope, that is

potentially inside all other visible owners. One can think of the owner introduced by

the scoped region as corresponding to the block and of the block as a closure. The nest-

ing of the owner inside all other owners in scope allows objects owned by the scoped

region to access any visible object. This includes representation objects as and bor-

rowed objects. When the block exits, the owner can no longer be named, which means

that all types that use the owner, scoped types, become invalidated and subsequently, so

are all references to objects of scoped type. Thus, all aliases to representation objects

or borrowed objects will be destroyed and subsequent statements can disregard them,

aiding reasoning in the presence of aliasing. The syntax of a scoped region is thus:

(scopedOwner) { /* statments */ }

We define scoped owners, types and references thus:

Definition .. (Scoped Owner). An owner defined by the scoped region construct.
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Definition .. (Scoped Type). A type that uses a scoped owner for one of its owner

parameters.

An interesting observation is that, as the only owners known to be inside a scoped

owner is the scoped owner itself and possible scoped owners of nested regions, if a type

uses a scoped owner in a non-owner position, its owner must also be scoped.

Definition .. (Scoped Reference). A reference pointing to an object of scoped type.

Such a reference and its referenced object are effectively confined to the range of the

scoped owner.

The code below shows an example of using a scoped regions to implement the code

example on Page . A nice feature of our proposal is that by virtue of deep ownership,

objects owned by scoped owners are automatically prevented from escaping the region

as all owners outside it lack the necessary permissions to reference the scoped objects.

Thus, an object need not be implemented in any special way to use the confinment

offered by a scoped region. Subsequently, the ObjectStream from the previous example

in unchanged.

< io inside world > void serialiseContents( io:ByteStream bs )

{

// create a temporary stream that write entire objects linked to bs

(temp)

{

// ok as temp is inside io

temp:ObjectStream< io > w = new temp:ObjectStream< io >( bs );

. . . // actual writing omitted

}

// the object stream object can now be garbage collected

}

Wrapping the creation of the object stream in a scoped region effectively confines it

to the stack, or more specifically, to the block of the scoped region. Subsequently, the

writing of the objects to the stream must also be inside the region. Once the region is

exited, w, and all aliases to it goes out of scope. As temp is inside all owners in scope,

including this and io, there can be no aliases from bs to ws, nor from any representation

objects in the current object. Thus, the object stream is unreachable by the running

program, and can thus be safely deleted without leaving any dangling pointers.
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As a scoped owner is fresh, no preexisting objects have permission to reference

objects owned by it. Thus, exporting scoped references to objects outside the region

requires the use of owner-polymorphic methods. As preexisting objects are by defi-

nition outside the region, the owner parameters of the owner-polymorphic methods

must be borrowed owners. Thus, aliases to the borrowed objects created by such a

method are destroyed when the method exits, unless the aliases are stored inside the

borrowed object or returned to the scoped region as the method’s return value. Thus,

when the block exits, the last references to the scoped objects goes out of scope. Thus,

no external objects can be dependent on the scoped objects and they can be safely

deleted without risk of creating dangling pointers or. An example of this is shown in

Figure ..

As the scoped owner is inside all visible owners, it allows the creation of scoped

objects that can manipulate borrowed pointers. In some cases, such objects could

also be created using the appropriate borrowed owners, but the confinement of the

temporary object to the current stack frame would be lost as would the preservation

of separation of argument objects and temporary objects. This is also shown in Figure

..

No preexisting object has the scoped owner in their type. As scoped owners are

not outside any preexisting object, the trick to obtain static aliases to argument objects

in Section .. will not work. Thus, no preexisting object can become dependent on

the scoped objects. Consequently:

Aliasing Property .. (Scoped Reference).

. Scoped references and objects do not escape their scoped region.

. Scoped objects can safely be deleted when the scope is exited.

This confinement of temporary objects has an interesting side-effect: scoped ob-

jects need not be mentioned in pre or post conditions of a method, or in a class’ invariants.

Neither need they be considered by outside objects. This is a powerful consequence.

Aliasing Property .. (Scoped Reference). As types of scoped references are incom-

patible with types of representation or argument objects, temporary objects cannot

be confused for representation objects or argument objects. Thus, scoped references

enable preservation of separation.
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class CGIProgram
{

< request inside world, ext outside request >
void get( request:HTTPRequest< ext > request )

{
// process the request and print using the request object

}
}

class CGIRunTimeSystem
{

< system inside world >void prepareGet( system:String uri )
{

(request) // conceptually matches the process of the request
{

// Create a new request object that parses the uri
request:HTTPRequest< system > req =

new request:HTTPRequest< system >( uri );
// Registering output streams, system vars. etc. in req omitted

// Obtain a reference to the client program
owner:CGIProgram client = this.clientProgram( );

// Invoke get in the client program
client.get< request, system >( req );

} // request is now processed, and can be deleted
}

}

Figure .: Scoped regions and owner-polymorphic methods in a simple CGI example.
The prepareGet( ) method is invoked by the run-time system with the get-uri from
the browser. The method then creates a more high-level request object from the uri
and passes that to the actual client program that should do the actual processing. As
the request object only makes sense during the processing and answering (as HTTP
is a stateless protocol), the request object should never survive the processing. This is
achieved with a scoped region.
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We have now described why stack-based confinement is desirable, why simple value

objects are not enough to achieve it, and how we can achieve it in Joline with the help

of a stack-based owner. We now move on to describe the formal account of scoped

regions, before discussing related work.

. FORMALISING SCOPED REGIONS

Below, we show the extensions of the Joline formalisation with scoped regions. Ba-

sically, the scoped region construct allows us to create stack-based owners, by intro-

ducing regions other than the world region at the bottom of the stack (introduced in

Section ..). A region is pushed to the top of the stack. From the existing rule for

generational ownership ((-), introduced on page ), the region owner is

inside all owners on previous stacks.

.. Static Semantics

The syntax for scoped region is shown below. It is an addition to the syntactic category

of statements. Note that scoped regions can be nested, which works in a straightfor-

ward fashion.

s ::= Statement

(α) { s } scoped region

The scoped region is a block, proceeded by a region name with parentheses. As α

is pushed to the top of the stack, it becomes nested inside every other owner on the

stack, which has an interesting effect: ownership no longer forms a tree, but a dag (see

Chapter  for an extended discussion). This is the case as it enables one owner to be

nested inside several other owners that have no nesting relation among themselves. We

exemplify this below.

Consider the following stack:(
Rworld[ m 7→ cσ[V ; H]; nil ] • F

)
⊕Rn[ H ′; F ′ ]

Here, m and H are nested inside world on the bottom stack frame. By the rule (-

) (page ), any owner introduced on a later stack, is inside all owners in-





CHAPTER . SCOPED REGIONS

troduced on earlier stacks. Thus, n is inside world, m and all other owners introduced

in H.

Statically, the correct owners must be explicitly passed to the method to allow the

references from the later frames to earlier ones. Thus, statically, n will only be consid-

ered as inside all visible owners, which is likely to be a subset of the owners in H. As

any object created on the stack frame is inside all objects on earlier frames, references

from the former to the latter respect the owners-as-dominators property.

Now, we extend the syntax of E to allow an owner to be inside several or possibly

unrelated owners:

E ::= E, α ≺∗
⊔

{pi∈1..n}

where α ≺∗ ⊔
{pi∈1..n} means α is inside all owners in {pi∈1..n}. We also replace the

rule for deriving inside relations, (-), with a more general version respecting the

new “inside multiple owner” relation:

(-)

α ≺∗ ⊔
{pi∈1..n} ∈ E p ∈ {pi∈1..n}

E ` α ≺∗ p

We write α ≺∗ p to mean α ≺∗ ⊔
{p} for simplicity. We can now give the type rule

for scoped regions:

(--)

E, α ≺∗ ⊔
{pi∈1..n} ` s ; E ′ {pi∈1..n} ⊆ owners(E)

E ` (α) { s } ; E

The rule (--) introduces a new owner variable that corresponds to a

block and is only defined for the scope of the block. The bounds {pi∈1..n}, though

unspecified in code, determine which objects may be accessed by objects created in

this scope. Statically, the owner is inside (a subset of) all owners in the lexical scoped

of the block.

.. Dynamic Semantics

We now give the dynamic semantics of scoped regions.
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(-)

〈S⊕Rn[nil; α 7→ n] | s〉 → 〈S ′⊕Rn[H; F]〉 n is fresh

〈S | (α) { s }〉 → 〈S ′〉

Evaluating scoped regions creates a new region and pushes it to the top of the stack.

The region also acts as an owner. Initially, the heap is empty except for a mapping

from the static owner name introduced by the region to the id of the region itself, in

this case α 7→ n. After the region is created, its statement is evaluated. Then, the

region is destroyed along with its contents.

The subject reduction proof case for scoped regions is as follows:

Proof. Assume Γ ` 〈S | (α) { s }〉.

. By (-),

(a) Γ1 ` S and

(b) Γ1 ` (α) { s } ; Γ .

. By .a), and (--), Γ1⊕n :: R ` 3.

. By .a) and (-),

(a) Γ2 ` S ′′ and

(b) Γ1 ` F ′ � Γ3 where

(c) S = S ′′ • F ′ and

(d) Γ1 = Γ2 • Γ3.

. By .), .b), (-) and (-),
Γ1⊕n :: R ` F ′⊕Rn[nil] � Γ3⊕n :: R.

. By .), and (--), Γ1⊕n :: R⊕α 7→ n ` 3.

. By -.), and (),
Γ1⊕n :: R⊕ ` F ′⊕Rn[α 7→ n] � Γ3⊕n :: R⊕α 7→ n.

. By .a,c-d), .) and (-),

(a) Γ4 ` S⊕Rn[α 7→ n], where

(b) Γ4 = Γ1⊕n :: R⊕α 7→ n.
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. By .b) and (--), Γ4 ` s � Γ4⊕ Γ5.

The addition of α to be inside potentially all other owners in scope is
equivalent in the dynamics to adding n as the top-most (and thus
inner-most—see definitions of (-) and (-) on page )
owner in the system and Γ5 is type information for variables declared in s.

. By .a), .) and (-), Γ4⊕ Γ5 ` 〈S⊕Rn[α 7→ n] | s〉.

. By .) and the induction hypothesis, if
〈S⊕Rn[α 7→ n] | s〉 → 〈S ′⊕Rn[H; F]〉, then there exists a Γ6 such that

(a) (Γ4⊕ Γ5) ; Γ6 and

(b) Γ6 ` 〈S ′⊕Rn[H; F]〉.

. By .b) and (), Γ6 ` S ′⊕Rn[H; F].

. By .a), .), (-) and definition of ;,

(a) Γ6 = Γ7⊕n :: R[Γ8], where

(b) Γ1 ; Γ7 and

(c) n :: R[α 7→ n, Γ5] ; n :: R[Γ8], and

(d) Γ7 ` S ′ and

(e) Γ7 ` Rn[H; F] � n :: R[Γ5].

. By .b) and .d) and (-), Γ7 ` 〈S ′〉. Note that by
(--), Γ = Γ1, and thus Γ ; Γ7.

.. Related Work

Our scoped region construct is similar to the lexically scoped “letregion” construct

used in region-based memory management [, ]. There are a number of differ-

ences. Firstly, our construct is under programmer control, as in Cyclone [], whereas

the regions calculus is the basis for a compiler’s intermediate language. Secondly, we

introduce the scoped region to control aliasing, which is not the aim of region-based

memory management. Also, the technical machinery used to achieve safety differs:

our approach is structural, maintaining a specific nesting relationship between objects

to ensure that no references into a deleted region remain (see also Clarke’s disserta-

tion []), whereas the regions calculus uses effects to determine that references into a

deleted region are never dereferenced.
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Both Cyclone [] and Gay and Aiken’s RC [] manage a nesting relationship

which captures when one object outlives another, very similar to how our system works,

although their systems have neither classes nor subtyping. While some attempts to ex-

plicitly add region-based memory management to Java exist [, ], they require in-

terfaces to be extended with effects annotations to ensure modular checking, whereas

our structural approach uses ownership and owner annotations. Recent work by Boy-

apati et. al. add regions and ownership to Java to address the problems of Real-time

Java []. (Other styles of effects system also exist for Java [, , , ].) Although

the structural approach lacks the delicacy of the regions calculus, we believe that the

scoped regions are better suited to an object-oriented programming language. Most

importantly, we deal with subtyping, which the region calculus does not.

Real-time Java [] includes ScopedMemory objects which behave similarly to our

scoped regions, albeit without the static safety guarantees. Later work by Zhao, No-

ble and Vitek [] introduces a Scoped Types discipline that enforces these nesting

invariants statically.

A number of systems in the literature combine linearity and regions [, ], using

linearity to track the use of regions to avoid the lexical scoping of region allocation and

deallocation in the regions calculus.

. CONCLUDING REMARKS

Scoped regions enable confinement of objects to a method body. Without no restric-

tion on the expressive power, scoped objects need not be mentioned in pre or post

conditions of a method, or in a class’ invariants. This is a powerful consequence.

Scoped regions enable method-local objects to be created with a guarantee that

they will not escape. They can thus be safely deleted when the region exits and aliases

from scoped objects can be safely disregarded, which facilitates reasoning and pre-

serves separation of temporary objects and an object’s representation.

Using owner-polymorphic methods, a completely orthogonal construct, defined

in Chapter , scoped references can be exported to subsequent stack frames, similar to

borrowed pointers.

In addition to confining pointers to a specific scope, scoped regions have memory

management advantages in that memory transitively consumed by objects belonging

to the scoped region can be immediately reclaimed when the region exits.
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Pizlo et al. [] suggest two types of functions that will especially benefit from

scoped regions in terms of memory management: sinks—methods whose results are

not returned but relayed to an external entity such as a file, and pure functions—

methods that do not modify external state. For example, a method that prints data

to a file might create a temporary file object, a temporary stream to write to the file

and possibly several temporary objects for concatenated data to write to file in fewer,

but larger chunks.

We now move on to describing a third orthogonal construct that extends Joline

with externally unique pointers, “non-unique uniques that are effectively unique”.
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Chapter 

External Uniqueness

. CONTRIBUTION

U     . In many proposals [, , , , ,

, ], their power is, however, hampered by the fact that the uniqueness is for only

one object as opposed to an entire aggregate. Also, it turns out that all realisations of

uniqueness prior to our original external uniqueness paper [] violates the principle

of abstraction, suggesting that the traditional uniqueness definition is not well suited

to object-oriented programming.

In this chapter, we introduce external uniqueness, a realisation of uniqueness con-

structed on top of deep ownership. In short, external uniqueness overcomes the ab-

straction problem and allows a flexible form of aggregate uniqueness that relaxes the

uniqueness definition for internal pointers without compromising effective uniqueness.

Some subsequent proposals [] have adopted our approach.

In the presence of ownership types, external uniqueness comes virtually for free in

a programming language. Moreover, as the proposal is ownership-based, it integrates

perfectly with the previously proposed constructs, owner-polymorphic methods and

scoped regions to simulate borrowing of unique values. Thus, we realise uniqueness

without introducing additional pointer categories and can even allow borrowed refer-

ences to flow into the heap. All in all, we believe that our uniqueness proposal is better

suited to object-oriented programming that traditional uniqueness.

We begin this undertaking by recapping some fundamental points of uniqueness
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before describing realisations of uniqueness in an object-oriented setting, the prob-

lems and present solutions and how this causes a problem with abstraction.

Large parts of this chapter was published by Clarke and Wrigstad []. The presen-

tation has however evolved with improved examples and illustrations. Specifically, the

analysis of constructors is new, as is the dynamic semantics and proof of soundness.

. RECAPPING UNIQUENESS

In Chapter , we introduced the concepts of uniqueness, borrowing and destructive

read. In this section, we detail the description of uniqueness, just as we did with own-

ership types in the description of Joline. In particular, we identify three shortcomings

of (most) existing uniqueness proposals: they only apply to single objects and not

aggregates; back-pointers to unique bridges are not possible in conceptually unique

aggregates; and, most importantly, they all violate the principle of abstraction.

.. Uniqueness and Object-Orientation

A variable or field annotated with the keyword unique contains a unique pointer or

null. Unique stack variables have an interesting, strong aliasing property:

Aliasing Property .. (Unique Variables). Statements and expressions that do not

explicitly involve the unique variable cannot effect the object to which the variable

refers.

A study by Noble and Potanin [] suggests that uniqueness as a concept fits well

with the current ways of constructing object-oriented software: inspection of heap

dumps of running programs from the Purdue Benchmark Suite has shown that as

much as % of all objects are uniquely referenced in a program. This study is op-

timistic, as uniqueness violations could occur in-between the heap dumps and this

go undetected by the analysis. However, more fine-grained, less optimistic studies of

smaller programs have shown similar results, suggesting that Noble and Potanin’s op-

timistic results are correct.

The aliasing property of unique stack variables is not shared by unique fields as

the object containing the unique field can be arbitrarily shared. Thus, the field can

be accessed by any statement and expression that have access to the object. To obtain
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as strong a property for unique fields as for unique stack variables, some proposals

restrict unique fields to only appear in unique objects []. We believe that this is

not well-suited to object-oriented programming as a unique field would require that

the enclosing object was uniquely referenced. This is very inflexible. Unique refer-

ences could not be stored in double-linked lists and introduction of a unique field in a

subclass would require all instances of superclasses to be uniquely referenced. Further-

more, letting an object’s implementation control how it can be referenced externally

leads to a problem with abstraction. This will be discussed shortly.

Unique values are painful to program with as they are destroyed when read. For

example, passing a unique object as an argument to a method will consume the ar-

gument. If the argument was to be used only temporarily by the method, it must be

explicitly returned. An example of this was shown in Figure .. As the receiver of

a method is really an implicit argument, when a method is invoked, an alias to the

receiver is implicitly created on the new stack-frame. This alias will invalidate unique-

ness of a unique receiver, unless it is destroyed at te call-site, which requires it to be

explicitly returned and manually reinstated. This is naturally tedious and prone to

errors. An example of destructive reads and manual reinstatement for receiver argu-

ments is found in Figure .. A less tedious solution using alias burying is found in

Figure ..

unique List prepend( Object data ) // method in List class
{

this.first = new Link( data, this.first );
return this--;

}

unique List list = new List( );
list = (list--).prepend( new Object( ) );

Figure .: Destructive reads and manual reinstatement. To preserve uniqueness of list
when the method is invoked, we are required to nullify list, indicated using --. Thus,
the list must be explicitly returned when the method exits and manually reinstated.

As it turns out, the presence of a this pointer (or equivalent) increases the com-

plexity of adding unique references to an object-oriented programming language since

one must consider how a class treats its instances internally. For example, if a method
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void prepend( Object data ) // method in List class
{

this.first = new Link( data, this.first );
}

unique List list = new List( );
list.prepend( new Object( ) );

Figure .: Alias burying to avoid destructive reads. From the code, we can statically
infer that prepend( ) will not create an alias to its receiver. At the call-site, the unique
receiver is stored on the stack and can thus not be accessed during the method call.
Thus, list is sufficiently buried and the method call does not invalidate its uniqueness.

assigns this to a variable or field, invoking the method on a unique variable should

consume the variable’s contents to maintain uniqueness of a reference. In the presence

of borrowed pointers, such receiver consuming methods must not be invoked on bor-

rowed values, which introduces additional complexity to the treatment of uniqueness.

In addition, if a constructor stores this in a global field or in a field of an argument

object (or in a subobject to itself), the new operation invoking the constructor will

return a non-unique reference.

In short, there are three problems with adding uniqueness to object-oriented lan-

guages:

. the implicit destruction of unique receivers,

. how to restrict a method’s use of its receiver to allow it to be reinstated after a

call, and

. how to make sure that a constructor returns a unique reference.

Different approaches in the literature reflect the treatment of this by annotations

on a class’ interface in two ways. The annotations are necessary to achieve modular

checking of the uniqueness invariant and are either at class-level or method level:

Via class annotation Classes are divided into two kinds, those whose instances may

assign this internally, and those whose instances may not. Only instances of the

latter may be referenced uniquely [].
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// The class declaration is annotated with a unique keyword
unique class Server extends Object
{

Int noConnections = 0;

void connect( Client client ) // Invalid method
{

client.setManager( this ); // – won’t compile (see Figure text)
}

Int getConnections( ) // Good method
{

return this.noConnections;
}

}

Figure .: Using class-level annotations to control how this is treated internally. The
connect( ) method will not compile as it is creates an alias to this and passes it as an
argument to the setManager( ) method in client.

Via method annotation Methods are annotated to indicate that they may consume

this [, ]. Calling such a method requires that its target be destructively read

(or equivalent, in the presence of an effective uniqueness scheme).

We now detail the description of these approaches to show how they both create a

problem with abstraction in the presence of evolving code.

Class-level Annotations

Class-level uniqueness annotations, proposed by Minsky [] in Eiffel∗, decorates class

declarations and controls whether instances of a particular class can or cannot be

uniquely referenced. In the example in Figure ., a class Server is annotated with

the uniqueness keyword allowing its instances to be uniquely referenced. The unique

annotation requires that all methods in the server class are anonymous (do not cap-

ture this), that is they don’t assign this, or pass this as an argument to a method. As

all methods in a unique class are anonymous, this can be safely used as a receiver in all

methods as no method will alias this.
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class Server extends Object
{

Int noConnections = 0;

void connect( Client client ) consumes
{

client.setManager( this );
}

Int getConnections( ) anonymous
{

return this.noConnections;
}

}

Figure .: Using method-level annotation to control subjective treatment of this

Method-level Annotations

Method-level annotations, used by for example Hogg [] and Boyland [], are an-

notations placed on methods instead of on a class. Each method is annotated to reflect

its treatment of this and allow only methods that do not capture this to be invoked

on unique receivers. Thus, method-level annotations allows an object to be uniquely

referenced regardless of its class’ implementation. This is more fine-grained and thus

more flexible than class-level annotation. The price is a slightly increased syntactic

overhead. Figure . shows the Server class from Figure . using consumes and anony-

mous annotations, similar to Boyland’s proposal.

The getConnection() method is now annotated with the anonymous keyword, mean-

ing that it does not create an alias to this this on the heap. The connect() method is

annotated with consumes meaning that it will create an alias to its receiver object if in-

voked on a unique pointer. Validity of these annotations can be controlled by a simple

compile-time check

Method-level annotations allow the mixing of consuming and non-consuming

methods in the same class. As with class-level annotations, some additional constructs

are required to enable unique references. We either need destructive reads to ensure

that a variable used to invoke a consuming method will be destructively read to pre-

serve uniqueness, or some equivalent mechanism such as alias burying [] to make
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sure that uniqueness is maintained.

A third alternative is to simply weaken the uniqueness invariant and allow several

pointers to a supposedly unique object to exist simultaneously. Examples of systems

where the uniqueness invariant is weakened are Eiffel∗ [], AliasJava [], Balloons [],

Pivot Uniqueness [] and Capabilities for sharing []. In these systems, borrowing

weakens uniqueness since the unique reference is still visible in the system during the

borrowing. Thus, another thread, or a reentrant method in the same thread, might

use the reference during the borrowing, effectively violating the uniqueness.

.. Problems with Class-Level and Method-Level annotations

Problems with Class-Level Annotations

The class-level annotation approach has several problems: it violates abstraction by

making the uniqueness keyword reflect aspects of the class’ implementation; it is in-

flexible; and it places large constraints on the evolution of a program.

Violating the Principle of Abstraction Using class annotations, whether or not an

object can be uniquely referenced becomes a property of the class, or more specifically,

of how the class’ methods can treat the this variable. Thus, internal implementation

details are visible in the interface, which is a violation of the principle of abstraction

as this annotation controls how the object can be used externally. The negative effects

of this will be addressed again shortly and compared to a similar problem for method

level annotations.

Inflexibility Classes whose instances should be possible to reference uniquely may

only contain anonymous methods. A single method that needs to create an alias to

this in a class will thus preclude uniquely referenced instances of the class, which is

clearly very inflexible. If a class’ instances should be both uniquely and non-uniquely

referenced, methods invoked on non-unique references still would not be allowed to

alias this.

Last, instances of classes not annotated with the unique keyword cannot be uniquely

referenced, even if the class’ implementation would allow it as only instances of classes

annotated with unique are allowed to be referenced uniquely.





CHAPTER . EXTERNAL UNIQUENESS

neverunique class A extends Object
{

void aliasingMethod( ) {
B temp = this; // Creates an alias to this

}
}

// changing uniqueness declaration for the subclass
unique class B extends A { }

unique B b = new B( );
m.aliasingMethod( ); // invalidates uniqueness

Figure .: Subclassing with class-level annotations. Instances of class A are never
unique. However, if we are allowed to subclass A with a unique class B, uniqueness of
unique references to B objects can be invalidated if a method call binds to a method
defined in A.

Constraining Evolution As is illustrated in Figure ., the (non)uniqueness anno-

tation must be preserved through subclassing as uniqueness could otherwise be in-

validated by overriding methods that created aliases to this. This makes extension via

subclassing harder or less powerful since the annotation of the superclass must be re-

spected by all subclasses.

It might be possible to allow unique classes to have non-unique subclasses as the

implementation of the unique superclasses work even if this is not unique, but as Fig-

ure . clearly shows, not the other way around.

Problems with Method-Level Annotations

While overcoming many of the problems due to the coarseness of class-level annota-

tions, method-level annotations are not problem-free. For example, overriding meth-

ods suffer similar constraints as subclasses in the class-level example with respect to

preserving annotations.

Most importantly, however, the abstraction problem persists as the annotation of

a method reflects its implementation. Thus, internal implementation details are again

visible in the interface leading to problems when implementation details change over

time.
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.. Uniqueness and a Problem with Abstraction

In this section, we detail the discussion about the abstraction problem with both styles

of annotation above. In both cases, and for methods and constructors alike, a problem

surfaces when the implementation of a class changes the way it uses this which leads to

a violation of the principle of abstraction. We will now examine this problem in more

detail, recapping the arguments from Clarke and Wrigstad [].

For concreteness, assume that we have the following class with a single method:

class BlackBox

{

void xyzzy( )

{

. . . // unknown implementation

}

}

and at some other place in the program, a unique variable or field

unique BlackBox bb;

As the enclosing software system evolves, a later version of BlackBox requires an

addition to xyzzy( ) that includes the line:

OtherBlackBox obb = new OtherBlackBox( this );

Thus, the new implementation of xyzzy( ) now creates an alias to the receiver. Under

the existing proposals, this forces a change of BlackBox’s interface. The consequences

of this vary depending on whether we are using class-level annotations or method-level

annotations, as we will see in the following sections.

With Class Annotations

As it is visible in a class’ interface how it treats its this variable, changes to how this is

treated might lead to problems with changes in the interface.

Using class annotations BlackBox would have been annotated unique to show that

its instances can be uniquely referenced. As a consequence of the addition to xyzzy( ),

instances of BlackBox can no longer be uniquely referenced which is reflected in change

of the class header from unique class BlackBox to neverunique class BlackBox.
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Consequently, all variable declarations of type unique BlackBox, such as unique

BlackBox bb; above would no longer be valid in the program, and must have their

uniqueness stripped to compile. Depending on how uniqueness is realised, it may also

be the case that all destructive reads of BlackBox objects throughout the entire program

would have to be changed to ordinary reads, perhaps with destructive reads performed

manually. Obviously, these changes could propagate through the entire program.

With Method Annotations

As it is visible in a method header how the method treats the this variable, changes to

how this is treated might lead to problems with changes in the method header.

Using method annotations, the xyzzy( ) method would have been annotated anony-

mous. However, the addition to the method forces it to be changed to consumes.

Potentially, this forces much fewer changes to the program compared to class-level an-

notations, as instances of BlackBox may still be uniquely referenced. However, the call

bb.xyzzy( ) will now create an alias to its receiver requiring that the variable bb is nul-

lified to preserve uniqueness. Depending on the realisation of uniqueness this change

from anonymous to consumes might propagate as an addition of a destructive read

operation to the calls. If this is not the case, the result is even more drastic, as the be-

haviour of the method call has changed silently from the original program to consume

its target. This is both awkward and counter-intuitive.

Concluding Remarks

In both cases, a purely internal change to the implementation of the BlackBox class

forces changes to its interface, which propagate through the program—either stati-

cally or dynamically. Not only does this introduce the opportunity for errors since the

behaviour of a program changes, also it means that objects cannot be treated like black

boxes, because:

Software evolution which changes the uniqueness aspects of an object’s imple-

mentation can force changes in the object’s interface, which then propagates

changes throughout the program.

Thus extant uniqueness proposals break abstraction.

In conclusion, it seems that current approaches to uniqueness are ill-fitted to the

object-oriented setting.
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.. Uniqueness and Aggregates

Unique pointers provide effective encapsulation of part of an object’s representation.

Even though there is nothing to prevent uniquely referenced parts of the state from

escaping its enclosing object, they cannot be aliased. When exported, rather than cre-

ating an incoming alias, a unique reference is moved out of its aggregate. As this is

the only reference to the object in the system, it means that the object has effectively

moved too, and become part of some other object’s representation.

Consider an aggregate object with a bridge object providing an interface to the ag-

gregate. Even if the aggregate is unique, its representation need not be and so, even

though it may look as if the aggregate is uniquely referenced, incoming aliases to its

representation might exist that prevents us from treating the aggregate uniquely, which

is a problem with threads, for example.

For concreteness, we present a small code example:

unique Aggregate agg = new Aggregate( );

Object incoming = agg.rep;

Thread t = new Thread( agg-- );

incoming.messUp( );

Here, agg is a unique reference to an aggregate. We obtain a reference to a represen-

tation object and store it in incoming. Now, passing the unique agg reference to the

thread’s constructor in line , one would expect the aggregate to become thread-local

to the new thread. However, as the last line shows, this is not the case, as residual alias-

ing to parts of the aggregate exists in the current thread. Thus, only the bridge object

is moved, while (some or all of) the objects in its representation become effectively

shared between two threads or two aggregates. Graphical depictions of this are found

in Figures . and .. We call this horizontal slicing and it is a clear breach of encap-

sulation. Thus, even though unique references can be said to provide some form of

encapsulation, the encapsulation is not transitive.

Clearly, this behaviour may cause objects the be shared between threads, suggest-

ing that using uniqueness in place of synchronisation is only suitable for individual

objects.

To tackle the problem of incoming aliases to a uniquely referenced object’s repre-

sentation, the encapsulation of uniqueness must apply to an entire aggregate. This is

the case in Hogg’s Islands [] and in Boyapati et al.’s Parameterised Race-Free Java [].
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Figure .: Sharing precludes thread-localness. The dashed arrow denotes a unique
reference. The object a is a uniquely referenced aggregate and r is its supposed rep-
resentation, shared with some external object e. t is the thread object from the code
example on the previous page.

However, Islands does not allow outgoing aliasing, which we believe is too restrictive

to support actual programming, and Parameterised Race-Free Java suffers from the

abstraction problems identified earlier in this chapter. Furthermore, its allowing the

unique keyword as an owner parameter violates parametricity [] causing an addi-

tional abstraction problem, as this leaks the treatment of internal variables out into the

interface. This is in contrast to regular ownership types, where owners have no effect

on semantics. We have discribed this elsewhere [].

We now move on to describe our take on uniqueness that not only overcomes the

abstraction problem, but also enables a strong notion of uniquely referenced aggregate

which allows back-pointers to the unique bridge object without effectively weakening

the uniqueness invariant.

. EXTERNAL UNIQUENESS

In this section, we describe external uniqueness, a uniqueness built on top of Joline’s

deep ownership types.

Definition .. (Externally Unique Object). An object is externally unique if the num-

ber of external references to it is at most one.
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Figure .: Moving a unique can mean slicing an aggregate. The dashed arrow denotes
a unique reference. The object a is an aggregate and u and r is its representation.
Object r is shared internally between u and a. When u is moved outside of a, r is
exposed externally of a, causing “slicing”.

This is a reasonable definition. First, it considers aggregate uniqueness, much in

the style of Hogg’s Islands [], but allows outgoing aliases to objects external to the

aggregate. Second, it even allows back pointers to the bridge object from objects within

the aggregate. None of the existing proposals allow this. Surprisingly, as we shall see

later, externally unique pointers are effectively unique.

External uniqueness is realised as an extension to ownership types. The exten-

sion is minimal, but the consequences great. As our uniqueness is built on owners,

it also allows us to use the aforementioned constructs, scoped regions and owner-

polymorphic methods, to simulate borrowing, without having to extend them. Be-

cause of the nature of our borrowing proposal, we also allow borrowed pointers to be

stored temporarily on the heap, which was previously not possible in existing systems.

(A subsequent proposal by Boyapati has adopted our way of realising uniqueness [].)

We begin by describing unique owners, the key to achieving external uniqueness.

We then describe operations on externally unique pointers, discuss ways of maintain-

ing uniqueness when accessing unique variables and how to deal with constructors.

Last, we discuss the formal properties of external uniqueness, why external uniqueness

is effectively unique, and how external uniqueness overcomes the abstraction problem,

before showing the extension of Joline’s formalisation to include externally unique

pointers.
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From now on, we will write unique to mean externally unique, adding

additional qualifiers when a distinction is necessary.

.. Unique Owners

Our realisation of external uniqueness relies on ownership types.

It is instructive to view owners as permissions—unless an object is explicitly given

the permission to reference some other object’s representation, the necessary types

cannot be formed and thus such references cannot exist. The design rationale behind

our external uniqueness proposal is the following: if an object has a properly confined,

unique owner, the object’s type can only be formed at one specific place, precluding

aliasing.

The syntax for unique types is similar to the traditional ownership types syntax:

unique:ClassName〈pi∈1..n〉

The owner parameters pi∈1..n are regular owner parameters. The unique keyword is

not an owner in itself. It is simply shorthand for saying that the owner of the object

of this type is the the field or variable that holds the reference to the object. Thus, the

declaration “unique:List〈data〉 x” is equivalent to “x:List〈data〉 x”, where x is a variable

name rather than an owner parameter from a class or method header. By not allowing

variable names to be used directly as owners, we implicitly prevent a programmer from

giving the type of another variable the owner x. As follows from our interpretation of

the unique keyword, no two unique types can be the same as variables or field are

“dynamic locations” and therefore unique in the system—the field f in different objects

are different fields and two variables named x on different stack frames are different

variables.

As an example of the use of the unique keyword, the types of the two variable

declarations below are syntactically equivalent, but denote different types—one for

objects owned by the variable x and one for objects owned by the variable y.

unique:List< data > x;

unique:List< data > y;

This design decision makes the syntax clearly reflect the semantics. It also resembles

most other proposals for unique references.
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A side-effect of unique owners is that assigning a unique reference from one vari-

able to another requires a change of the owner of the referenced object. Consider

the variables x and y from the example above. The types are different, but assign-

ment compatible, as they are both denote uniquely referenced lists whose elements are

owned by data. The assignment x = y must change the owner of the object referenced

by y from y to x. We call this moving as we require y to be nullified, as otherwise, there

would be two references to the object with conflicting types and uniqueness would

also be invalidated. Uniques that are free values are owned by the special owner free.

Merely reading a unique value makes it free and gives it the free owner, and reading a

unique variable and then storing its contents in another performs two moves, from y

to free and from free to x.

Having introduced the unique owners concept, we can define unique types and

unique references:

Definition .. (Unique Type). A type with the unique keyword as its owner.

Definition .. (Unique Reference). A reference that has a unique type.

In ownership types, the owner of an instance is statically accessible to its represen-

tation via the keyword owner. As a consequence, even if the unique keyword produces

a unique owner externally, the owner denoted by the unique keyword is accessible

internally in the object via the keyword owner. Thus, it is possible to form types inter-

nally that could alias the unique reference, rendering the reference not really unique.

As these types will not use the unique keyword, they will not denote unique references.

However, as we do not allow field access or method invocation on unique references

(we will return to this issue shortly). This means that aliases to the object cannot be

stored in or retrieved from the fields of an object when it is uniquely referenced. Thus,

any internal pointers are inaccessible and cannot be used to obtain an alias that would

break the object’s external uniqueness. We can now restate Definition .. in terms of

Definition ..:

Definition .. (Externally Unique Object). An object is externally unique if it is

referenced by a unique reference.

As opposed to Boyapati et al.’s [] proposal, the unique keyword can only occur

in the owner position of the type and not in any other owner parameter. As a con-

sequence, we cannot specify externally whether the fields of an object will contain a
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Figure .: External Uniqueness. The gray object is externally unique, but has a back-
pointer to itself internally.

unique reference or not. We chose to avoid this extra complexity for a number or

reasons: First, we identify an additional problem with abstraction in the fact that ad-

ditional clauses are necessary to prevent certain owner parameters from being instanti-

ated with unique owners. Internal changes to a class’ implementation may require that

a specific owner parameter is no longer instantiated with unique. This might invalidate

several previously well-formed types in the program. Second, whereas parametrically

polymorphic classes have the same semantics and invariants regardless of the the type

of its fields, this is not the case if the uniqueness of the fields can be controlled exter-

nally. Thus, this violates parametricity []. Third, we believe our solution is cleaner,

and has a much more natural semantics.

Having introduced the unique owner concept, we move on to describe the operations

on externally unique pointers.

.. Operations on Externally Unique Pointers

We aim to make our system as clean and simple as possible to make it play well with

other constructs and for the constructs themselves to remain orthogonal and combin-

able. To this end, we allow only two operations on unique pointers, movement and

borrowing. The borrowing operation is similar to borrowed references due to owner-

polymorphic methods, but uses an locally created owner, similar to a scoped region.

The movement operation simply moves the unique from one variable or field to

another. The borrowing operation converts the unique into a normal pointer for a

well-defined scope. To invoke methods or access fields of a unique object, the object

must first be borrowed.





CHAPTER . EXTERNAL UNIQUENESS

Movement

To make the syntax clearer, and also to simplify the formal account of the Joline lan-

guage, we chose to make destructive reads explicit. Consequently, a programmer must

write x = y-- or return y-- instead of x = y and return y respectively. For fields this

becomes x = y.f-- and return y.f--. Thus, the syntax of movement becomes:

y--; // make contents of y a free value, nullify y

x = y--; // move contents of y into x, nullify y

In our system, reading a unique variable has the side-effect of updating the variable

with null. Thus, unique values are effectively moved instead of aliased when assigned

from, as the source variable is nullified. As every unique type in a system has a unique

owner, movement also implies transfer of ownership from one variable to another, or

to the special owner free for free values. Reading a unique variable or field without

assiging the result makes the unique free. Assigning it moves it into the owner of the

target variable, possibly losing uniqueness depending on the target’s type.

Movement and Subsumption

A unique may be moved anyplace where its owner parameters are already visible. Oth-

erwise, uniques could be used to break the owners-as-dominators property. For ex-

ample, an object with type unique:Foo< bar > can hold references to objects owned by

bar. If a unique reference to such an object is allowed to move outside bar, the en-

capsulation of bar’s representation is breached, indirectly via the moved object. For a

graphical depiction of this, see Figure ..

However, in presence of subtyping, the situation becomes even more subtle. In

ownership types, subsumption allows us to “forget” owner parameters, as long as the

owner itself is invariant. For example, bar:Object is a supertype of bar:List< data >.

This is safe, as the owner is invariant for non-unique references. For uniques, however,

if unique:Object is a supertype of unique:Foo< bar >, the information that the object

cannot move outside of bar is lost—if the object were to move outside of bar, bar’s

representation could then be accessed without going through bar, which would break

the owners-as-dominators property.

To address this problem, we introduce movement bounds that bound the movement

of uniques and preserves owners-as-dominators in the presence of subtyping.
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Figure .: Movement breaking encapsulation. The reference a→u moves to e→u
causing u→r to break m’s encapsulation. With movement bounds (see text), move-
ment of u must be restricted to inside m for u to be allowed to reference r. This would
preclude the encapsulation breaking move in the figure.

Movement bounds govern the maximal outwards movement of a unique. The

syntax for a unique type with a movement bound is unique[p0]:List< pi∈1..n >, where

pi∈0..n are regular owners, and p0 is the movement bound. Similar to owners of non-

unique types, p0 must be inside pi∈1..n when the type is formed as the object could

otherwise move in a way that would break owners-as-dominators. When implicitly

derived, the movement bound defaults to owner except in static contexts, where owner

defaults to world.

In contrast to normal owners, movement bounds can change, but only inwards.

This is always safe and can never lead to encapsulation breaches, as inner objects are

allowed access to outer objects. Thus, the owners-as-dominators property is preserved.

In the formalism, unique[p] is written uniquep. Movement bounds can be implicitly

derived by the system, or explicitly stated.

Choosing movement bound requires a trade-off. An outer bound enables more

movement, but limits what other objects the object can access (specifically, what own-

ership parameters can appear in its type). An inner bound enables less movement, but

permit more objects to be accessed. Unique references with movement bound world

can be moved anywhere in the system, but just as for objects owned by world, they can

only statically alias other world-owned objects in addition to its representation.

In addition to governing movement of uniques in the presence of subtyping, move-

ment bounds can also be used to restrict the movement of the values in a unique field,
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effectively enforcing deep encapsulation even for the unique values themselves. For exam-

ple, consider the class Example below using traditional uniqueness to controlling alias

of a representation object stored in the field rep.

class Example

{

unique Object rep;

}

In the example, even though the contents of rep will be encapsulated in the enclosing

object, there is nothing to prevent its contents from being exported outside of the

object. This can be achieved very simple with movement bounds:

class Example

{

unique[this]:Object rep;

}

Here, the unique type of the variable rep has movement bound this. In our system, the

contents of rep can thus only be moved to places inside this, guaranteeing that rep will

always be encapsulated inside its enclosing object.

Borrowing

We begin our descrition of our borrowing construct for unique variables and fields

with a recap of existing borrowing constructs in previously proposed systems.

Many proposed systems [, , , , ] use borrowing to tackle the “slipperi-

ness” [] of unique pointers. A unique variable may be passed as a borrowed pa-

rameter to a method. Borrowed arguments may only be used to invoke anonymous

methods (methods that borrow their receiver argument) and can only be passed to

another method as a borrowed argument. A borrowed argument may not be returned

nor stored on the heap. Thus, all borrowed references created by a method will be

destroyed when the method exits. This alleviates some of the pain of programming

with unique values as uniques passed as borrowed (receiver) arguments can be au-

tomatically reinstated when the method that borrowed them exits as this method is

guaranteed not to have created any static alias to the borrowed object.

In existing systems using borrowing, borrowed pointers are an additional kind of

pointers that may not be stored in the heap nor returned from methods. These are
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Figure .: Mediating between external uniqueness and borrowing — b is the original
borrowed reference. b, b ′ are only valid during the borrowing. (Stack grows down-
wards.)

very arbitrary restrictions that are likely to make programming with borrowing more

complex and less flexible. Provided these were destroyed when method exits, it would

be safe to allow borrowed arguments to be stored on the heap, similar to how we can

treat arguments to owner-polymorphic methods presented in Section ... The type

systems of previous proposals have not been strong enough to express such constraints.

We chose to tackle borrowing in a completely different way, using owners to govern

where borrowed pointers may flow.

In our system, we introduce an additional borrowing statement which temporarily

moves a unique value into a non-unique value confined to a block. The syntax of the

borrowing statement looks like this (to simplify matters, we use a slightly different

syntax for the formal system.):

borrow lval as temp:var in { . . . }

where lval is a uniquely typed, l-value and temp and var are the names of the temporary

owner and variable introduced for the duration of the block.

When the borrowing block is evaluated, the content of lval is destructively read

and moved into var, with implicit transfer of ownership. The owner of var is temp,

which is ordered inside the movement bound of the type of lval. As temp is a fresh

owner, there can be no preexisting variables or fields with a compatible type, and the

only variables that can have types that contain temp, must be created in the scope of

the block.
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Owner-polymorphic methods may be used to export var outside of the current

method. As the owner introduced by the block is not visible to any preexisting object,

temp can only be bound to borrowed owners. Thus, var can only be passed from the

block as a borrowed argument. Any aliases created by such methods are lost when

they exit, unless they are returned, something that previous borrowing proposals had

to prevent not to lose track of the borrowed references.

As the borrowing blocks acts as guards that delay reinstatement of the borrowed

references, returned aliases from an owner-polymorhic method pose no problem. As

we delay the reinstatement till the exit of the borrowing block, all variables holding

returned aliases from a borrowed method are out of scope. Thus, when the block

exists, no references to the borrowed object can exist, and any any reference we store

back into lval will be externally unique—var can be safely stored back into lval. This

is powerful, as it allows us to have an externally unique aggregate that changes bridge

object as a result of a borrowing.

In conclusion, our borrowing construct differs from previous ones in that it does

not introduce an additional kind of pointer in the system. Rather, borrowing converts

an object between being uniquely and non-uniquely referenced. Instead of using a

crippled borrowed pointer, we rely on the ownership types system to make sure that

when the borrowing ceases, all aliases to the borrowed object are invalidated, allowing

us to once again view it as unique. For a graphic depiction of this, see Figure ..

Maintaining Uniqueness

As we have already stated, we chose destructive reads as our approach to maintain

uniqueness when moving unique values. We now discuss ways of maintaining unique-

ness when a unique value is borrowed using our borrowing construct. We use the

following example:

borrow x as temp:var in { x.doSomething( ); }

There are essentially three approaches to maintaining uniqueness of x in the block

above:

Do Nothing Rather than invalidate the contents of x, we could simply weaken the

definition of uniqueness, permitting both the reference in the borrowed variable

and the borrowed references, and even allow movement of the borrowed value

underfoot. This would allow x.doSomething( ) to evaluate successfully.
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Destructive We could nullify the borrowed variable during borrowing, and then do

either of the following:

• Simply restore the original contents of the borrowed variable when the

borrowing ceases. This would cause x.doSomething( ) to throw a null-

pointer error;

• Restore the final contents of the borrowing variable at the end of the bor-

rowing.

Restore the initial value is consistent with traditional uniqueness, whereas

enable a different reference into the same aggregate to be reinstated is con-

sistent with external uniqueness; or

• Rather than simply nullify the borrowed variable, we could record the state

of its contents. There are three possible states: available, null, and bor-

rowed, indicating that the variable contains something, nothing, or is dis-

abled due to some currently active borrowing. In the presence of multiple

threads, additional states could be added to indicate whether a different

thread is borrowing the reference. This would allow x.doSomething( ) to

evaluate successfully.

This solution would give the programmer full control, dynamically, of the

possible ways to handle an attempt to borrow an already borrowed variable

or field.

Alias Burying The last possibility is to employ alias burying []; instead of requiring

uniques to be destructively read, we can allow multiple references to a unique

object as long as all but one reference is buried, goes out of scope or is other-

wise invalidated. This would ensure that when the variable is read, all its aliases

are unusable []. Alias burying eliminates the need for destructive reads, but

unfortunately is costly in other respects. As it is based on program analysis, its

strength is sensitive to the underlying analysis. To achieve modular checking,

interfaces must be further annotated to indicate which unique fields are read by

what methods [].

This may well reintroduce the abstraction problem, for example if a method’s

implementation is changed so that a previously borrowed variable’s content is

stored on the heap or if synchronisation is employed to prevent simultaneous
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access of a borrowed field. For fields, Alias Burying requires that borrowed

fields be locked in order to prevent simultaneous accesses. This is similar to

the temporary nullification of destructive reads, but the semantics and effects

on practical programming are much nicer.

In case of destructive reads and alias burying, the equally strong aliasing properties

given by both schemes ensure that there is no active reference to the target object other

than the reference extracted from the borrowed variable. As was stated earlier, we

choose the destructive reads approach to maintain uniqueness. This keeps our formal

system simple, while retaining a strong definition of uniqueness.

A drawback of destructive reads is that it precludes simultaneous non-conflicting

operations on unique references, such as allowing the simultaneous invocation of two

read-only methods on one unique reference during a borrowing.

Borrowing can be implemented to maintain uniqueness or not. Our system can

support both, but for simplicity, we only consider the second case here and in our

formalism. For borrowing that maintains uniqueness for the borrowed pointers, see

Section ..

.. Creating Unique Objects

Unique objects can only be created through instantiation. However, object creation

in presence of uniqueness requires special attention [], as constructors could create

aliases to the object and thus invalidate uniqueness.

Constructors are effectively methods called only once but otherwise have the same

restrictions as ordinary methods. In an ordinary method call, external uniqueness

would be violated if the method created a path to this in a preexisting external object.

In case of a constructor, the result of an object creation would then not be an externally

unique object.

An argument that could store static aliases to the object being created would need

the created object’s owner as an owner parameter. However, this is not possible, as the

owner of an object being created is a fresh owner and there is no way it can be present

in external, previously existing objects.

Having discussed how to deal with unique object creation in the presence of con-

structors, we omit constructors from our language description for simplicity.
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. DISCUSSION

We have now described external uniqueness and how to realise it on top of a deep

ownership system using only minor tweaks and with one additional construct, bor-

rowing. As opposed to previous proposals [, , , ], our borrowed pointers are

regular pointers rather than of a special kind. This is a more flexible and less com-

plex solution as borrowed pointers can be stored on the heap and we avoid the need

for a third reference category (non-unique, unique, borrowed). In this section, we

introduce the external-uniqueness-as-dominating-edges property, argue why external

uniqueness is effectively unique despite the presence of back-pointers, and show how

external uniqueness overcomes the abstraction problem.

.. Aggregate Uniqueness and Dominating Edges

Most uniqueness proposals [, , ] facilitate unique references to individual ob-

jects. External Uniqueness facilitates aggregate uniqueness, where a unique pointer is

the single entry point to an entire aggregate (or more specifically, all representation ob-

jects within the aggregate). This is very similar to the owners-as-dominators property

of ownership types, only slightly stronger. An externally unique pointer is a dominat-

ing edge of the representation objects in the aggregate: all paths from the root of the

object graph to the object all go via the same edge (unique reference) to it. As opposed

to owners-as-dominators, the dominating edge property holds not only for the heap,

but for the stack as well.

Ownership types enables a strong notion of aggregate []. With external unique-

ness, a uniquely referenced object in a system with deep ownership is a uniquely ref-

erenced aggregate, similar to an Island [], but allowing outgoing aliases to external

objects.

.. Back-pointers and Effective Uniqueness

By virtue of the external-uniqueness-as-dominating-edges property, back-pointers,

pointers from within an aggregate to the unique bridge-object, cannot become active

when the unique pointer is in place.

While in place, the dominating edge is the only way to access an externally unique

object. We cannot invoke a method on a unique reference, nor can we use it to access
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Figure .: Back-pointers are innocuous since they cannot be accessed from outside.
The reference u→r cannot escape through a→u as that reference may not be used
to access fields or call methods. Also, as the representation of u is protected by deep
ownership, references to r from outside u are not possible, and can thus not be used to
access the back-pointer r→u outside u.

fields of the object it refers. Thus, we cannot reach the possible internal pointers that

violate actual uniqueness. This is shown in Figure . below.

Thus, we can allow back-pointers without effectively weakening uniqueness, mak-

ing external uniqueness effectively unique [, ]. Thus, the aliasing properties of

externally unique variables are the same as for traditionally uniques ones (see Defini-

tion ..)

.. Overcoming the Abstraction Problem

As described earlier in this chapter, extant proposals for uniqueness suffer from an

abstraction problem caused by annotations to reflect how an object treats its this vari-

able. In the case of Boyapati et al.’s SafeJava [], adding uniqueness cases an additional

problem as the proposal violates parametricity.

Overcoming the abstraction problem with uniqueness requires that details about

how the object treats its this pointer are not visible in its interface, and that an object’s

implementation cannot change how the object can be referenced externally. The key

to achieving this in the presence of uniqueness is to preclude subjective movement,

that is, not allow the object to move itself. In our system, the type of this always have

the owner owner, which is non-unique and therefore cannot move. Thus, a class’

implementation cannot effect the possibility of its instances to be uniquely referenced.

If an object does not create internal aliases to itself, is is actually unique (in the
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traditional sense); if it does, it os effectively unique, or externally unique. The encap-

sulation of ownership types prevent any internal alias to an externally unique pointer

from escaping and compromising the external uniqueness invariant; we can allow an

object to treat itself non-uniquely, create aliases to itself etc., and as we have shown,

external uniqueness is still effectively unique.

Since instances will never see themselves as unique, there is no need to reflect treat-

ment of this in the interface (or track it using program analysis, other than for the

purposes of preserving the owners-as-dominators property of ownership types).

Furhtermore, instantiating an owner with unique does not propagate through im-

plementation as in SafeJava. There is thus no need for where-clauses [] or similar

constructs to control which objects or owner parameters can be uniquely referenced

respectively instantiated with unique. This means that any change to the class’ imple-

mentation cannot change its instances ability to be referenced uniquely, nor affect any

external, unique references to itself. Any possible treatment of this or of the owner

parameter is always valid, regardless of any possible external unique references.

Our realisation of uniqueness thus decouples a class’ implementation from

how its instances can be referenced. Thus, details of the class’ implementation

need not propagate into its interface which preserves abstraction.

From a software engineering perspective, our proposal is better suited to software

evolution than traditional uniqueness, since it does not break the principle of abstrac-

tion; is does not require interfaces to change when the internal implementation does,

as illustrated by the upcoming example.

The price to avoid the abstraction problem is the loss of subjective uniqueness—an

object can no longer move itself. The gains are much greater.

A Concrete Example

Figure . shows the implementation in Joline of a Server class used earlier in this

chapter in the description of the abstraction problem. The difference between this

figure and the previous one is the complete absence of any annotations concerning

uniqueness or the treatment of this in this figure. This is consistent with external

uniqueness. In the case of class-level annotations, the method connect( ) would pre-

clude unique references to the Server object, as the method stores a reference to the

server in a client object. In the case of method-level annotations, this method would
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class Server extends Object
{

Int noConnections = ;

void connect( owner:Client client ) // †
{

client.isManagedBy( this ); // ‡
}

Int getConnections( )
{

return this.noConnections;
}

}

Figure .: The Server class example from Figures . and . encoded with external
uniqueness

be consuming and not invokable on unique receivers. The only additional requirement

which stems from ownership types is that the owner of the server must be accessible to

the client object. At the line marked with †, the client parameter is declared as sharing

the same owner as the server object, and it will thus have the necessary permissions to

receive the this reference at line ‡.
Now, let’s consider the effects of changing the code of the figure, in particular re-

placing the entire getConnections( ) method by the following code, making the method

a consuming method:

Int getConnection( )

{

this:BlackBox< owner > bb = new this:BlackBox< owner >( );

bb.xyzzy( this ); // Consumes this

return this.noConnections; // †
}

The method now creates a temporary black box object with permission to reference

the receiver and then passes this to the black box’s xyzzy method with unknown con-

sequences.

In the case of external uniqueness, this change is perfectly legal without any change
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to the method header. The getConnections( ) method can only be invoked on a non-

unique reference. Thus, the method can only be invoked from within the object, or

an external, non-unique pointer, which precludes any unique aliases to this. Thus,

creating an additional alias to this is perfectly valid.

In case of traditional uniqueness, using class-level annotations in the style of Min-

sky [], uniquely referencing instances of Server would have required some class an-

notation in the class header. The addition of the back pointer in the change to getCon-

nections( ) would have forced this annotation to be replaced for neverunique , a clear

case of the internal use of this leaking out in interfaces.

Using method-level annotations in the style of Hogg [] and Boyland [], the

same problem appears but with different symptoms: the getConnections( ) method is

forced to be declared as consuming its receiver, and the first invocation of it will steal

the only reference to the server, causing a null-pointer exception at line †.

. FORMALISING EXTERNAL UNIQUENESS

In this section we present the formalisation of external uniqueness in Joline. Before

doing so, we give an example, which is not valid in our system, of how owner param-

eter mapping from subclasses to superclasses can make the unique owner appear in

non-owner position of a type.

The extends clause in Joline allows the forgetting of owner parameters in the map-

ping of the parameters of the subclass to those of the superclass. An example of this

is shown below where owner is mapped to foo in its superclass. This allows the owner

parameter list to vary in the hierarchy.

class Frob< foo outside owner > { foo:Object fu; . . . }

class Bar extends Frob< owner > { . . . }

world:Bar sub = new world:Bar( );

world:Frob<world> super = sub;

super.fu; // has type world:Object

While syntactically valid, the code contains a hidden error. If the owner of sub is

unique, then the type of super would end up as unique:Frob< unique >, and the type
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of super.fu as unique:Object, giving the impression that fu is unique, which is not the

case.

The simple solution to this problem is to ban owner from being used in the extends

clause of a class declaration. This is a minor restriction, as owner is always accessible

internal to the object anyway, via the owner keyword.

.. Static Semantics

Below, we show an extension to the syntax of Joline with destructive reads, borrowing

blocks and unique owners.

e ::= Expression

lval-- destructive read

(p) e lose uniqueness

s ::= Statement

borrow lval t as 〈α〉 x { s } borrow

p, q ::= Owners

uniquep unique

We now present the static semantics of our extended system.

Expressions

(-)

E ` lval :: t ref ¬isunique(t)

E ` lval :: t

(-)

E ` lval :: t ref

E ` lval-- :: t

With unique values in the system, it is no longer possible to treat all l-values directly

as l-values as subsumption would allow them to be viewed as being of the correspond-

ing non-unique type. This would allow method calls and field accesses on unique

references, which would break external uniqueness. The rules (-) and (-

) correspond to extracting the value within the l-value. If the type is non-unique,

then (the contents of) an l-value can automatically be used as a value. If the type is

unique, then a destructive read must be used to convert its contents into an expression.

Destructive reads can also safely apply to non-unique l-values.





CHAPTER . EXTERNAL UNIQUENESS

(-)

E ` p :c〈σ〉
E ` new p :c〈σ〉 :: uniquep :c〈σ〉

The modified (-) contains a subtle detail: instantiating a class creates an ex-

ternally unique object and the owner of the non-unique type becomes the movement

bound.

To simplify the formal account, we chose to make loss of uniqueness explicit using

a movement operation. Had we not chosen this approach, the rules for subtyping and

moving for unique and non-unique types would have looked like this:

(-)

E ` uniquep :c〈σ〉
E ` uniquep :c〈σ〉 6 p :c〈σ〉

(-)

E ` q ≺∗ p

E ` uniquep :c〈σ〉 6 uniqueq :c〈σ〉

Such rules would, however, allow the implicit conversion of objects from unique to

non-unique type. This would have to be taken into consideration at many points in

the formalism, complicating it furhter. Rather, we require conversion to be explicit:

(--)

E ` e :: uniqueb :c〈σ〉 E ` p ≺∗ b

E ` (p) e :: p :c〈σ〉

The “owner-cast” expression moves the contents of a unique into a subheap of some

object or block (whatever the p owner corresponds to). This is well-formed if the

expression has a unique type and if the movement bound of the type is outside the

target owner:

Statements

(-)

E ` lval :: uniquep :c〈pi∈1..n〉 ref E, α ≺∗ p, x :: α :c〈pi∈1..n〉 ` s ; E ′

E ` borrow lval :: uniquep :c〈pi∈1..n〉 as 〈α〉 x { s } ; E
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The rule (-) states that any uniquely typed l-value may be borrowed. This

is achieved by introducing a new owner variable which is restricted to the scope of the

borrowing block analogous to a scoped region, to act as the owner of the temporary

non-unique reference to the borrowed value. To ensure that this reference or other

references to the borrowed value do not escape this scope, we require that this owner

is inside the unique type’s movement bound. The remainder of the type must corre-

spond exactly to the type of the l-value, so that the borrowed variable can be reinstated

with a correctly typed value when the borrowing ends.

To simplify the formalism, we require that the unique is first moved into a local

variable on the top frame of the stack. This does not affect the expressiveness of the

language, as borrowing from any variable or field can be simulated by manually mov-

ing the unique into the appropriate variable and then manually reinstate it.

.. Dynamic Semantics

Store Type

Possible types in Γ are extended with two construct that are very much like the scoped

region: uniqueness wrappers and borrowing blocks. The uniqueness wrapper encapsu-

lates the type information for all objects in a unique aggregate. The borrowing block

does the same, but corresponds to a borrowed unique. The syntax for store-typing

included n :: T [Γ ], where T ::= c〈σ〉 | R. The complete extended T is now:

Extended syntax terms:

T ::= Owner-less type

U unique wrapper

B borrowing block

The⊕ operator is extended in a straightforward fashion to work for borrowing blocks

in the store-type and on the stack (it works just like for the region).

We also extend the rules for well-formed store type introduced in Section .. on

page  with rules for extending a well-formed store-type with an empty uniqueness

wrapper or an empty borrowing block, in both cases in some subheap m.
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(--)

Γ ` m n 6∈ defs(Γ)

Γ〈n :: U〉m ` 3

(--)

Γ ` m n 6∈ defs(Γ)

Γ〈n :: B〉m ` 3

By (--) and (--), a uniqueness wrapper or borrow-

ing block n in the subheap of some object (or unique, region or borrowing block) m

is well-formed if m is a good owner (that is, m is defined in Γ) and n is not used in

Γ . Borrowing blocks can also be pushed onto the store-type, much like regions. We

extend the (--) construct accordingly to govern pushing an empty

borrowing block to the top of the stack.

(--)

Γ ` 3 n 6∈ defs(Γ) T ∈ {R, B}

Γ ⊕n :: T ` 3

As we can see, there are two rules for inserting a n :: B into Γ . The first one applies

to adding the borrowing block into its movement bound and the second applies to

pushing the block onto the top of the stack.

Stacks and Frames

The syntactical categories frames and values are extended with a borrowing block and

a unique value respectively.

F ::= frame

Bb
n[H; F] borrowing block

v ::= value

Un[v; H] unique

The borrowing block works just like a region, but has an additional piece of infor-

mation, here b, corresponding to the movement bound of the unique before it was

borrowed. This is crucial in showing that reinstatement of a borrowed value produces

a valid unique, though it has no effect on computation.





CHAPTER . EXTERNAL UNIQUENESS

A unique value has a pointer compartment and a subheap compartment. Its iden-

tity, here n, corresponds to the field or variable owner.

The operation ⊕, and the helper function defs, and field and variable look-up

functions for S and Γ are extended with cases to deal with the borrowing blocks, exactly

as for regions.

Configurations

For configuration with a value compartment, a unique value will not have an owner

that corresponds to a variable as such a value will be free. The special owner free is

introduced to denote a free value and (-) is extended by a free subscript to

denote that the resulting value, if unique, must be free.

(-)

Γ ` S Γ `
free

v :: t

Γ ` 〈S | v〉 :: t

Variables and Frames

()

Γ ` F � Γ ′ Γ ` x v :: t

Γ ` F⊕ x 7→ v � Γ ′⊕ x :: t

The () judgement is extended with an owner subscript to capture that the

identity of the value v, if unique, must be x. Technically, this judgement passes the

information which is used in the value judgements.

(-)

Γ ` F � Γ1 Γ ′ = Γ〈n :: B[Γ2, Γ3]〉b Γ ′; n ` H � Γ2 Γ ′ ` F ′ � Γ3

Γ ⊕n :: B[Γ2, Γ3] ` F⊕Bb
n[H; F ′] � Γ1⊕n :: B[Γ2, Γ3]

(-) is a new judgement that captures the well-formedness of adding a

borrowing block to a frame. The rule is similar to that for a region, but with one im-

portant difference: the subheap of the borrowing block must be well-typed at location

b in the store-type. When reinstated, this guarantees that the subheap is well-formed

at b, which is the movement bound for unique values, see (-) below.
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Values

For keeping the identity of a uniqueness wrapper in sync with its variable or field, we

slightly modify the judgement for good values.

Γ ` n v :: t Value v has type t in Γ ; furthermore if v is unique, its owner is n

The judgement is extended with an owner subscript that captures the intended

owner of the unique. For example, in the proof tree for the typing of a unique variable

x containing value v and type t, will include the good value judgement:

Γ `x v :: t

This requires that v is either null, which is a legitimate unique, or a unique value with

identity x: Ux[· · ·]. The chaining of the unique variable’s name through the proof tree

is they key here. If x is a unique variable, then x is the owner of any unique stored in

the variable, which is illustratated by the following proof tree:

. . .

Γ ` F � Γ1

Γ3 = Γ〈x :: U[Γ2]〉
. . .

Γ3; n ` H � Γ2 . . .

Γ `x Ux[v; H] :: uniquep :c〈σ〉
Γ ` F⊕ x 7→ Ux[v; H] � Γ1⊕ x :: uniquep :c〈σ〉

(-)

Γ ` t Γ(m) = t

Γ ` n ↑m :: t

(-)

Γ ` t

Γ ` n null :: t

(-)

Γ ` n v :: t ′ Γ ` t ′ 6 t

Γ ` n v :: t

For non-uniques and the special null value in (-) and (-) respec-

tively, the subscript on the turnstile is ignored. For (-), the subscript is

simply “propagated”.

(-)

Γ ′′ = Γ〈n :: U[Γ ′]〉b Γ ` uniqueb :c〈σ〉
Γ ′′ `n ↑m :: n :c〈σ〉 Γ ′′; n ` H � Γ ′

Γ `n Un[↑m; H] :: uniqueb :c〈σ〉
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A unique value is well-formed if its pointer compartment and nested subheap are well-

formed under an extended store type where the type information from the unique is

added in. The bound b of the unique determines where the type information of the

unique is inserted in the store type as for the borrowing block. Also, the unique type

must be well-formed under the original store-type where the unique’s contents are not

visible. Note how the subscript on the turnstile is put to use.

To reflect the visibility of uniques in our system, we use a slightly unorthodox for-

malisation. Just as only the store-typing for itself, previous frames, and not the entire

store type, is visible to a stack frame, the type information for uniques is only visible in-

side the uniques themselves—the extension of Γ into Γ ′′ is only “visible locally”, inside

(-). This enables us to formulate a nice theorem for external-uniqueness-

as-dominating-edges without having to consider that parts of the store-typing change

when uniques are moved, and also fits the way we think about uniques.

In (-), it may look as if we are “pulling type information out of nowhere”,

but this is deceiving; Γ ′ must be parallel to H. Otherwise, Γ ′′; n ` H � Γ ′ would not

hold.

Heaps

()

Γ(n) = m :c〈σ〉 Γ ; n ` H � Γ ′ Γ ` n V :: σm
n (Fc)

Γ ; m ` n 7→ cσ[V ; H] � n :: c〈σ〉[Γ ′]

Just as in (), () is extended with a subscript on the turnstile to capture

the owner of the object.

()

Γ `
n.f

v :: t Γ ` n V � Γ ′

Γ ` n f 7→ v, V � f ::t, Γ ′

The turnstile of the () judgement it subscripted with the object’s own identity

which is extended by the current field name in (). If field f in object n has unique

value v of type t, the proof tree for the stack will contain the judgement Γ `n.f v :: t

for some store type Γ .
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Operational Semantics

This section presents the operational semantics for the new and extended constructs.

(--)

〈S | e〉 → 〈S ′ | Ufree[↑n; H]〉
〈S | t x := e〉 → 〈S ′⊕ x 7→ Ux[↑n; H[x/free]]〉

(--) extends variable declaration with an additional case that deals only with

uniques as the original (-) is defined for v ::= ↑n | null. The owner of the

unique variable is substituted for the variable name on assignment.

(--)

〈S | e〉 → 〈S ′ | Ufree[↑n; H]〉
〈S | x := e〉 → 〈S ′[x 7→ Ux[↑n; H[x/free]]]〉

(--) extends variable update with an additional case that deals only with

uniques as the original (-) is defined for v ::= ↑n | null. The owner of the

unique variable is substituted for the variable name on assignment.

(--)

〈S | e〉 → 〈S ′ | Ufree[↑m; H]〉 S ′(x) = ↑n S ′(n) = o

〈S | x.f := e〉 → 〈(S ′)n.f :=Un.f[↑m; H[n.f/free]]〉

(--) is extended with an additional case that deals only with uniques as

the original (-) is defined for v ::= ↑n | null.

(--)

S(x) = v

〈S | x--〉 → 〈S[x 7→ null] | v[free/x]〉

(--)

S(x) = ↑n (S)n.f = v

〈S | x.f--〉 → 〈(S)n.f :=null | v[free/n.f]〉

Unique local variables and fields must be read using the destructive read operation.

The operational semantics for the destructive reads is similar to (-) and (-
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), except that the field or variable is updated with null. The unique value is also

given the owner free, which corresponds to it being a free value. This is denoted by the

substitution of x or n.f for free.

As the destructive read operation is only allowed on unique variables or fields,

v above is either null or on the form Up[v; H], where p is x in (--)

and n.f in (--). Thus, if variable x is destructively read when S(x) =

Ux[v; H], it results in the stack S[x 7→ null], where x is null. The result of the operation

is Ufree[v; H[free/x]], the unique value “moved to free”.

(--)

〈S | e〉 → 〈S ′ | Ufree[v; H]〉
〈S | (p) e〉 → 〈S ′〈H[p/free]〉p | v〉

(--)

〈S | e〉 → 〈S ′ | null〉
〈S | (p) e〉 → 〈S ′ | null〉

(--) is a “cast” from the free owner to another. The uniqueness

wrapper is discarded and the subheap compartment of the unique is moved into the

subheap of the target owner. The pointer compartment of the unique is the resulting

value of the expression.

(-)

〈S⊕ x 7→ null, Bn[H[n/x]; α 7→ n⊕y 7→ v] | s〉 →
〈S ′⊕ x 7→ v ′′, Bn[H ′; α 7→ n⊕y 7→ v ′, F]〉 where n is fresh

〈S⊕ x 7→ Ux[v; H] | borrow x :: uniqueb :c〈σ〉 as 〈α〉 y in { s }〉 →
〈S ′⊕ x 7→ Ux[v ′; H ′[x/n]]〉

Finally, (-) show the operational semantics for our borrowing operation.

The borrowed variable is nullified and its contents is moved into a newly created

block Bn[. . .] pushed on top of the stack frame. The block contains a mapping from

the static name of the borrowed owner and the actual owner, the identity of the bor-

rowing block. The unique’s pointer compartment is moved to the borrowing variable

in the block, and the subheap compartment is moved (the substitution of x for n

above) into the subheap compartment of the borrowing block. The statement of the

borrowing block is then evaluated. When the block is exited, the uniqueness wrapper

is recreated, the entire subheap of the borrowing block is moved back into it, along

with the pointer in the borrowing variable. The unique value is stored in x and the

remainder of the borrowing block is popped of the stack.
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Before presenting the subject reduction proof for the additional constructs, as well as

the proof that externally unique pointers are dominating edges, we first show a few

necessary lemmas.

.. Lemmas for Unique and Borrowing Pointers

Lemma .. (Ignore Id). If Γ ` v :: p :c〈σ〉 then Γ `∗ v :: p :c〈σ〉 where ∗ ∈ {n.f, x}

for any n, f and x.

Proof. Follows immediately from the definition of the rules (-*) since the subscript

on the turnstile is ignored for all non-unique values.

Lemma .. (Movement). Let = be a possible right-hand side of the typing judgements

where = 6= Un[v; H] :: t in Case ) (also ignore “; q,” where not applicable):

. Γ〈n :: U[Γ ′]〉p; q ` = iff Γ〈n :: B[Γ ′]〉p; q ` =. (Borrow/Reinstate)

If Γ〈n :: U[Γ ′]〉p; q ` =, then:

. Γ〈m :: U[Γ ′[m/n]]〉p; q[m/n] ` =[m/n] where m is fresh. (Move)

. If Γ ` m ≺∗ p, then Γ〈n :: U[Γ ′]〉m; q ` =. (Tighten movement bound)

. Γ〈Γ ′[p/n]〉p; q ` =[p/n]. (Lose uniqueness)

Proof.

Case ) Follows immediately from the well-formedness rules.

Case ) The proof of this fact is straightforward but tedious and therefore omitted. As

nothing in Γ is dependent on n, the substitution is basically a global renaming.

Case ) Proof by induction over the shape of =. It relies on the following fact:

If Γ〈n :: T [Γ ′]〉p ` p1 Rp2 and Γ ` q ≺∗ p, then Γ〈n :: T [Γ ′]〉q `
p1 Rp2.

which follows immediately from the observation that as q ≺∗ p, the set of

derivable owner relations when n :: T [Γ ′] is directly inside q is a superset of the

derivable relations when n :: T [Γ ′] is directly inside p.
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Case ) Similar to cases two and three in the case above. The owner relationships visible

at q is a superset of those visible at p, and, as clearly n is directly inside p and

Γ ` q ≺∗ p, q satisfies at least the same owner relations as n.

Lemma .. (Move Unique). If Γ `n Un[v; H] :: uniquep :c〈σ〉 and Γ ` q ≺∗ p

where m is fresh, then Γ `m Um[v; H[m/n]] :: uniqueq :c〈σ〉.

Proof. By (-), Γ ` uniquep :c〈σ〉 and n 6∈ defs(Γ). Therefore, clearly

n 6∈ rng(σ) ∪ {p, q}. The result thus follows immediately from Lemma ...

Visibility Lemma

The visibility lemma indirectly deals with what parts of the store are visible from an-

other. The well-formedness of a type is not dependent on any possible siblings. First,

we define a disjuction operator on store types thus: Γ # Γ ′ ⇐⇒ defs(Γ)∩defs(Γ ′) = ∅.

Lemma .. (Visibility). If Γ ` 3, then Γ〈Γ ′, Γ ′′〉n ` 3 iff Γ〈Γ ′〉n ` 3, Γ〈Γ ′′〉n ` 3

and Γ ′ # Γ ′′.

Proof. We prove this in the following steps:

. If Γ ` 3, Γ〈Γ ′〉n ` 3, Γ〈Γ ′′〉m ` 3 and Γ ′ # Γ ′′, then (Γ〈Γ ′〉n)〈Γ ′′〉m ` 3

(Note: (Γ〈Γ ′〉n)〈Γ ′′〉m = Γ〈Γ ′, Γ ′′〉n when n = m).

. If Γ〈Γ ′, Γ ′′〉n ` 3 and Γ ` 3, then Γ〈Γ ′〉n ` 3.

. If Γ〈Γ ′, Γ ′′〉n ` 3 then Γ ′ # Γ ′′.

Step  It is sufficient to prove a simpler merge involving only one object. The more

general result follows by induction on the size of Γ ′′.

If Γ ` 3, Γ〈Γ ′〉p ` 3, Γ〈n :: T〉m ` 3, and n 6∈ defs(Γ ′), then

(Γ〈Γ ′〉p)〈n :: T〉m ` 3.

There are four cases: (a) T = c〈σ〉, (b) T = U, (c) T = R and (d) T = B.

Case a) By (--), Γ ` m :c〈σ〉 and m 6∈ defs(Γ). By Lemma (Extension),

Γ〈Γ ′〉p ` m :c〈σ〉. By (--), (Γ〈Γ ′〉p)〈m :: c〈σ〉〉n ` 3.
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Case b) By (--), Γ ` m and m 6∈ defs(Γ). By Lemma (Well-formed

construction), Γ〈Γ ′〉p ` 3. By Lemma (Extension), Γ〈Γ ′〉p ` m. By

(--), (Γ〈Γ ′〉p)〈m :: U〉n ` 3.

Case c) Case c) is similar to case b) and is therefore omitted.

Case d) Case d) is similar to case b) and is therefore omitted.

Step  Proof by contradiction: assume Γ〈Γ ′, Γ ′′〉n ` 3, and Γ ` 3 and not

Γ〈Γ ′〉n ` 3.

If not Γ〈Γ ′〉n ` 3, then either (a) some type t in Γ is ill-formed (that is not Γ ` t) or

(b) an object id in Γ ′ already exists in Γ .

In case of b), this would contradict the well-formedness or Γ〈Γ ′, Γ ′′〉n ` 3. In case of

a), there exists an object o in Γ ′ of type t s.t. some relation in its type is not satisfied

by the owners in in Γ〈Γ ′〉n. As clearly Γ〈Γ ′, Γ ′′〉n ` t (otherwise, not Γ〈Γ ′, Γ ′〉 ` 3,

which was an assumption), the only case where t can be ill-formed under Γ〈Γ ′〉n is if

t uses an owner who’s ordering is dependent on some owner in Γ ′′ i.e.,

Γ〈Γ ′, Γ ′′〉n ` p ≺∗ q where p ∈ owners(t) and q ∈ defs(Γ ′′). By () and ()

p ∈ owners(t) implies o is inside p. Clearly n is outside o and so, either p must be

outside n or be defined somewhere in Γ ′. For q to satisfy any of these conditions, it

must either be defined in Γ ′ or outside n, which contradicts the requirement that all

locations must be fresh when introduced (see also Subproof ) and thus contradict

the well-formeness of Γ〈Γ ′, Γ ′′〉n. Therefore, Γ〈Γ ′〉n ` 3.

Step  Assume Γ〈Γ ′, Γ ′′〉n ` 3 and not Γ ′ # Γ ′′. Then, there exists

n ∈ defs(Γ ′) ∩ defs(Γ ′′), which contradicts the requirement that all locations must

be fresh when introduced. Therefore, Γ ′ # Γ ′′.

Borrowing Lemmas

The subsequent lemmas deal with borrowing and reinstating unique variables.

Lemma .. (Borrow). If Γ ` S⊕ x 7→ Ux[v; H] and Γ ` x :: uniqueb :c〈σ〉 ref,

then Γ ⊕n :: B[Γ ′⊕α 7→ n⊕y :: n :c〈σ〉] ` S⊕ x 7→ null

⊕Bb
n[H[n/x]; α 7→ n⊕y 7→ v], where n, y, α are fresh.
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Proof. Assume Γ ` S⊕ x 7→ Ux[v; H] and Γ ` x :: uniqueb :c〈σ〉 ref.

. By definition of variable look-up in stack, (S⊕ x 7→ Ux[v; H])(x) = Ux[v; H].

. By .), and Lemma .. (Variable Look-up in Stack),

Γ `x Ux[v; H] :: uniqueb :c〈σ〉.

. By .), Lemma .. (Well-formed construction), and (-),

Γ `x null :: uniqueb :c〈σ〉.

. By .) and Lemma .. (Variable Update in Stack), Γ ` S⊕ x 7→ null.

. By .) and Lemma .. (Well-formed construction),

(a) Γ ` b and

(b) Γ ` 3.

. By .a,b) and (--), Γ〈n :: B〉b ` 3.

. By .) and (-), Γ〈n :: B〉b ` n ≺∗ b.

. By .) and (-),

(a) Γ〈x :: U[Γ1]〉b `x v :: x :c〈σ〉,

(b) Γ〈x :: U[Γ1]〉b; x ` H � Γx and

(c) Γ ` uniqueb :c〈σ〉.

. By .c), Lemma .. (Well-formed construction) and (-),

owners(uniqueb :c〈σ〉) ∈ defs(Γ), i.e., x 6∈ owners(uniqueb :c〈σ〉).

. By .), .a), .), (-) and Lemma ..

(a) Γ〈n :: B[Γ2]〉b `n v :: n :c〈σ〉 where

(b) Γ2 = Γ1[n/x].

. By .), .b), (-) and Lemma .., Γ〈n :: B[Γ2]〉b; n ` H[n/x] � Γ2.

. By .), (-), () and Lemma .. (Omit qualifiers),

Γ〈n :: B[Γ2]〉b ` y 7→ v � y :: n :c〈σ〉.

. By .a) and (-), Γ〈n :: B[Γ2]〉b ` n.
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. By .) and (--), Γ〈n :: B[Γ2⊕α 7→ n]〉b ` 3.

. By .), Lemma .. (Well-formed construction) and (--),

Γ〈n :: B[Γ2⊕α 7→ n⊕y :: n :c〈σ〉]〉b ` 3.

. By .), .), .), .), (-), (-) and Lemma ..

(Extension),

(a) Γ ⊕n :: B[Γ3] ` S⊕ x 7→ null⊕Bb
n[H[n/x]; y 7→ v] � Γ ⊕n :: B[Γ3]

where

(b) Γ3 = Γ2⊕α 7→ n⊕y :: n :c〈σ〉.

Lemma .. (Reinstate). If Γ ⊕n :: B[Γ ′] ` S⊕Bb
n[H; F ′] and Γ〈n :: B[Γ ′]〉b `

v :: n :c〈σ〉, then Γ `m Um[v; H[m/n]] :: uniqueb :c〈σ[m/n]〉, where m if fresh.

Proof. Assume Γ ⊕n :: B[Γ ′] ` S⊕Bb
n[H; F ′] and Γ〈n :: B[Γ ′]〉b ` v :: n :c〈σ〉.

. By (-),

(a) S = S1 • F and Γ = Γ1 • Γ2, s.t.

(b) Γ1 ` S1 and

(c) Γ1⊕n :: B[Γ ′] ` F⊕Bb
n[H; F ′] � Γ2⊕n :: B[Γ ′].

. By .c) and (-),

(a) Γ ` F � Γ2,

(b) Γ3; n ` H � Γ4 and

(c) Γ3 ` F ′ � Γ5 where

(d) Γ3 = Γ〈n :: B[Γ ′]〉b and

(e) Γ ′ = Γ4, Γ5.

. By .b) and Lemma .., Γ〈m :: U[Γ4[m/n]]〉b; m ` H[m/n] � Γ4[m/n].

. By Lemma .., Γ〈m :: U[Γ4[m/n]]〉b ` v :: m :c〈σ[m/n]〉.

. By .), .) and (-), Γ `m Um[v; H[m/n]] :: uniqueb :c〈σ[m/n]〉.
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.. Subject Reduction Proof

Proof. By structural induction on the shapes of e and s. This is a continuation of the

proof of subject reduction in Chapter  and only deals with the cases for the extended

constructs, some of which were omitted in the original proof.

Case (EXPR-NEW) Assume Γ ` 〈S | new p :c〈σ〉〉 :: uniquep :c〈σ〉.

. By (-),

(a) Γ ` S, and

(b) Γ ` new p :c〈σ〉 :: uniquep :c〈σ〉.

. By .b) and (-), Γ ` p :c〈σ〉.

. By .) and Lemma .. (Well-Formed Construction), Γ ` p.

. By .) and (--), Γ〈free :: U〉p ` 3 (where free is fresh).

. By .) and (-), Γ〈free :: U〉p ` free ≺∗ p.

. By .), .) and (), Γ〈free :: U〉p ` free :c〈σ〉.

. By .) and (--), Γ〈free :: U[n :: c〈σ〉]〉p ` 3 (where n is fresh).

. Let Γ ′ = Γ〈free :: U[n :: c〈σ〉]〉p. Then, by .) and (-),
Γ ′ ` ↑n :: free :c〈σ〉, where

. By .), Lemma .. (Well-Formed Construction) and (-),
Γ ′; n ` nil � nil.

. By .) and Lemma .. (see next page), Γ ′ ` σfree
n (t) for all f :: t ∈ Fc.

. By .), () and (-),

(a) Γ ′ `n V :: σfree
n (t) where

(b) V = f 7→ null for all f ∈ Fc.

. By .) and def. of type look-up, Γ ′(n) = free :c〈σ〉.

. By .), .a), .) and (), Γ ′; free ` n 7→ cσ[V ; nil] � n :: c〈σ ′〉[nil].

. By .b) and Lemma .. (Well-formed expression), Γ ` uniquep :c〈σ〉.

. By .), .), .) and (-),
Γ ` Ufree[↑n; n 7→ cσ[V ; nil]] :: uniquep :c〈σ〉.
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. By .a), .) and (-),
Γ ` 〈S | Ufree[↑n; n 7→ cσ[V ; nil]]〉 :: uniquep :c〈σ〉.

Lemma ... If Γ ` ↑n :: p :c〈σ〉, then Γ ` σ
p
n(Fc(f)) for all f ∈ dom(Fc).

Proof. There are two cases: (a) f is defined in c or (b) f is defined in class c ′, a super-

class to c.

Case a) By (), E ` Fc(f) where E = Pc, this ≺∗ owner (E is the static type

environment in the class). By (--), Γ ′ ` 3 where Γ ′ =

•σ
p
n⊕ this :: t and σp(t) = p :c〈σ〉. By Lemma (Well-formed construction),

Γ ` p : c〈σ〉. By () and Lemma .., clearly Γ ′ ` Pc. By (-),

Γ ` n ≺∗ p. Thus, clearly Γ ′ ` this ≺∗ owner. As we can see, Γ ′ satisfies

the orderings in the static type environment E, and therefore Γ ′ ` Fc(f). By

Lemma .., Γ ` σ
p
n(Fc(f)).

Case b) Let c1 be a direct superclass of c. Clearly, c1 is not Object as it defines f.

Clearly class c · · · extends c1〈σ ′〉 · · · ∈ P. By def. of variable look-up,

Fc(f) = σ ′(Fc1
(f)). By (-), Γ ` ↑n :: p : c1〈σ1〉 where σ1 = σ ◦

σ ′. By the induction hypothesis, Γ ` σ1
p
n(Fc1

(f)), which is equivalent to Γ `
σ(σ ′p

n(Fc1
(f))). By Lemma .., this is equivalent to Γ ` σ

p
n(Fc(f)).

Case (STAT-LOCAL-) Assume Γ ⊕ x :: t ` 〈S | t x = e〉.

. By (-),

(a) Γ ` S, and

(b) Γ ` t x = e; Γ ⊕ x :: t.

. By .b) and (-),

(a) x 6∈ vars(Γ) and

(b) Γ ` e :: t.

. By .a), .b) and (-), Γ ` 〈S | e〉 :: t.

. By .) and the induction hypothesis, if 〈S | e〉 → 〈S ′ | Ufree[↑n; H]〉, then there
exists a Γ ′ s.t.
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(a) Γ ; Γ ′ and

(b) Γ ′ ` 〈S ′ | Ufree[↑n; H]〉 :: t.

. By .b) and (-),

(a) Γ ′ ` S ′, and

(b) Γ ′ `free Ufree[↑n; H] :: t.

. By .a) and (-),

(a) Γ1 ` S ′′ and

(b) Γ ′ ` F � Γ2 where

(c) Γ ′ = Γ1 • Γ2.

. By .b) and Lemma .. (Movement), Γ ′ `x Ux[↑n; H[x/free]] :: t.

. By .b), .) and (),
Γ ′⊕ x :: t ` F⊕ x 7→ Ux[↑n; H[x/free]] � Γ2⊕ x :: t.

. By .a,c), .) and (-), Γ ′⊕ x :: t ` S ′⊕ x 7→ Ux[↑n; H[x/free]].

. By .) and (-), Γ ′⊕ x :: t ` 〈S ′⊕ x 7→ Ux[↑n; H[x/free]]〉.

Case (STAT-UPDATE-) Assume Γ ` 〈S | x := e〉. We disregard the fact that y might
contain null, as this case is already covered by previous proofs (null[x/free] = null and
destructive read obviously valid, as y already contains null).

. By (-),

(a) Γ ` S and

(b) Γ ` x := e ; Γ .

. By .b) and (-),

(a) Γ ` x :: t ref and

(b) Γ ` e :: t.

. By .a), .b) and (-), Γ ` 〈S | e〉 :: t.

. By .) and the induction hypothesis, if 〈S | e〉 → 〈S ′ | v〉, there exists a Γ ′ such
that

(a) Γ ; Γ ′ and

(b) Γ ′ ` 〈S ′ | v〉 :: t.

. By .b) and (-),
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(a) Γ ′ ` S ′ and

(b) Γ ′ `free v :: t.

. By .a), .a) and Lemma .. (Extension), Γ ′ ` x :: t ref.

. By .b), if isunique(t), then x 6∈ defs(Γ ′) as this would contradict the unique
names assumption. Thus, by Lemma .., Γ ′ `x v ′ :: t where v ′ = v[x/free].
If ¬isunique(t), then by Lemma .. (Omit qualifiers), Γ ′ `x v ′ :: t where
v ′ = v.

. By .a), .), .) and Lemma .. (Variable Update), Γ ′ ` S ′[x 7→ v ′].

. By .) and (-), Γ ′ ` 〈S ′[x 7→ v ′]〉.

Case (UPDATE-FIELD-) Assume Γ ` 〈S | x.f := y--〉.

. By (-),

(a) Γ ` S, and

(b) Γ ` x.f := e; Γ .

. By .b) and (-),

(a) Γ ` x.f :: t ref and

(b) Γ ` e :: t.

. By .a), .b) and (-), Γ ` 〈S | e〉 :: t.

. By .) and induction hypothesis, if 〈S | e〉 → 〈S ′ | Ufree[↑m; H]〉, then there
exists, Γ ′ s.t.,

(a) Γ ′ ` 〈S ′ | Ufree[↑m; H]〉 :: t and

(b) Γ ; Γ ′.

. By .a) and (-),

(a) Γ ′ ` S ′ and

(b) Γ ′ `free Ufree[↑m; H] :: t.

. By .a), Lemma .. (Extension) and (-),

(a) Γ ′ ` x :: p :c〈σ〉,
(b) σp(Fc(f)) = t and

(c) this ∈ owners(Fc(f)) ⇒ x ≡ this.

. By .a), .a) and Lemma .. (Variable Look-up), Γ ′ ` ↑n :: p :c〈σ〉.


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. By .b.) and Lemma .. (Move unique), Γ ′ `n.f Un.f[↑m; H[n.f/free]] :: t.
(n.f is not in Γ as it would otherwise contradict the unique names
assumption.)

. By .a), .), .) and Lemma .. (Field Update),
Γ ′ ` (S ′)n.f :=Un.f[↑m; H[n.f/free]].

. By .) and (), Γ ′ ` 〈(S ′)n.f :=Un.f[↑m; H[n.f/free]]〉.

Case (EXPR-DREAD-FIELD) Assume Γ ` 〈S | x.f--〉 :: t.

. By (-),

(a) Γ ` S, and

(b) Γ ` x.f-- :: t.

. By (-), Γ ` x.f :: t.

. By .) and (-),

(a) Γ ` x :: p :c〈σ〉,
(b) t = σp(Fc(f)), and

(c) this ∈ owners(Fc(f)) ⇒ x ≡ this.

. By .a), .a-c), and Lemma .. (Field Look-up), Γ `n.f:: v :: t where
S(x) = ↑n.

. By .) and (-*), either (a) v = null or (b) v = Un.f[v
′; H]. In case (a), by

Lemma .. (Omit Qualifiers), Γ `free v[free/n.f] :: t as v[free/n.f] = v. In
case (b), by .) and Lemma .. (Movement), Γ `free v[free/n.f] :: t.

. By .b), Lemma .. (Well-Formed Construction) and (-),
Γ `n.f null :: t.

. By .a), .a-c), .) and Lemma .. (Field Update), Γ ` (S)n.f :=null.

. By .), .) and (-), Γ ` 〈(S)n.f :=null | v[free/n.f]〉 :: t.

Case (EXPR-DREAD-LOCAL) Assume Γ ` 〈S | x--〉 :: uniqueb :c〈σ〉.

. By (-),

(a) Γ ` S and

(b) Γ ` x-- :: t.

. By .b) and (-), Γ ` x :: t ref.
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. By .a), .) and Lemma .. (Variable Look-up), Γ `x v :: t.

. By .b), Lemma .. (Well-Formed Construction) and (-),
Γ `x null :: t.

. By .a), .), .) and Lemma .. (Variable Update), Γ ` S[x 7→ null].

. By .) and (-*) either (a) v = null or (b) Γ `x Ux[v ′; H] :: t. In the case (a)
v[free/x] = v and, thus, by Lemma .. (Omit Qualifiers), Γ `free v[free/x] :: t.
In the case (b), by .) and Lemma .. (Movement), Γ `free v[free/x] :: t.

. By .), .) and (-), Γ ` 〈S[x 7→ null] | v[free/x]〉 :: t.

Case (EXPR-LOSE-UNIQUENESS) For simplicity, we present the proof of (--

) in two separate installements: one where e evaluates to a unique and one
where it evaluates to null.

Assume Γ ` 〈S | (p) e〉 :: p :c〈σ〉.

. By (-),

(a) Γ ` S and

(b) Γ ` (p) e :: p :c〈σ〉.

. By .b) and (-),

(a) Γ ` e :: uniqueb :c〈σ〉 and

(b) Γ ` p ≺∗ b.

. By .a), .a) and (-), Γ ` 〈S | e〉 :: uniqueb :c〈σ〉.

. By .) and induction hypothesis, if 〈S | e〉 → 〈S ′ | v〉, then there exists Γ ′ s.t.

(a) Γ ; Γ ′ and

(b) Γ ′ ` 〈S ′ | v〉 :: uniqueb :c〈σ〉.

. By .b), (-) and (-),

(a) Γ ′ ` S ′ and

(b) Γ ′ `free v :: uniqueb :c〈σ〉 where

(c) v = Ufree[↑n; H]

. By .a), .a) and Lemma .. (Extension), Γ ′ ` p ≺∗ b.

. By .) and Lemma .. (Well-formed construction), Γ ′ ` p.

. By .), either
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(a) p :: B[_] ∈ Γ ′, or

(b) p :: R[_] ∈ Γ ′, or

(c) Γ ′(p) = m :c1〈σ1〉.

(Note that p :: U[_] ∈ Γ ′ is not possible as uniques are never in the top-level
store-type.)

. By .b) and (-),

(a) Γ1; free ` H � Γ ′′,

(b) Γ1 ` ↑n :: free :c〈σ〉 and

(c) Γ ` uniqueb :c〈σ〉 where

(d) Γ1 = Γ〈free :: U[Γ ′′]〉b.

. By .a), .), .a-c), .a,d), and Lemma .., (Lose Uniqueness), Γ1〈Γ ′′[p/free]〉 `
S ′〈H[p/free]〉p.

. By .a,c,d), (--) and Lemma .. (Well-formed construction),
free 6∈ rng(σ).

. By .), .b,d), .) and Lemma .. (Lose Uniqueness),
Γ1〈Γ ′′[p/free]〉 ` ↑n :: p :c〈σ〉.

. By .), .) and (-), Γ1〈Γ ′′[p/free]〉 ` 〈S ′〈H[p/free]〉p | ↑n〉 :: p :
c〈σ〉.

Case (EXPR-LOSE-UNIQUENESS) Assume Γ ` 〈S | (p) e〉 :: p :c〈σ〉.

. By (-),

(a) Γ ` S and

(b) Γ ` (p) e :: p :c〈σ〉.

. By .b) and (--),

(a) Γ ` e :: uniqueq :c〈σ〉 and

(b) Γ ` p ≺∗ q.

. By .a), .a) and (-), Γ ` 〈S | e〉 :: uniqueq :c〈σ〉.

. By .) and induction hypothesis, if 〈S | e〉 → 〈S ′ | null〉, then there exists a Γ ′

such that,

(a) Γ ; Γ ′, and

(b) Γ ′ ` 〈S ′ | null〉 :: uniqueq :c〈σ〉.
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. By .b) and (-),

(a) Γ ′ ` S ′ and

(b) Γ ′ ` null :: uniqueq :c〈σ〉.

. By .a) and Lemma .. (Well-Formed Construction), Γ ` p :c〈σ〉.

. By .a), .) and Lemma .. (Extension), Γ ′ ` p :c〈σ〉.

. By .) and (-), Γ ′ ` null :: p :c〈σ〉.

. By .a), .) and (-), Γ ′ ` 〈S ′ | null〉 :: p :c〈σ〉.

Case (STAT-BORROW) Without loss of generality, we assume that the variable x is on
top of the stack. Note that borrowed variable must contain a unique value.

Assume Γ ` 〈S⊕ x 7→ Ux[v; H] | borrow x :: uniqueb :c〈σ〉 as 〈α〉 y in { s }〉.

. By (-),

(a) Γ ` S⊕ x 7→ Ux[v; H].

(b) Γ ` borrow x :: uniqueb :c〈σ〉 as 〈α〉 y in { s } ; Γ .

. By .b and (-),

(a) Γ ` x :: uniqueb :c〈σ〉 ref and

(b) Γ ⊕n :: B[Γ ′] ` s � Γ ⊕n :: B[Γ ′⊕ Γ ′′] where

(c) Γ ′ = α 7→ n⊕y :: α :c〈σ〉.

Note that y, α 6∈ defs(Γ) from .b).

. By .a), .a) and Lemma .. (Movement)
Γ ⊕n :: B[Γ1[n/x]⊕ Γ ′] ` S⊕ x 7→ null⊕Bb

n[H[n/x]; α 7→ n⊕y 7→ v]

. By .b), .), Lemma .. (Extension) and (-),
Γ ⊕n :: B[Γ1[n/x]⊕ Γ ′⊕ Γ ′′] `

〈S⊕ x 7→ null, Bb
n[H[n/x]; α 7→ n⊕y 7→ v] | s〉.

. By .) and the induction hypothesis, if
〈S⊕ x 7→ null, Bb

n[H[n/x]; α 7→ n⊕y 7→ v] | s〉 →
〈S ′⊕ x 7→ v ′′, Bb

n[H ′; α 7→ n⊕y 7→ v ′⊕ F]〉,
then there exists a Γ2 such that

(a) Γ ⊕n :: B[Γ1[n/x]⊕ Γ ′⊕ Γ ′′] ; Γ2, and

(b) Γ2 ` 〈S ′⊕ x 7→ v ′′, Bb
n[H ′; α 7→ n⊕y 7→ v ′⊕ F]〉

. By .c), .a) and definition of ;,
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(a) Γ2 = Γ3⊕n :: B[Γ4⊕ Γ ′⊕ Γ5] s.t.,

(b) Γ ; Γ3,

(c) Γ1 ; Γ4, and

(d) Γ ′′ ; Γ5.

. By .b) and (), Γ2 ` S ′⊕ x 7→ v ′′, Bb
n[H ′; α 7→ n⊕y 7→ v ′⊕ F].

. By .a) and (-), Γ2 ` y :: α :c〈σ〉.

. By .) and def. of variable look-up,
(S ′⊕ x 7→ v ′′, Bb

n[H ′; α 7→ n⊕y 7→ v ′⊕ F])(y) = v ′.

. By .), .), .) and Lemma .. (Variable Look-up), Γ2 ` v ′ :: α :c〈σ〉.

. By .), .) and Lemma ..,

(a) Γ3 ` S ′⊕ x 7→ v ′′ and

(b) Γ3 `x Ux[v ′; H ′[x/n]] :: uniqueb :c〈σ〉.
By .a,b) n 6∈ dom(σ), and thus σ[x/n] = σ.

. By .a), .b) and Lemma .. (Extension), Γ3 ` x :: uniqueb :c〈σ〉 ref.

. By .a,b), .), and Lemma .. (Variable Update),
Γ3 ` S ′⊕ x 7→ Ux[v ′; H ′[x/n]].

. By .) and (), Γ3 ` 〈S ′⊕ x 7→ Ux[v ′; H ′[x/n]]〉.

. EXTERNAL-UNIQUENESS-AS-DOMINATING-EDGES

Theorem .. (External-Uniqueness-as-Dominating-Edges). If Γ ` S〈Un[v; H]〉,
then (defs(H) ∪ {n}) # uses(S).

The theorem states that if S is a well-formed stack with a hole and a unique Un[v; H]

in the hole, then there are no pointers to n or H from any object in S. Thus, v is

the only reference into H outside H and is therefore a dominating edge (see Section

..) as all paths into H from outside must contain it. (Observe that v ∈ dom(H) by

(-).)

Proof. We prove this in two steps: a) defs(H) # uses(S) and b) n 6∈ uses(S).

First note that Γ ` S〈Un[v; H]〉 implies n 6∈ defs(Γ) by (-).
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Case a) By contradiction. Assume the existence of a pointer Γ ′ ` ↑m :: p :c〈σ〉 such

that m ∈ uses(S) s.t. m ∈ dom(H) Without loss of generality, assume that ↑m
points to a top-level object in H.

If ↑m is stored in a field or value nested inside a unique in S, then Γ ′ = Γ〈Γ ′′〉
where Γ ′′ is the additional type information visible inside the unique. If not,

then Γ ′ = Γ , the type information for the whole stack.

By (-), (-) and (), Γ ′ ` p ≺∗ n (as p is the owner

of some object in H) and consequently, Γ ′ ` n, by (-*), the rules for owner

orderings. The case Γ ′ = Γ contradicts n 6∈ defs(Γ). The case n ∈ defs(Γ ′′)

contradicts the unique names assumption, as n will be introduced a second

time in Γ when typing the contents of the hole. Thus, the pointer ↑m cannot

exist.

Case b) Similar reasoning applies to proving the absence of uses of the unique itself.

The existence of a well-formed pointer Γ ′ ` ↑n :: t implies Γ ′ ` n which was

shown to be a contradiction above. If some field or variable in S contained

Un[v; H], this would contradict the unique names assumption.

. CONCLUDING REMARKS

This chapter concludes our extensions to the Joline language. We have now presented

owner-polymorphic methods, scoped regions and, finally, external uniqueness. Ex-

ternal uniqueness is, we believe, more naturally suited to object-oriented program-

ming, as it considers aggregate objects, allows internal aliasing without weakening the

uniqueness invariant and overcomes the abstraction problem. External uniqueness is

the first and only proposal to allow transfer of ownership in a system with deep own-

ership.

Scoped regions and external uniqueness were realised by introducing new kinds

of owners in our system, and owner-polymorphic methods allow owners to be passed

to subsequent stack frames. The owners introduced by scoped regions have some in-

teresting effects on the ownership structure of a program which is discussed in the

upcoming chapter.
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Our extensions are orthogonal and work well together. Owner-polymorphic meth-

ods allow borrowing of external uniques without any additional borrowing constructs

and does so without the added complexity or restrictions of previous borrowing pro-

posals. Scoped regions allow the creation of heap-allocated objects that can store ref-

erences to borrowed objects without risking residual aliasing once the borrowing has

ceased. Following the upcoming discussion in the next chapter, Chapter  shows ap-

plications for our proposed constructs and some programming idioms which depend

on them.
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Chapter 

Discussion

T         -

. Section . details how scoped regions and owner-polymorphic methods

have turned the ownership tree into a directed acyclic graph and what this means in

practice. Section . addresses the orthogonality of our proposed constructs, and de-

scribes how this is an improvement over some existing proposals.

. GENERATIONAL OWNERSHIP

As was explained in Chapter , the inside nesting relation of deep ownership forms a

tree with world as its root. Every node in the tree denotes an object (except world) and

every node is inside itself, its parent node and all its ancestors.

In Chapters  through , we have introduced new owners that do not correspond

to objects. Owners introduced by scoped regions and borrowing blocks correspond

to blocks and unique owners correspond to variables or fields. The special owner free

denotes the absence of an owner. The introduction of scoped owners in combination

with owner parameters to methods has some interesting effects on our system: a stack

frame can have a nested subheap and objects in that subheap are allowed to reference

any object on any previous frame. By a suggestion from John Potter, we call this gen-

erational ownership and say that each stack frame is a generation. Following the same

terminology, intra-generation aliases can only exist from a younger generation to ob-

jects in an older one, one that is guaranteed to outlive the former.
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.. Stack Frames are Generations

Owners introduced by borrowing blocks and scoped regions are tied to a stack-frame

and can never become visible on earlier frames. Thus, objects belonging to a frame f

can never be referenced by objects belonging to an earlier frame.

If objects on a frame cannot reference objects on a later frame, each stack frame (or

block, really) effectively becomes a root in the object graph. The graph subsequently

becomes a forest where each tree corresponds to a stack frame. The ban on aliasing

from previous to later frames is interesting as it means that as soon as a stack frame

is destroyed, all objects belonging to the corresponding generation (subgraph of the

object graph) can be safely garbage collected without creating dangling pointers. This

is in a sense similar to generational garbage collection [].

As aliases cannot cross from a older to a younger generation, reasoning about alias-

ing becomes easier. Objects belonging to the current generation can be safely passed

to methods executing in objects in older generations, guaranteed not to be statically

aliased and changing objects in the current generation cannot have any effects on ob-

jects in earlier generations.

.. Ownership is a dag

The introduction of scoped owners has another important impact on the interpreta-

tion of ownership. As a scoped owner is potentially inside all owners visible in the

enclosing scope, ownership is no longer a tree but a directly acyclic graph as a node

can have more than one parent node. By virtue of owner-polymorphic methods, any

owner might be visible in any method scope. Thus, a scoped region is inside all own-

ers on all preexisting frames, even though the permissions to reference these objects

must be explicitly passed in as owner parameters to be used. We recall the rule (-

) that captures this in the store-typing:

(-)

Γ ` q Γ • Γ ′ ` p p ∈ defs(Γ ′)

Γ • Γ ′ ` p ≺∗ q

This rule shows that younger generations are ordered inside older one. Any owner

in the generation(s) typed by Γ ′ is inside any owner in the generation(s) typed by Γ .

It makes sense to order stack frames inside each other, as we have indeed done
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Stack frame
(grows down− 
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frame owns heap

frame owns heap

frame owns heap

frame owns heap
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b

c

d

e

f Uniquely referenced

Figure .: Generational ownership. a − d are generations and e, f are unique sub-
heaps. Later generations may refer to earlier generations (earlier in the alphabet, unique
subheaps are not included in this definition), but not vice versa. Only one external ref-
erence is allowed for unique subheap.

in the formalisation of Joline. The top stack frame corresponds to the region world

and the “starting statements”, s; return e, of a program can be thought of as implicitly

wrapped inside the scoped region (world) { . . . }. The resulting model is clean and

easy to understand, see Figure ..

Figure . shows a downwards growing stack. Each frame is a root in the object

graph and the tree nested inside the frame is denoted by a triangle. Uniquely ref-

erenced subheaps are also shown as separate triangles that only have one incoming

reference. Dashed arrows denote unique references and crossed-out arrows denote

references that are not valid and will never exist in the system.

. ORTHOGONALITY

Our proposed constructs, external uniqueness, scoped regions and owner-polymorphic

methods, are orthogonal in nature. External uniqueness and the borrowing block en-
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ables unique pointers, a strong notion of aggregate, and transfer of ownership; scoped

regions allows stack-local objects with permission to reference all visible objects and

generational ownership; and owner-polymorphic methods allows owner-parameters,

borrowed arguments and reuse of a method with different owners.

The orthogonality of our constructs allows them to be combined to make use of

each other to express constructs from previous proposals. For example, we can achieve

traditional borrowing [, , , , , , , , ] using a combination of our borrow-

ing block and the borrowed references due to the owner-polymorphic methods. The

result is an improvement over traditional borrowing as it does not need any additional

“borrowed pointer” concept, but can be expressed directly through owners. This is

cleaner, and, combined with scoped regions, allows the borrowed pointer to flow to

the heap, without loosing track of the borrowing, which makes our borrowing more

expressive than previous borrowing proposals.

In Chapter , we show how we can enable a form of borrowing that retains the

uniqueness of the borrowed reference with a straightforward extension to the borrow-

ing block keeping the owner-polymorphic methods as they are.

We now move on to describe applications of our proposed constructs.





Chapter 

Applications

. APPLICATIONS FOR EXTERNAL UNIQUENESS

T        . In

particular, we show how external uniqueness can be used to enable transfer of own-

ership—moving objects between representations—and merging representations in the

presence of ownership types. Additionally, we show how to use our borrowing con-

struct, scoped regions and owner-polymorphic methods to encode various notions of

borrowing. We also show “movable aliased objects”, non-unique objects with all the

benefits of unique objects, that can be encoded using external uniqueness, and how we

use transfer of ownership to overcome the initialisation problem, pointed out by for

example Detlefs et al. [], and allow external initialisation of an object’s representa-

tion.

Many of these examples were previously impossible to encode in a system with

ownership types.

.. Transfer of Ownership

Transfer of ownership is an important design pattern in concurrent object-oriented

programming []. Ownership of an object is transferred from one object to another

after which the first object must release all its references to the moved object.

Figure . shows the implementation of a token ring. The token object is passed
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class TokenRing
{

owner:TokenRing next; // sibling
unique:Token token;

void give()
{

next.receive( token-- );
}

void receive( unique:Token tkn )
{

token = tkn--;
}

}

Figure .: A Token ring implementation.

from one object to the next by calling the give( ) method. Figure . illustrates the

move of the grey Token from TokenRing element A to B. The movement bound of the

moving token must be outside the target TokenRing element. The movement bound

must also be outside A. Otherwise there could be residual aliasing from the grey to-

ken to A which would break the owners-as-dominators property. If the movement

bound is outside A, any alias from the token or any object internal to the token are

references to objects outside A which makes them valid even if moved to B. B can be

the movement bound or some owner below the movement bound.

External uniqueness allows the token object to be a fully-fledged aggregate which

may be the resource shared between the elements in the token ring. Of course, there is

no reason why this couldn’t be a movement from one machine to another.

We now move on to other examples where transfer of ownership is beneficial.

Object Pools The use of object pools is a well-known optimisation technique. Al-

locating memory for an object, determining that an object is garbage, and freeing it

are expensive operations. Thus, in systems where many short-lived objects are needed

to perform some task, instance creation operation can be replaced by a pool of possi-

bly initialised objects from which “new objects” are taken when needed and returned

instead of disposed.





CHAPTER . APPLICATIONS

B

Root

A B

Root

A

Before After

Figure .: Transfer ownership of the gray object from A (left) to the sibling B (right).

In previous ownership types systems, owners are fixed for life. This is will present

a problem when implementing object pools, as every object pool can only pool objects

of one specific owner. This has the disadvantage of not being able to reuse objects

in the pool between owners, and requiring a separate pool for each type of object

pooled. The only way to avoid this is to make all objects in the pool belong to world,

which precludes using objects from the pool in any object’s representation and voids

all aliasing guarantees.

With external uniqueness, we can implement object pools where the objects in

the pool are referenced by unique pointers. An object can be taken from the pool and

moved into the appropriate owner. When discarded, the object could be simply moved

back into the object pool unless the object had lost its uniqueness or had its movement

bound changed in a way that prevented it from being moved back into the pool.

Object pools would be particularly useful in the presence of unique borrowing (see

Section .), since this enables the object to be automatically returned to the pool after

it has been used.

Avoiding Unnecessary Synchronisation Uniqueness can be used to avoid unneces-

sary synchronisation [, , ]. Making sure that an object is thread-local (or confined

to a single thread) is easy with uniqueness since there is only one pointer to the object.

It is also easy to realise that movement of an object between threads without risking

residual aliasing is trivial. However, as traditional uniqueness only applies to a single

object, moving the object from one thread to another might not move its representa-
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tion along if there are incoming aliases to it from other parts of the program. Thus,

the aggregate would be split between threads. Being a shallow property, uniqueness

cannot solve this problem, other than by forcing all references to internal objects in an

aggregate to be unique. With this constraint, moving the bridge object will implicitly

move the entire aggregate.

An interesting consequence of external uniqueness is that it voids the need for syn-

chronisation. Once a thread has entered a unique object, the unique reference to the

object is temporarily destroyed and the borrowed references created as a result of the

borrowing exist only on the stack of the current thread. Thus, there is no need to syn-

chronise any subsequent method calls internal to the unique aggregate. Furthermore,

as external uniqueness enables a strong notion of aggregate, moving uniques between

threads cannot cause the object to be split between threads. These are powerful conse-

quences.

Boyapati’s SafeJava [, ] and Bacon et al.’s Guava [] void the need for syn-

chronisation when the receiver is unique (an unshared value in Guava’s case), and

for thread-local objects.

.. Merging Representations

The encapsulation of deep ownership prevents objects from merging their represen-

tation as the representations of different objects have different owners and an object’s

owner is fixed for life. Thus, with deep ownership, merging, for example, the sets of

links of two lists requires copying, which is problematic with respect to copying strate-

gies, sharing, performance penalties, object identities, etc. This is a severe drawback,

but luckily, we can overcome it using external uniqueness.

Figure . shows the merging of two doubly-linked lists without copying using

external uniqueness. The key to enable this is to make the links sibling objects in a

uniquely referenced aggregate. The append( ) method of the first list is invoked with

the second list as its argument. The phases of the operation are (in order):

* The first list borrows its own head link (the entire list) using a temporary owner

(here ho).

** The head link of the other list is moved into a variable owned by ho, that is, the

two lists now share a common owner.
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class Link< data outside owner >
{

data:Object data;
owner:Link< data > next, prev;

}

class List< data outside owner >
{

unique:Link< data > head;

void append( owner:List< data > other )
{

borrow head as < ho > bh (*)
{

ho:Link< data > ohead = other.head--; (**)
if ( bh == null )
{

bh = ohead; (***)
}

else if ( ohead != null )
{

ho:Link< data > h = bh;
while ( h.next != null )
{

h = h.next;
}
h.next = ohead;
h.next.prev = h;

}
}

}
}

Figure .: Merging two doubly-linked lists. ho is the temporary owner of the list head
while borrowed.
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Data object
Owner of data objects

Link

List

OwnershipInvalid refUnique refRef and Object

Figure .: The object graph for the doubly-linked list in Figure .. The dotted box
denotes the possibility of any number of owners between the owner of the data objects
and the list object. The dashed box denotes the ownership bound of the externally
unique set of links.

Remaining code: the merge is performed, in this case an append, and then the head

variable is reinstated with the resulting value of bh. Note that bh may have been

set in line ***. This illustrates what we have earlier stated about borrowing:

when a borrowing ceases, there is only one reference into the aggregate, not

necessarily the same as the one originally borrowed. This is consistent with

external uniqueness.

Note that other.head is consumed in this operation—after merge, the second list is

empty.

Our original Joline proposal [] was the first system with deep ownership types to

overcome this challenge, originally proposed by David Holmes after seeing the original

ownership types proposal [].

.. Simulating Borrowing

The traditional borrowing construct prevents a reference from escaping to the heap.

Thus, there will be no residual aliasing of a borrowed argument to a method when

the method exits. This allows borrowed arguments and receivers to be automatically

reinstated, which alleviates some of the pain of programming with uniques.

Using external uniqueness in combination with owner-polymorhic methods, we

can simulate traditional borrowing. Our borrowing block allows a unique reference
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class Example extends Object
{

< borrowed inside this > void method( borrowed:BlackBox bb )
{

. . .
}

}

void example( world:Example e )
{

unique:BlackBox bb = new unique:BlackBox();
borrow bb as < temp > b
{

e.method< temp >(b); // pass borrowed owner and reference
}

}

Figure .: Passing a borrowed object as argument to a method. The method method( )
in class Example is given a temporary permission to reference the owner temp, created
in the method example( ). Thus, the reference to the borrowed black box in b can be
passed as a parameter to method( ).

to become a regular, non-unique for the duration of the block. This reference can be

passed as a borrowed argument to owner-polymorphic methods, which guarantee that

no aliases to the borrowed argument survive the method call, except aliases returned

or stored internally in the borrowed argument. When the borrowing block exits, the

borrowed value is reinstated.

Traditional borrowing has downsides: first, it requires the addition of a borrowed

pointer concept, that is neither a unique nor a non-unique pointer; second, it prevents

the borrowed reference from being stored temporarily on the heap, even if the object

storing it will not survive the borrowing. The reason for this is that previous proposals

simply lack mechanisms in their type systems to treat borrowed references as usual

non-unique references but maintain the uniqueness invariant between borrowings.

Our borrowing proposal overcomes both of these shortcomings, which is explained in

detail below.
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void example( unique:BlackBox bb )
{

borrow bb as < temp > b
{ // st block

temp:List< temp > list = new temp:List< temp >;
list.add( bb );
. . .
( scoped )
{ // nd block, nested in st

scoped:List< temp > list = new scoped:List< temp >;
list.add( bb );
. . .

}
. . . //

}
. . . //

}

Figure .: Storing a borrowed reference on the heap. The method creates a temporary
owner scoped, and uses that as an owner for a list object in the innermost block.

Pass a Borrowed Object as an Argument

As is shown in Figure ., our borrowing block construct takes a unique reference and

converts it to a non-unique reference, stored in the temporary variable b whose type

has the temporary owner temp. We call b the borrowed variable. The contents of

the borrowed variable can be passed as a borrowed argument to the method method

by passing temp as a borrowed owner. This allows method to temporarily alias b’s

contents.

Since temp did not exist before the borrowing, no previously existing external ob-

jects’ types are parameterised with temp. Thus, no such object can store a permanent

reference to the borrowed object on the heap, which is the necessary condition to allow

bb to be reinstated with b at the end of the borrowing block.

Store a Borrowed Object on the Heap

Owner-polymorphic methods can use an owner parameter as an owner on objects

it creates. Such objects may naturally store borrowed references on the heap. This
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Figure .: Movable aliased objects—the dashed box denotes the “virtual boundary”
of the unique proxy. s, s ′ are sibling references to the movable object. Owners-as-
dominators applies as usual. There could of course be movable objects (or rather, all
sibling objects are part of the movable aliased aggregate).

does not leak the borrowed reference as the newly created objects will be siblings, or

iternal to, the borrowed objects. An example of using borrowed owners in types of

new objects is shown in Figure .. The example also shows a scoped region used to

create an additional owner scoped, inside temp, defined for a block nested inside the

borrowing block. Objects owned by scoped, such as list, will be permitted to reference

b, but will not survive the scoped region.

Outside the borrowing block, temp is not visible, which means that no aliases to b

are accessible. Thus, it is safe to reinstate the value in b to bb when the block exits.

.. Movable Aliased Object Pattern

The key behind all examples we have seen so far is that all active pointers to a unique

are accounted for since there is only one. We now show how external uniqueness can

be used to implement a pattern that allows for several pointers into a data structure

and still have all the benefits of uniqueness. The key is to store these pointers in a

proxy that is unique itself. We call this the Movable Aliased Object pattern, sometimes

omitting “aliased” when it is obvious what we mean.

Figure . shows the object graph for a movable aliased object and its unique proxy,

in this case, a simple tuple. It also shows a virtual ownership bound for the unique ob-
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ject and its siblings. We say that bound is virtual, since it does not correspond to

a specific object. By the unique-owners-as-dominating-edges property, there can be

only one pointer crossing the virtual boundary. Thus, the movable objects are pro-

tected from external aliasing and are thus implicitly moved by just moving the proxy.

Accessing the movable aliased object simply requires the proxy to be borrowed.

We now show an example application for movable objects.

List with Head and Tail Links Figure . shows the code for a doubly-linked list

where the set of links are encapsulated in a unique proxy. The links are thus strongly

encapsulated, and can be merged with another list without copying. This cannot be

handled by traditional uniqueness.

As is seen in Figure ., the proxy object class HeadAndTail is completely empty

except for two fields, head and tail. Instead of having the two pointers directly in

the List class, we encapsulate them in the proxy. Because of the presence of a tail

pointer, there is no need to iterate through the list to get to the last list element as in

.. The resulting object graph is shown in Figure .. The dashed box denotes the

virtual ownership bound of the unique proxy object that encapsulates the proxy and

the links. To show the absence of any magic, we show the modified append() method

from Figure . that moves and appends in the presence of multiple external pointers

into the lists. The difference is notably quite small—we now operate on handles instead

of directly on the head and the handle of the other list is moved into the representation

of the target list and then consumed. If our language had tuple types, as Haskell []

does, movable aliased objects would be even easier to implement, since no special

class would have to be written for the proxy object. However, it is now possible to

define specific methods for the proxy class to manipulate the external references into

the object.

.. The Initialisation Problem

The initialisation problem is the inability to externally create and initialise objects that

are part of some other object’s representation. In a system with ownership types, an

object’s representation cannot be named outside the owner, meaning it is impossible

to create or initialise a representation object externally. This has been a limitation with

many of the previous systems with deep ownership without uniqueness.
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class Link< data outside owner >
{

data:Object data; owner:Link<data> next, prev;
}

class HeadAndTail< data outside owner >
{

owner:Link< data > head, tail; // The external pointers to the movable object
}

class List< data >
{

unique:HeadAndTail< data > handle;

void append( owner:List< data > other )
{

borrow handle as < ho > bh
{

ho:HeadAndTail< data > ohandle = other.handle--;

if ( bh.head == null )
{

bh = ohandle;
}

else if ( ohandle.head != null )
{

bh.tail.next = ohandle.head;
ohandle.head.prev = bh.tail;
bh.tail = ohandle.tail;

}
}

}
}

Figure .: Movable aliased objects enable head and tail pointers to unique set of links
in a list. The append( ) method allows lists to be merged without copying.
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Movable object 

Owner of data objects
(not shown in code example)

List

OwnershipInvalid refUnique refRef and Object

Figure .: Object graph for the doubly-linked list with head and tail pointers in Figure
.. The dashed box denotes the virtual bounds of the owners of the unique objects.
The virtual bound corresponds to the owner of handle.

Arguably, this is a severe drawback since external initialisation increases the flexi-

bility and facilitates code reuse. For example, plug-in architectures are not possible.

In Joline, we can overcome the initialisation problem using movement and transfer

of ownership. The externally initialised objects are created as externally unique objects

and then moved into the target representation. The dominating edge property of ex-

ternal uniqueness guarantees that once the representation object is moved into their

target, no references from objects external to the target remain.

Figure . presents a lexer class that reads tokens from an externally initialised

stream. The lexerClient() method creates and initialises the InputStream which is then

moved into the representation of the lexer without leaving any external aliasing to the

stream object. This enables the implementer of the lexer to disregard any external

aliasing, which makes the implementation easier, voids the need for checks that no-

one has for example moved the file pointer externally of the lexer class, and makes it

easier to maintain and reason about class invariants.

Having described a few applications for our proposed constructs, we now move on to

consider a few additional extensions to the Joline language, unique borrowing, existen-

tial downcasts and a way to enable iterators through a closure-like construct.
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class Lexer
{

this:InputStream stream; // representation

Lexer( unique:InputStream s )
{

stream = s--;
}

}

void lexerClient()
{

unique:InputStream stream = new unique:FileInputStream( file );
unique:Lexer l = new unique:Lexer( stream-- );

}

Figure .: Overcoming the initialisation problem.
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Extensions

I  ,     extensions to the full Joline system—

unique borrowing and existential downcasting—that further increase the expressiveness

of the system. Unique borrowing is a minor extension that enables borrowed pointers

that maintain their uniqueness. Existential downcasting enables downcasting in a style

similar to SafeJava’s [], but without requiring a run-time representation of owners.

. UNIQUE BORROWING

Unique borrowing maintains the uniqueness of the borrowed variable and uniquely

borrwed references can be reinstated at the end of the borrowing, regardless of how

the borrowed variable was used in the borrowing block.

For simplicity, in our formalisation of Joline, we chose not support unique bor-

rowing. Instead, borrowing loses uniqueness and methods cannot determine whether

an incoming borrowed object is aliased or not. This weakness is shared with other

borrowing proposals [, , , , , ].

In this section, we show how to overcome this weakness with a trivial extension

to Joline, whose constituents are formalised and proven sound in other parts of the

system.





CHAPTER . EXTENSIONS

.. Towards Unique Borrowing

How to achieve unique borrowing is best explained by example. The following method

declaration effectively declares a method that does unique borrowing:

<b inside world> void someMethod(unique[b]:Object arg) { ... }

The borrowed parameter arg is a regular borrowed parameter, but the borrowed owner

b is used not as an owner, but as a movement bound. In someMethod( ), arg cannot

be statically aliased nor can it be moved into some preexisting object as it has a bor-

rowed type. Using scoped owners or the owner b to create objects, objects allowed to

statically alias b can be created allowing arg to be moved to the heap. However, such

objects will be invalidated when someMethod( ) exits. Thus, when someMethod( ) exits,

all references to arg, unique or not, will be invalidated and the run-time system can

reinstate the unique value in the variable passed as an argument.

However, if b is used elsewhere in the signature of someMethod( ), the unique bor-

rowing could no longer be verified, as an alias to arg could be created in an object that

survives the method call, causing arg to be non-unique when the method exits.

There are two solutions to this problem: either we prevent the movement bound of

the borrowed unique to appear more than once in the method signature, and disallow

owners nested inside it; or we can simply introduce a fresh movement bound for a

scope, and delay the reinstatement to a point when the scope exits. In the latter case,

the fresh movement bound acts as a guard to guarantee that no aliases created to the

borrowed reference remain when the scope of the bound exits, just like in a regular

borrowing block.

We now show how this could be achieved using a special kind of borrowing blocks

that preserve uniqueness.

.. Borrowing Blocks that Preserve Uniqueness

The key to achieving unique borrowing is to make sure that no aliases to the borrowed

object exists at the time of reinstatement. We encode unique borrowing using an addi-

tional borrowing block construct that works exactly like our regular borrowing block,

but maintains the uniqueness of the borrowed object and uses the borrowed owner as

a movement bound. The reinstatement of a uniquely borrowed variable is “delayed”

to the exit of the borrowing block, as opposed to directly after a method call. Addi-

tionally, the method call is allowed to lose the uniqueness of the borrowed argument
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<b inside world> void someMethod( unique[b]:Object o ) { ... }

<b inside world> void other( unique[b]:Object o, b:Object p ) { ... }

unique[z]:Object x = . . . ;
borrow x as unique[fresh]:Object y in
{

// x = null
// fresh is a new owner that is only related to z (is inside)
someMethod<fresh>(y--); // pass fresh and y to someMethod
// y = null

}
// x is now reinstated

borrow x as unique[fresh]:Object y in
{

fresh:Object local = . . . ;
other<fresh>(y--, local); // local can swallow y in other
// y = null

}
// x is now reinstated

Figure .: Two examples of unique borrowing. The variable x is borrowed twice and
passed as a unique argument to methods someMethod( ) and other( ). After each bor-
rowing block, it is safely reinstated.

as any such aliases will be tied to the lifetime of movement bound introduced by the

borrowing block. For concreteness, we give an example.

Figure . shows an example of unique borrowing. It declares two methods. The

first method will never consume its argument in such a way that it would be invalid to

reinstate after the invocation. The second method could however alias o inside p (pos-

sibly losing the uniqueness of o) making it unsound to reinstate o after the invocation.

The first borrowing block shows our extended borrowing construct. The borrowed

variable is given a fresh movement bound and is moved into the variable y with its

uniqueness maintained. Upon the entering into the block, x is nullified. We pass y as

an argument to someMethod( ) after which y is nullified. When the block is exited, we

can reinstate x with its original value, or some other value in y.

The second borrowing statement is similar to the first, but illustrates that other
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argument objects are safe. Any aliases to y saved in local by the method will be inacces-

sible when fresh goes out of scope. Thus, we can reinstate x when the block exits, just

as above.

As it is the block and not the method invocation that is the unit of unique bor-

rowing, several blocks are needed to pass a unique as uniquely borrowed to several

methods. This is an inconvenient, but could probably be solved by automatically in-

ferring the borrowing blocks.

A downside of this proposal is that there are now two borrowing blocks, with subtly

different semantics—one that maintains uniqueness and one that does not. We feel

that if the programmer is required to explicitly state the type of the borrowed variable,

just as above, this problem is minor.

. EXISTENTIAL DOWNCASTING

Many statically typed object-oriented programming languages with manifest typing

rely on subtype polymorphism and downcasts for standard code reuse. Methods are

generally polymorphic in their parameters—an object of a subclass can be passed as ar-

gument to a method that expects a more general type. The method can then downcast

the object to access the extended protocol. This practice is complicated by ownership

types as owners of the target type must be considered.

Boyapati et al. [] propose a way of doing dynamically checked downcasts with

deep ownership where ownership information is stored at run-time. The downside

of such a proposal is the overhead of keeping track of owners at run-time. If a class

has four owner parameters, this means four additional pointers to the corresponding

actual owners in each instance in a naive implementation. While Boyapati et al. show a

way to only include owners for instances whose classes are involved in operations that

make use of run-time ownership information, the cost is still high.

In this section, we propose a form of downcasting into an existential type where

the owners and their relations are derived from the header of the class cast to. The

existential type can be used in the same fashion as a borrowed type. The implemen-

tation, however, does not require run-time owner representation. The downside or

our proposal is that the types cast to are never type-compatible with any other types

in scope.
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public boolean equals( Object o )
{

if ( o == this )
{

return true;
}

if ( !( o instanceof List ) )
{

return false;
}

ListIterator e = listIterator( );

ListIterator e = ((List) o) .listIterator( ); // Note the cast
while ( e.hasNext( ) && e.hasNext( ) )
{

Object o = e.next( );
Object o = e.next( );
if ( !( o==null ? o==null : o.equals( o ) ) )
{

return false;
}

}
return !( e.hasNext( ) || e.hasNext( ) );

}

Figure .: The equals method in java.util.AbstractList.

.. The Importance of Downcasting

In Java, downcasting is frequently used to overcome the shortcomings of the static type

system. Prior to Java ., and the introduction of parametrically polymorphic classes,

container classes stored data objects as instances of Object. As a consequence, type in-

formation of an object stored in a container was lost when the object was later retrieved

and dynamically checked downcasting was essential to regain the type information.

Even in Java ., downcasts are frequently used. A good example can be seen in

the equals( ) method declared in Object, the superclass of all objects. This method is

supposed to be overridden in all classes for which structural equality is sensible. In

the Java API, all equals( ) methods have the same signature: boolean equals( Object o ).

The common implementation of such a method is to check that the argument is of the
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correct type; if so, cast the argument to the desired type, and then perform equality

tests of the contents of the objects. Figure . shows the equals method for the class

AbstractList from the standard Java API bundled with Java .. (before generics was

introduced in the Java language).

In a system with ownership types, the downcast in Figure ., would not be possi-

ble, as the following code snippet shows:

< some inside world > boolean equals( some:Object o )

{

. . .

. . . ((some:List< ? >) o).listIterator( ); // problematic cast

. . .

}

In short, the problem above is that the owner, marked ?, introduced by the cast of o to

a List is unknown. Making equals( ) owner-polymorphic does not solve the problem:

first, it would not be clear how to map owner parameters to parameters cast to, and

second; overriding of equals( ) methods would be broken as the number of owner

arguments would vary. In short, this would not solve the problem but make the system

additionally complicated. Below, we introduce the concept of existential owners that

overcomes the problem of downcasting to a type with unknown owners.

.. Existential Owners

The idea behind our proposal is simple: if a Java-style downcast (disregarding owner-

ship) of an object to some class c succeedes, then we could infer the owner parameters

necessary to form the new type from c’s class header. We call the inferred owners

existential owners, and types that use them existential types.

For example, if we can check that the class of the value of a variable typed a:Object

is actually a list, we know that its actual type is a:List< b > where b is some owner

outside a. Thus, we can simply add b to the current scope, with that nesting informa-

tion. Adding owners in this fashion can never enable breaking owners-as-dominators

as we must already have permission to reference the object (its owner), and all owner

parameters are always outside this permission.

Existential owners completely avoid a run-time owner representation to the price

of being forced to conservatively treat existential owners derived from a cast as differ-
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ent from all other owners in scope, possibly even when the same variable is downcast

twice (unless we can clearly see that it has not been modified since the last downcast).

The syntax of existential downcasting is thus:

a:List< b > list = (a:List< b >) someObj; // someObj has type a:Object

The statement introduces b as a new owner that is outside a, inferred from the header

of the List class. The variable declaration is optional. However, without it, every cast

of someObj will yield a new type with fresh existential owners that will not be type

compatible with a:List< b >.

We define existential owners and existential types thus:

Definition .. (Existential Owner). An existential owner is an owner that is intro-

duced by a type cast.

Existential owners have no statically known relations to other owners, except for

the owners in the type cast where they were introduced. Existential types are bound

to their enclosing scope and thus have the same restrictions as scoped owners, see

definition ...

Definition .. (Existential Type). In our setting, an existential type is a type that

uses an existential owner for one or more of its owner parameters.

Again, if someObj can be cast to a List, it must have (at least) two owners, the

already known owner a and an owner of the data objects in the list, here b. As we

clearly have permission to reference a which is inside all the “hidden” owner parame-

ters of someObj, we can safely access them without breaking encapsulation. As we see

it, allowing the downcasting is simply a way to overcome the (technical) difficulty of

deriving what owner parameters should have been passed to the method would the

desired type of the argument be known outside, something we expect to be generally

impossible. Our solution preserves pure polymorphism for methods without intro-

ducing any additional complexities in the system. It also preserves abstraction as it is

not visible external to the method how the method will downcast its object.

Figure . shows the use of existential downcasting to implement structural equal-

ity tests for a list using an equals( ) method. The existential owner b must be introduced

to type the data object obj, even if the list.get(i) call is “inlined” in the method call on

line †. The owner b is visible in the scope from the line where it is defined to where the
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// In List class
< a inside world > public boolean equals( a:Object arg )
{

if ( arg == this )
{

return true;
}

if ( arg != null && arg instanceof List )
{

a:List< b > list = (a:List< b >) arg;
if ( list.length( ) == this.length( ) )
{

for ( int i=; i < this.length( ); ++i )
{

b:Object obj = list.get( i );
if ( this.get( i ).equals< b >( obj ) == false ) // †
{

return false;
}

}
return true;

}
else
{

return false;
}

}
return false;

}

Figure .: Existential downcasting used in implementation of an equals method.
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enclosing block exits. Type theoretically, downcasting to introduce existential owners

is much like unpacking an existential package, which introduces a new type variable

(also called a witness) [].

Having a run-time representation of owners is orthogonal to existential downcast-

ing. In a system with run-time representation of owners, such as SafeJava [], down-

casting into a set of known owners would be possible using dynamic checks. This is

more powerful, but comes with the cost of keeping track of a potentially large mass of

ownership information at run-time. When downcasting a List instance to an ArrayList

with the same number of owner parameters in its type, our existential downcasting

would not need to invent any existential owners to produce a well-formed type. Thus,

in cases such as this, our solution is as expressive as SafeJava’s but completely without

the run-time overhead.

In short, existential downcasting preserves the expressiveness of pure polymor-

phism in situations where downcasting (also called reverse polymorphism []) is nec-

essary to access an argument variable’s extended protocol. Without existential owners,

downcasting would be reduced to work only in situations with a invariant number of

owners on the possible types, like in the List and ArrayList example above. As the ex-

istential types are only valid for the duration of the method (or a nested block in the

method), they are effectively borrowed. Thus, the owners-as-dominators property is

upheld. An interesting property of our proposal is that the code remains independent

on the actual values of the owners, which is not the case for SafeJava.

. ITERATION REVISITED

A frequently pointed-out problem with the deep encapsulation of ownership types

is that it does not support iterators for lists, as iterators require an object that can

access a lists representation to be externally visible. This combination is invalid in an

ownership types setting.

Using objects, we can do a crude simulation of closures in Joline: An external “ac-

tion object” is created with the method performing the intended iteration. The action

object is then passed into the list. Using double dispatch and owner-polymorphic

methods the action object is then passed a temporary permission to reference a prop-

erly encapsulated iterator. Example code for this is shown in Figure .. It relies on the

existence of an abstract ActionObject class which it extends with an implementation
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of the iterate method to enable the iterate( ) method in List to be reused for different

kinds of iterations.

The code for the iterator class looks like any iterator, modulo the ownership anno-

tations. It also presupposes a superclass, Iterator, that is used to hide the fact that the

list’s representation is visible in the list iterator’s type. Inside the List, a scoped owner

iter is used to preserve separation of the iterator and the list’s representation and to

capture the iterators temporary nature.

Naturally, the downside of this solution for iteration (and tasks with similar prob-

lems) is the addition of a new class to the program for each iteration that the pro-

gram must perform. With the addition of closures or higher-order functions, this

pain would be somewhat relieved. In any case, we avoid the more ad hoc solution

employed by Boyapati [] that allows instances of inner classes to have access to the

representation of the enclosing instance, without being confined to it. For our pro-

posed solution here, the aliases violating deep encapsulation will always be dynamic,

which is safer.

For a detailed analysis of iterators and encapsulation, see work by Noble [].

We now move on to describe our practical evaluation of our Joline system.
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class MyCustomAction< data outside owner > extends ActionObject< data >
{

< iter inside world > void iterate( iter:Iterator< data > iter )
{

// code for iteration
}

}

class List< data outside owner >
{

this:Link< data > first;

< temp outside data > void iterate(temp:ActionObject< data > ao)
{

(iter)
{

iter:Iterator< data > iter = new iter:ListIterator< this, data >( first );
ao.iterate< iter >( iter );

}
}

}

class ListIterator< links outside owner, data outside links >
extends Iterator< data >

{
links:Link< data > current;

ListIterator( links:Link< data > first ) { current = first; }

boolean hasNext()
{

return current.next() != null;
}

data:Object next()
{

data:Object result = current.data();
current = current.next();

}
}

Figure .: Using objects for performing iterations
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Practical Evaluation

. THE JOLINE COMPILER

W       , which was developed

together with Johan Östlund, using the Polyglot framework []. It compiles an ex-

tended version of Joline into byte-code that is executable on a regular Java VM. For this

implementation, Joline was extended with primitive data types, standard conditionals

and loops, void method returns and name-based encapsulation. All these constructs

that are not in our formalisation in order to make it simpler and well-understood, and,

importantly, do not in any way interact with ownership. We also added print and read

routines operating on strings for trivial input and output.

Additionally, we added class variables and class methods to Joline (through a static

keyword, just like in Java). These work as expected, though the only visible owner

inside a static method is world. This hampers the usability of class variables, which will

be discussed below. Class methods can be owner-polymorphic which relieves much of

the restrictions of only having permission to reference world-owned objects.

In the sections below, we list a few issues with the current Joline compiler. See

also Östlund’s masters thesis [] for a related discussion as well as an account of

the practical usefulness of the Joline language. Some parts of this chapter are based

on work together with Gustaf Cele and Sebastian Stureborg and were also reported in

their masters thesis [], an early attempt at evaluating deep ownership and external

uniqueness, using manual checking instead of a compiler.
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.. Class Variables

It is common to use class variables to share objects between instances of the same

class. This is complicated by the fact that the only visible owners in a class scope is

world. Thus, class variables can only hold world-owned objects, which is sensible but

limiting. Objects shared in class variables are owned by world and can only reference

objects owned by world (in addition to its representation). This will force objects

to be world-owned even if they really should not be, and thus not protected by deep

ownership.

A possible way to circumvent this problem is to assign an owner to a class object.

This allows the use of the owner variable in the class scope, or even an additional set

of parameters for the class object. This enables, for example, a class p:Player where p

is the owner of the object representing the Player class in run-time. Thus, the class

variable worldMap in p:Player.worldMap can be encapsulated inside the owner p, in-

stead of world. Naturally, adding an owner to the Player class object will have effects

on where the class can be used. The owner p will also bound the possible owners of

player instances. If player instances were given an owner outside p, encapsulation of

worldMap would be broken. Preventing this through a static check is simple. This

approach is taken by Potanin et al. [].

For flexibility, we can allow several parallel copies of a class for class objects with

different owners. For example, we could have two copies of the class Player, p:Player

and q:Player. In this case, all class variables (at least all class variables owned by

owner) would be different for each copy of the class. Thus, p:Player.worldMap and

q:Player.worldMap would refer to different fields in different copies of the Player class.

This model would also fit well with the possibility, in Java, of having several copies

of a class in memory simultaneously, one for each class loader.

.. String Literals

The only object literal in Joline is the string literal. During the implementation, the

issue was raised of how to treat the string literal in terms of ownership and types. We

finally decided to make string literals create unique objects, and gave them a type that

allows maximal movement, unique[world]:String. Thus, a string literal has the most

general type possible, and is thus possible to assign to any string variable, regardless of

ownership. As we use Java strings for our implementation, strings are immutables and
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could thus be shared without problems. We leave such optimisations for future work.

Notably, manifest ownership, [, ], would enable a string to be used a type

without owners, but would lose encapsulation.

.. Studies of Aliasing and Programming with Ownership

Surprisingly few practical studies of deep ownership have been performed.

In Aldrich’s dissertation [], the ArchJava language is evaluated with several large

implementations. The evaluation is however mostly concerned with enforcing archi-

tectural properties, and the ownership system of the ArchJava language is shallow. It is

therefore not possible to generalise from this study to our setting.

Boyapati’s dissertation [] includes a practical evaluation of SafeJava’s implemen-

tation of the Run-Time Specification for Java. Eight programs in sizes from   to

  are ported from Java to SafeJava with, changing one  for roughly every

 . This study however foremost evaluates a regions system in SafeJava and tests

memory management policies, not deep ownership types or uniqueness. No details

on the nature of the programs implemented are provided.

Noble and Potanin’s [] study of ownership and confinement in regular Java pro-

grams finds that less than % of all objects have more than one pointer to them.

This study is optimistic as it is based on analysing heap snapshots. Thus, it is pos-

sible that some objects deemed unique were used in a way violating uniqueness in-

between snapshots. For their corpus of programs, the average depth of object nesting

was around  or , although it is not possible to draw any conclusions in terms of the

compatibility of deep ownership and “real-world programming” from this observa-

tion.

Recently, Hackett and Aiken [] have studied aliasing in over a million lines of

C code. Their findings are interesting, even if they may not be directly applicable to

object-oriented code. They find that “[...] in real programs, aliasing has a great deal

of structure reflecting the structure of the program” and that “[...] outside the data

structures that use aliasing, aliasing is very rare”. Notably, of  intentional aliasing

situations found in their analysis,  aliases, or around %, were pointers inwards in

a nesting structure. Note that this does not necessarily suggest that % of the aliasing

situations would have been invalid in a system with deep ownership as their notion of

nesting considers actual paths and not ownership nesting. For example, it might well
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be sensible for all nodes in a binary tree to have the same owner, which would allow

the inwards pointers above.

The next section reports results from our experiences of programming with deep

ownership types and external uniqueness.

. CASE STUDIES

This section discusses case studies of programming with the constructs in the Joline

programming language. The first two case studies are from work done together with

master students at Stockholm University.

.. Case : Informal Ownership

For their masters thesis, Cele and Stureborg [] posed the question “how does own-

ership types hamper development”?

In order to answer this question, three programs were designed and two imple-

mented. Due to the lack of a publicly available compiler for systems with deep own-

ership at the time, the implementations were done in Java, and manually inspected to

respect deep ownership and external uniqueness. The programs considered were: a

prototype for a program for plagiarism detection using Markov Chains [] for string

comparisons; and two board games with existing designs, “Dragon Fort” and “Settlers

of Catan”. Only the second game was implemented. The programs were of differ-

ent sizes and complexity, and were upon initial inspection determined to have a fair

amount of interconnections between objects, something that we hypothesised would

make the evaluation more relevant and “put more pressure” on the constructs being

evaluated. In their analysis, Cele and Stureborg reports that not the size of the pro-

gram, but the nature of its interconnections seemed to be the most influential factor

on the successful use of ownership types.

An inspection of the ownership graph for the Settlers program reveals that % of

all classes have its instances in world. Of these, % expose details of some supposedly

encapsulated object inside some other structure, following the inner class pattern of

Boyapati et al. []. These were however only used for reading, or could be replaced

with a unique listener pattern (see Section ..). To us, the successful implementation

of these programs,   for the Markov Chain implementation and   for
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Table .: Pointer statistics from the program evaluated in Östlund’s thesis []. The
second percentage number on the Total row is the percentage of uniqueness when
ignoring primitives.

Unique Non-unique Primitive
Local variables   

Fields   

Class variables 

Parameter  

Return  

Total  (% / %)  (% / %)  (%)

the Settlers game (including comments but excluding the use of Java libraries), sug-

gests that using the encapsulation of deep ownership is possible even for non-trivial

programs, even though the results are inconclusive.

It is hard to draw any grand conclusions from this study, partly because of the

lack of a compiler but also because parts of the program were written without respect

for ownership types (the graphical user interface). Our own inspections of their pro-

grams, did not reveal any accidental violations of ownership, but this kind of manual

checking is of course unreliable, especially for the   Settlers program. Natu-

rally, defaulting ownership to world is always possible, meaning that a system could

always be rewritten using deep ownership types, but without taking advantage of its

enforcement of encapsulation.

In their concluding discussion, Cele and Stureborg raise an interesting question

regarding ownership and reuse: “Will the presence of a fixed set of ownership param-

eters make classes harder to reuse?” The discussion about downcasting and equals( )

method in Chapter  suggests that this is the case. Our owner-polymorphic methods

enable reuse of a method on arguments with different owners. Existential downcast-

ing eliminates some need for passing owners around. We expect type parametricity

on classes to help as well, and patterns such as the Hide Owner pattern (Section ..).

More research is necessary to understand the interplay of deep encapsulation, our pro-

posed constructs and software reuse.
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.. Case : A Library System

For his masters thesis, Östlund [] implements a   program in Joline, a li-

brary system with different libraries, books and borrowers. This project was an assign-

ment from a course on object-orientation that was not developed with uniqueness

or ownership in mind. Our examination of this code reveals a total of  type dec-

larations on variables, fields, parameters and returns. In an effort to put Noble and

Potanin’s positivistic uniqueness result to a test, Östlund made an effort to make as

many pointers as possible unique. The results from our inspection of his resulting

program is shown in Table .. Around % of all type declarations can be made

unique, and only % of all variable declarations denote shared objects (less than %

if one counts static aliases only). Of the primitive variables used, some were kept in

synch between objects in an effort to keep track of where a unique object belonged.

For example, all books are unique, but the library needs too keep track of what books

it owns—thus, the book has an int valued identifier that are copied in the catalogue

of the library to which the book belongs. For non-uniques, this could have been im-

plemented by keeping a pointer to the object and use that for comparison only. Ad-

ditional inspection revealed that on all occasions, simply returning the object’s hash

value would have sufficed, which would have reduced use of primitive types further.

Even if Östlund’s program is not very large, it shows that it is indeed possible to

use the Joline language in practice. Östlund’s hypothesis, extrapolated from Noble and

Potanin’s [] results, that it would be possible to program exclusively with externally

unique pointers, hold true for the program, which suggests that its uses of uniques

does not deviate from real-world programs and that the presence of ownership did

not preclude uniqueness. As the most pointers in the program are unique, it is not

surprising that the strong encapsulation provided by external uniqueness does not

impose any limitations on the program’s structure.

The statistics for Östlund’s program in Table . show declarations, not actual

pointers, which of course varies with the number of instances at a given point. Never-

theless, a majority of the fields in the classes that are expected to have many instances

are unique (approximately by a factor of :), so for a program with a large number of

such instances, the percentage of unique pointers will converge to %. When prim-

itives are disregarded, the factor is around :. Destructive reads were used  times,

about  for every  lines of code.

As most pointers are unique, the level of encapsulation in the library system is
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very high. The single non-unique field used is a sibling reference (that is, its owner is

owner), and the only uses of the global world owner are as a movement bound, mostly

on unique strings.

The use of additional integer ids for each object as described for books above could

be questioned as it would perhaps normally be implemented using sharing. This is

discussed in relation to the id-aliases concept in Section ...

.. Case : SuDoku

Our first study of using the Joline compiler was porting a program for solving simple

SuDoku puzzles to Joline. The original program was written in Ruby, and was first

ported to Java without using any of the Java libraries for which there are yet no Joline

counterparts. The resulting program was  lines of code, including a minimal list

implementation. We black-box tested the program against the output of the Ruby

program and found that we got the same results for the same input. We then ported

the program to Joline, adding ownership parameters to classes and types and trying

to make as many pointers as possible unique. Porting the program from Java to Joline

took less than one hour, not including debugging and logging a few unsatisfactory

error messages produced by the Joline compiler, and correcting a bug in the type-

checking of field assignments.

The resulting program was  lines long,  lines longer than the original Java

program, not counting the code duplication due to the lack of generics. The lack of

generics forced a simple copy-and-replace operation to create a new list class for each

class of objects that was stored in lists, much like manually doing the work of the C++

template mechanism. Existential downcasting would have overcome this, but it was

not implemented in the Joline compiler at the time.

Of the  additional lines, about  were due to borrowing blocks, all of which

could be removed by adding a trivial borrowing block inference to the compiler (fur-

ther discussed in Section ..). The remainder of the code added was due to the lack

of public or package scoped variables in Joline which forced code to be moved from

one place to another, using the “move method” and “move field” refactoring patterns

[]. Of the  lines, around , plus an additional  counting beginning and end

brackets of borrowing blocks, contained a Joline-specific construct, such as a type with

owner parameters or an owner-polymorphic method. Owner-polymorphic methods
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Row

Num

Box

Col

Figure .: Reference Structure of the SuDoku program. The gray object corresponds
to the Num instance, and box is the larger x structure.

were used, adding only one external borrowing block in the client code for each use to

temporarily pass the entire sets of rows, columns and boxes around to synchronize the

object structure during grid setup.

At no time during the porting did ownership types cause any problems. Each

square on the SuDoku board was represented by a mutable Number instance that was

shared between three “SuDoku-aware” containers. Each number also had references

to each container to which it belonged. An illustration can be found in Figure ..

The gray square is represented in the program by the num object that belongs to row,

col and box (the larger x structure).

The ownership structure that made most sense to us was to make numbers, rows,

columns and boxes all siblings owned by a grid object, representing the entire puzzle.

Adding the corresponding annotations to the program was straightforward.

Joline’s lack of support for public variables slightly strengthened the program’s

encapsulation. The first attempt at fixing this compiler error was to simply create

an accessor method for the variables that could no longer be accessed directly from

outside the objects. As these turned out to be representation objects, the accessor

method were still not accessible externally, forcing the external code to be moved inside

the object. As the external object was directly manipulating another object’s internals,

the change was consistent with the “move method” refactoring pattern [] and the

resulting code was actually improved.
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.. Case : Linked List

Our last study involved porting the LinkedList class from the Java collections frame-

work in the Java API to Joline, including its superclasses and inner classes. It turned

out, however, that quite a few things present in the collections framework, such as

external iterators, conversion into arrays, creation from arrays, etc., were not possible

to implement in Joline, as the language currently lacks such features. Thus, any com-

parisons with size and numbers of changes are uninteresting. The size of the code for

the ported classes were a total of   excluding comments. The porting took three

hours over several days, as this was done while the compiler was still unstable and bugs

surfaced during development. The bulk of the time was spent pondering over depen-

dencies between pieces of code cut out for the aforementioned reasons, and how to

factor out inner classes etc. in a satisfactory way. Perhaps unsurprising, adding own-

ership annotations was straightforward and keeping the list’s representation separate

from data objects easy.

Having ported the linked list to Joline, we set out to change its implementation into

using unique links, to enable merging of two or more lists. As the list was implemented

as a double-linked list, we had opportunity to use the Movable Aliased Object pattern

described in Section ... Wrapping the links in a uniquely referenced proxy allowed

the links to remain non-unique. It was thus, not necessary to make any changes to the

internal structure of the class describing the list nodes. This entire reimplementation

took less than one hour.

The merge-able list totalled  , a total of  lines added. The size of the small

proxy class to make the links moveable aliased objects was   excluding methods

moved into it from the LinkedList class in order to avoid a few cases of borrowing. A

few interesting refactorings resulted from this design change. The list implementation

relied heavily on the use of an internal iterator supplied by the method listIterator( )

to manipulate the links. Previously, the iterator could share the links of the list, but

as these were encapsulated in an externally unique proxy, this was no longer possible.

In order to create an iterator, the proxy object had first to be borrowed and supplied

to the method creating the list iterator, somewhat similar to the iterator discussion in

Section .. (An alternative design would have been to move the iterator to where it

was needed and there do the borrowing, but we chose this design to avoid having to

manually move the proxy object into place after each iterator use.) This mechanism

was necessary as borrowed objects in a borrowing block cannot be returned (we would
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// Code from LinkedList—returns an internal iterator
< temp inside data > this:Iterator< temp, data > listIterator( temp:Proxy proxy )
{

checkBoundsInclusive(index);
this:ListIterator< temp, data > result = new this:ListIterator< temp, data >( );
result.setup( index, size( ), proxy.first, proxy.last );
return result;

}

// Code from AbstractSequentialList
data:Object get( int index)
{

// This is a legal listIterator position, but an illegal get.
if ( index == size( ) )
{

return null;
}

borrow first as temp:proxy in
{

temp:ListIterator< data > itr = listIterator< temp >( proxy, index );
return itr.next( );

}
}

Figure .: Code from the linked list implementation.

lose track of them in our type system). Thus, the borrowing was done at the call site

and the borrowed proxy passed to the listIterator( ) as an argument, as is visible in

Figure .. The method was decorated with an owner-parameter for the borrowed

proxy and returned a rep iterator wrapping the link nodes from the proxy. This also

allowed the iterator code to remain intact. The borrowing made sure that the proxy

would be safely reinstated after the iteration was performed and the method exited. As

the chain of invocation never left the list object for the iterator creation, this design

does not smell particularly bad, even though closures, or higher order messages could

perhaps have avoided this chain of argument passing and returning. Figure . shows

two methods from the ported code: listIterator( ), that creates and sets up the iterator,

and get( ), that uses an iterator created by the first method to return an object from the

list for a given index.
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A total of  borrowing situations were added, around  lines of code, all oper-

ating on the proxy reference, the only unique reference in the list. Around % of

these were trivial enough to be inferred by the simple inference mechanism described

in Section ...

In conclusion, even though we were forced to remove parts of the original class’

implementation, the port to Joline was straightforward. When changing the imple-

mentation to use unique pointers, our Movable Aliased Objects pattern allowed the

double-linked structure to remain intact and imposed only a minimum of changes.

We look forward to using a more complete Joline language for similar experiments in

the future.

. RESULTS

A few shortcomings, though unrelated to our proposed constructs, of the Joline com-

piler surfaced pretty early in our evaluation. The lack of interfaces, inner classes, ar-

rays and exceptions made porting parts of the Java API to Joline too much work. This

forced us to rewrite a few utility classes from scratch, and prevented us from port-

ing larger existing programs to Joline, as rewriting them was easier than redesigning

uses of inner classes, etc. In this section, we summarise the results from our practical

evaluation.

.. Design Delicacy

The first case studies and discussions with the master students involved, suggest that

the design phase of software development becomes more important, as the ownership

structure of a program must also be considered when forming associations. Some-

times, an additional redesign of the ownership structure was necessary in order to add

a permission or remove one that was no longer needed. Cele and Stureborg states []:

“A programmer trying to ‘hack up’ a non-trivial system without any par-

ticular focus on design would experience great difficulties using owner-

ship types (unless he would disregard ownership structures completely

and assign ownership of everything to world).”

However, they also report:





CHAPTER . PRACTICAL EVALUATION

“We designed our systems serially, and found that as our experience with

ownership types grew, our first draft of the system had a rather clear own-

ership structure and needed fewer changes in the design as the design pro-

cess proceeded.”

We conclude that more longitudinal studies must be undertaken to investigate this

further.

.. The Importance of Generics and Downcasts

Very early in our first attempts at programming in Joline, we were struck by the lack

of a downcast operation, something we were surprised that no-one had pointed out

in papers on ownership types. We have already discussed the use of a downcast for

equals methods in Section ., but there are many other uses. A hidden problem with

the list example for deep ownership is that unless there is a downcast operation, the

list must be rewritten for each type of data objects stored in lists. Boyapati’s SafeJava

system [] includes a downcast operator, but with a quite heavy run-time overhead.

A better solution is to use generics, as done by Potanin et al. [, ]. Extending the

Joline language with generics is a definite direction for future work.

.. Id-aliases

Östlund’s library system implements a unique id scheme parallel to reference identity

for certain objects. This enables an object to be unique, and compared against its

additional id. Östlund uses this for example for copies of book—a book is unique and

moved into its borrower when borrowed from the library. The library still needs to

keep track of what copies it owns, and does so through a unique integer number in all

instances of Book. Thus, returning a book to the wrong library will not succeed. This

scheme is used in other places of the library program as well.

Although there is not enough evidence to support it, there may be a pattern to

this—pointers are used to represent a relation, in this case some kind of ownership,

not to invoke methods. In these cases, the value of the pointer is the interesting value,

not the object the pointer points to.

Boyland et al. [] presents a capability system for pointers where combinations of

capabilities can be used to express constructs such as read-only and traditional unique-

ness. Their system of capability combinations include a “null capability”, for references
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that may only be used to perform id comparison, not to read fields or invoke methods.

Allowing external id-aliases, pointers with null capability, to a unique object would

constitute an additional weakness of uniqueness. However, since these pointers are in-

nocuous, the effective uniqueness invariants would be the same (modulo the fact that

comparing a unique pointer to another pointer might return true). There seems to be

no reason why id-aliases cannot be weak references (in the GC sense).

.. Unique Listener Proxy Pattern

The unique listener proxy pattern was discovered by Cele and Stureborg during their

implementation of the Settlers program. It overcomes the problem of adding a listener

to an external object in an event generator that does not have all the necessary owner

parameters in its type. The external object interested in the events can create a uniquely

referenced listener proxy, say an anonymous instance of ActionListener, with a back-

reference to the external object to forward received events. Subtyping can be used to

hide all owner parameters except owner, which is unique. The unique listener proxy

can then be moved into the representation of the object generating the events, without

the need for that object to have explicit rights to reference the object “wrapped” inside

the listener proxy. This also allows an object to have a list of subscribers with different

owners as the proxy listeners will share the common owner, determined by the event

generator itself. An example of use of the unique listener proxy pattern is shown in

Figure .. A similar effect can also be achieved by the Hide Owner pattern in Section

.., with the exception that the listener proxy is created by the event generator itself,

and that uniqueness need not be involved.

.. Syntactic Overhead

The Joline system imposes some syntactic overhead on a program. For example, in

the library system, around  of the  lines contain Joline-specific constructs, such

as a variable declaration with owners, a class header with owner parameters, or a bor-

rowing block: roughly one every eight lines. Around  of these are borrowing blocks,

which is not surprising as most references are unique. Manual inspection shows that

 (about %) of the borrowing blocks could be inferred from the program with a

trivial inference algorithm. For the SuDoku program, about % of the code added in

the porting was borrowing blocks of which every single one could have been inferred.
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class Observer
{

// implementation details omitted for brevity
}

class MyListener< observer outside owner > extends Listener
{

observer:Observer observer = null;

void setObserver( observer:Observer o )
{

observer = o;
}

void notification( )
{

observer.doSomething( );
}

}

class EventGenerator
{

this:Listener listener;

void registerListener( this:Listener l )
{

listener = l;
}

void updateSomething()
{

. . . // make some change
listener.notification( );

}
}

// a is inside b
a:EventGenerator gen = . . . ;
b:Observer obs = . . . ;
unique[b]:MyListener< b > lis = . . . ;
lis.setObserver( obs );
gen.registerListener( lis-- )

Figure .: The Unique Listener Proxy Pattern.
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As an example, a common use of a borrowing block in the SuDoku system had the

following shape:

borrow numarray as temp:arr in

{

arr.atPut( pos, num );

}

where temp is the temporary owner for the borrowed reference stored in the temporary

variable arr. The owner temp is never used and an automatic transformation from an

expression like var.method( args ) to

borrow var as tempOwner:tempVar in

{

tempVar.method( args );

}

when var is unique seems like a trivial addition. This suggests that there is much to

gain even from adding the most simple borrowing inference algorithm to the Joline

compiler.

An additional syntactic overhead may be relieved if we consider a default nesting in

ownership parameter declarations on class heads. In both the SuDoku case and in the

library program, all owner parameters in all class declarations were declared outside

owner, which thus seems to be a good target for a default. Thus, when omitting an

outside declaration, we could use “outside owner” as a default. Naturally, studying a

larger code body is necessary before drawing any conclusions about the practical gains

of such a scheme, but it seems like a promising approach.

.. Concluding Remarks

Extending the Joline compiler to include all relevant features found in Java will allow

us to port Java programs to Joline. We believe that will provide us with a superior way

of evaluating deep ownership and uniqueness, and that this approach might also give

some interesting techniques for refactoring into using ownership. Thus, Joline needs to

be extended by at least interfaces, inner classes, exceptions, downcasting, generics and

arrays. This will require some additional designs in terms of what owners of exceptions

should be, whether or not to support run-time representation of owners, and what the

possible owners of inner classes are.
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On a side note, being forced to implement our own programs and library classes

from scratch was cumbersome and forced us to deal with rather small programs which

might well have affected the validity of our studies. However, implementing everything

ourselves was instructive.

Having presented our experiences of programming in the Joline language, we move on

to our concluding chapter.
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Conclusions

I      J, a class-based object-oriented program-

ming language with deep ownership extended with support for owner-polymorphic

methods, stack-local objects with scoped regions, and externally unique pointers. We

have formalised the language, and proven its soundness and the important structural

properties, owners-as-dominators, inherited from Clarke’s ownership types, and our

own external-uniqueness-as-dominating-edges.

We have argued that our approach to uniqueness is better suited to object-oriented

programming, because it considers entire aggregates and not just single objects, be-

cause it allows internal aliasing without weakening the uniqueness invariant, and be-

cause it overcomes the abstraction problem inherent in all previous proposals.

All our proposed constructs aid the programmer in dealing with aliasing. They do

not directly aid in formulating mathematical proofs about a program, but as they give

strong encapsulation invariants that govern possible aliasing, we believe them to be

indirectly helpful. Recent research has shown that there are benefits of using ownership

to simplify formalising and proving invariants about a program [, ].

For the practical evaluation, four case studies have been made, that suggest that the

deep encapsulation and our proposed constructs have not obstructed programming

to make it impossible to write “real programs” in Joline, but more research would be

instructive. Furthermore, the Joline language needs to be extended further to include

constructs that facilitate porting of larger applications to the Joline language.

In this last chapter, we examine our proposal with a critical mind and summarise

our findings, as well as directions for future work.
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. CRITIQUE

Below, we look at the design of the Joline language and its practical evaluation.

.. The Joline Language

Joline is a rather complex language. In hindsight, developing a much simpler core

language would easily have taken one year off of the time required to perform this

thesis work. The complexity of the Joline language made is hard to formalise in a

way that could not only be proved sound, but that was also easy enough for someone

to follow the proofs enough to be convinced of their correctness. In particular, as

movement causes changes to the store type, early versions of the Joline formalisation

were extremely tricky and subtle as every subexpression caused the set of previously

known fact about the layout and typing of the store to be invalidated. In the end, we

are quite happy with the final formalisation as it models the nesting and uniqueness in

a way that we think is intuitive and closely resembles how a programmer might think

about deep encapsulation. It is possible that a system with a regular, flat heap would

have been easier to prove sound, but it would not have allowed us to formalise our

structural invariants in such a nice and direct a way.

.. Practical Evaluation

The practical evaluation suggests that Joline introduces a quite heavy syntactic baggage

on the programmer. When effort is made to keep many references unique, methods

explode with code for borrowing the uniques and reinstating them. If a unique object

is called once in the beginning of a method and once in the end, a programmer might

be tempted to wrap the entire method call in a borrowing block for the unique object

for convenience. This has the downside of precluding simultaneous borrowings of

the unique during the other parts of the method, but could also be more reliable as

the unique is guaranteed to still be accessible at the end of the method. In any case.

the proposed inference mechanism for wrapping method calls on uniques in implicit

borrowing blocks would reduce the code bloat significantly.

Even though the programs implemented to evaluate the Joline language were rather

varied, the program sizes have been fairly small, from a couple of hundred lines of code

to a couple of thousand. Even though our results have been satisfactory, we would like
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to extend our evaluation to much larger programs, and study the evolutions of such

programs over time and how deep ownership interacts with maintenance and refac-

toring, an issue remains unclear. In trivial experiments, a simple refactoring as “move

method” has sometimes required changes to a class’ header to include additional own-

ership information, or the removal of owner parameters that are no longer needed.

Such changes are likely to propagate to large parts of the program. A positive side-

effect of this propagation is that the effect of moving a method in terms of aliasing

becomes much clearer. In situations where propagating changes are undesirable, we

expect the “hide owner” pattern (described on page ) to come in handy.

Our practical evaluation did not involve enough refactoring to generalise any re-

sults from. We believe that a study of how an ownership annotated code-base is main-

tained and refactored over a longer period of time would prove instructive in these

matters.

. SUMMARY OF CONCLUSIONS

Programming with aliasing is unavoidable in contemporary object-oriented program-

ming languages. We have presented a language that aids programming with aliasing.

We allow the programmer to express strong encapsulation invariants in a clear way

that is statically checkable. We can lend permissions to clients temporarily and con-

fine permissions to a specific scope. We can express the concept of unique pointers and

provide ways of programming with uniqueness that are more general and less complex

than previous mechanisms. Encapsulation and uniqueness are statically checkable,

and programs that violate them will not compile. Our constructs are defined for a

class-based, object-oriented programming language with inheritance and subtyping.

Our practical experiences of writing Joline programs show us that our proposed

constructs work well with common programming idioms, but that additional work, to

ease the syntactic overhead, such as adding our proposed borrowing block inference,

should be done to make programming with unique pointers more feasible. The Joline

language lacks a few programming constructs that are painful to live without, but these

are not really related to our constructs for alias control. We will extend Joline with such

constructs and continue our evaluation on larger programs.

We believe that our implementation of external uniqueness is better suited to the

object-oriented setting as it preserves abstraction, considers entire aggregates and al-
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lows more lax restrictions (back pointers) without weakening the uniqueness invari-

ant. Subsequent to our original proposal of external uniqueness, it was included in

SafeJava [], to replace its previous, flawed version of uniqueness.

. FUTURE WORK

Following the extension of our Joline compiler, we will continue to evaluate the Joline

language and our proposed constructs in a larger programs. We plan a range of exten-

sions to the language, notably type inference for local variables, borrowing inference,

existential downcasting, generics, interfaces and inner classes. Evaluating and porting

larger programs will hopefully give insights into the interplay of our proposed con-

structs and maintenance and refactoring. Hopefully, we will be able to extract more

useful patterns for programming with ownership-based constructs.

We will also look further into id-aliases and mechanisms for read-only or im-

mutable pointers to see whether there are situations where encapsulation restrictions

can be relieved without creating opportunities for errors.





Bibliography

[] A, M.,  C, L. A Theory of Objects. Springer-Verlag, .

[] A, J. Using Types to Enforce Architectural Structure. PhD thesis,

University of Washington, August .

[] A, J.,  C, C. Ownership domains: Separating aliasing

policy from mechanism. In Proceedings of the European Conference on

Object-Oriented Programming (ECOOP) (Oslo, Norway, Jan ), M. Odersky,

Ed., vol.  of Lecture Notes in Computer Science, Springer Verlag, pp. –.

[] A, J., C, C.,  N, D. ArchJava: Connecting software

architecture to implementation. In ICSE (May ).

[] A, J., C, C., S, E. G.,  E, S. Static analyses for

eliminating unnecessary synchronization from Java programs. In Proceedings

of the Sixth International Static Analysis Symposium (Venezia, Italy, September

), no.  in Lecture Notes in Computer Science, Springer-Verlag,

pp. –.

[] A, J., K, V.,  C, C. Alias annotations for

program understanding. In Proceedings of the OOPSLA Conference on

Object-Oriented Programming, Systems, Languages and Applications (November

).

[] A, P. S. Balloon Types: Controlling sharing of state in data types. In

Proceedings of the European Conference on Object-Oriented Programming

(ECOOP) (June ), vol. .





BIBLIOGRAPHY

[] B, D. F., S, R. E.,  T, A. Guava: a dialect of Java without

data races. In Proceedings of the OOPSLA Conference on Object-Oriented

Programming, Systems, Languages and Applications (), pp. –.

[] B, H. G. Infant mortality and generational garbage collection. SIGPLAN

Notices ,  (), –.

[] B, H. G. ‘Use-once’ variables and linear objects – storage management,

reflection and multi-threading. ACM SIGPLAN Notices ,  (Jan. ), –.

[] B, A.,  N, D. Ownership confinement ensures

representation independence for object-oriented programs. Journal of the

ACM ,  (November ), –.

[] B, A.,  N, D. A. Ownership transfer and abstraction. Tech.

Rep. KSU CIS-TR--, Kansas State University, October .

[] B, M., DL, R., F, M., L, K. R. M.,  S, W.

Verification of object-oriented programs with invariants. Journal of Object

Technology ,  (June ), –.

[] B, E. V. Abstraction, encapsulation, and information hiding. Essay.

Available from: http://www.toa.com/.

[] B, A.,  E, M. D. A practical type system and language for

reference immutability. In OOPSLA ’: Proceedings of the th annual ACM

SIGPLAN Conference on Object-oriented programming, systems, languages, and

applications (New York, NY, USA, ), ACM Press, pp. –.

[] B, G., G, J., H, D.,  S, D., Eds.

Object-Oriented Languages, Systems and Applications. Halsted Press, New York,

New York, April .

[] B, B. Escape analysis: correctness proof, implementation and

experimental results. In POPL ’: Proceedings of the th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages (New

York, NY, USA, ), ACM Press, pp. –.





BIBLIOGRAPHY

[] B, B.,  V, J. Confined Types. In Proceedings of the OOPSLA

Conference on Object-Oriented Programming, Systems, Languages and

Applications ().

[] B, G., G, J., B, B., D, P., F, S.,  T,

M. The Real-Time Specification for Java. Addison-Wesley, .

[] B, G. Object-Oriented Design With Applications. Benjamin/Cummings,

Menlo Park, California, .

[] B, C. SafeJava: A Unified Type System for Safe Programming. PhD

thesis, Electrical Engineering and Computer Science, MIT, February .

[] B, C., L, R.,  R, M. Ownership types for safe

programming: Preventing data races and deadlocks. In Proceedings of the

OOPSLA Conference on Object-Oriented Programming, Systems, Languages and

Applications (November ).

[] B, C., L, R.,  R, M. Safe concurrent programming in Java.

In MIT LCS/AI Student Oxygen Workshop (MIT SOW ) (Gloucester,

Massachusetts, July ).

[] B, C., L, R.,  R, M. Safe runtime downcasts with

ownership types. In International Workshop on Aliasing, Confinement and

Ownership in Object-oriented Programming (July ), D. Clarke, Ed.,

UU-CS--, Utrecht University.

[] B, C., L, B.,  S, L. Ownership types and safe lazy

upgrades in object-oriented databases. Tech. Rep. MIT-LCS-TR-,

Laboratory for Computer Science, MIT, July .

[] B, C., L, B.,  S, L. Ownership types for object

encapsulation. In th ACM Symposium on Principles of Programming

Languages (New Orleans, Louisiana, Jan. ), pp.  – .

[] B, C.,  R, M. A parameterized type system for race-free Java

programs. In Proceedings of the OOPSLA Conference on Object-Oriented

Programming, Systems, Languages and Applications ().





BIBLIOGRAPHY

[] B, C., S, A., B, W.,  R, M. Ownership types for

safe region-based memory management in real-time java. In ACM SIGPLAN

 Conference on Programming Language Design and Implementation (PLDI)

(June ).

[] B, J. Alias killing: Unique variables without destructive reads. In

Intercontinental Workshop on Aliasing in Object-Oriented Systems (Lisbon,

Portugal, June ), At ECOOP’.

[] B, J. Alias burying: Unique variables without destructive reads.

Software — Practice and Experience ,  (May ), –.

[] B, J. The interdependence of effects and uniqueness. In rd Workshop

on Formal Techniques for Java Programs (June ).

[] B, J., N, J.,  R, W. Capabilities for Sharing: A

Generalization of Uniqueness and Read-Only. In Proceedings of the European

Conference on Object-Oriented Programming (ECOOP) (June ), vol. .

[] B, G., O, M., S, D.,  W, P. Making the

future safe for the past: Adding genericity to the Java programming language.

In Proceedings of the OOPSLA Conference on Object-Oriented Programming,

Systems, Languages and Applications ().

[] B, A. Ownership types restrict aliasing. Master’s thesis, Department of

Computer Science, Imperial College of Science, Technology, and Medicine,

Queen’s Gate, London, June .

[] B, T. An Introduction to Object-Oriented Programming, rd ed.

Addison-Wesley, .

[] C, G.,  S, S. Ownership types in practice. Master’s thesis,

DSV, Stockholm University, January .

[] C, M. V.,  V, P. Region-based memory

management in Java. Master’s thesis, Department of Computer Science

(DIKU), University of Copenhagen, May .





BIBLIOGRAPHY

[] C, D. Object Ownership and Containment. PhD thesis, School of

Computer Science and Engineering, University of New South Wales, Sydney,

Australia, .

[] C, D.,  D, S. Ownership, encapsulation and the

disjointness of type and effect. In Proceedings of the OOPSLA Conference on

Object-Oriented Programming, Systems, Languages and Applications (November

).

[] C, D., N, J.,  P, J. Overcoming representation exposure.

In Intercontinental Workshop on Aliasing in Object-Oriented Systems (Lisbon,

Portugal, June ), At ECOOP’.

[] C, D., N, J.,  P, J. Simple ownership types for object

containment. In Proceedings of the European Conference on Object-Oriented

Programming (ECOOP) (June ).

[] C, D., P, J.,  N, J. Ownership types for flexible alias

protection. In Proceedings of the OOPSLA Conference on Object-Oriented

Programming, Systems, Languages and Applications ().

[] C, D., R, M.,  N, J. Saving the world from bad beans:

Deployment-time confinement checking. In Proceedings of the OOPSLA

Conference on Object-Oriented Programming, Systems, Languages and

Applications (Anaheim, California, November ).

[] C, D.,  W, T. External uniqueness. In th Workshop on

Foundations of Object-Oriented Languages (FOOL) (New Orleans, LA, January

).

[] C, D.,  W, T. External uniqueness is unique enough. In

Proceedings of the European Conference on Object-Oriented Programming

(ECOOP) (Darmstadt, Germany, July ), L. Cardelli, Ed., vol.  of

Lecture Notes In Computer Science, Springer-Verlag, pp. –.

[] C, K., W, D.,  M, G. Typed memory management in a

calculus of capabilities. In  Symposium on Principles of Programming

Languages ().





BIBLIOGRAPHY

[] DL, R.,  F, M. Enforcing high-level protocols in low-level

software. In Proceedings of the ACM Conference on Programming Language

Design and Implementation (June ), pp. –.

[] D, D. L., L, K. R. M.,  N, G. Wrestling with rep exposure.

Tech. Rep. SRC-RR--, Compaq Systems Research Center, July .

[] D, W.,  M, P. Universes: Lightweight Ownership for JML.

Journal of Object Technology ,  (), –.

[] D, J. Meditation XVII—Devotions upon Emergent Occasions, .

[] E, A. Principles of Object-Oriented Software Development, nd ed. Pearson

Education, .

[] E, E., O, K.,  C, W. R. A virtual class calculus. In

Proceedings of Principles of Programming Languages (POPL) (Charleston, South

Carolina, USA, January ).

[] F, M.,  DL, R. Adoption and focus: Practical linear types

for imperative programming. In Proceedings of the ACM Conference on

Programming Language Design and Implementation (June ).

[] F, C.,  A, M. Types for Safe Locking. In Programming

Languages and Systems (March ), vol.  of Lecture Notes in Computer

Science, pp. –.

[] F, M.,  P, R. Phantom types and subtyping. In TCS ’:

Proceedings of the IFIP th World Computer Congress - TC Stream / nd IFIP

International Conference on Theoretical Computer Science (Deventer, The

Netherlands, The Netherlands, ), Kluwer, B.V., pp. –.

[] F, M. Refactoring: improving the design of existing code. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, .

[] G, E., H, R., J, R. E.,  V, J. Design Patterns.

Addison-Wesley, .





BIBLIOGRAPHY

[] G, D.,  A, A. Language support for regions. In ACM SIGPLAN 

Conference on Programming Language Design and Implementation (PLDI)

(Snowbird, Utah, June ).

[] G, D.,  S, B. Fast escape analysis and stack allocation for

object-based programs. In th International Conference on Compiler

Construction (CC’) (April ), vol. , Springer-Verlag, pp. –.

[] G, J.-Y. Linear logic. Theoretical Computer Science  (), –.

[] G, A.,  R, D. Smalltalk-: The Language and its

Implementation. Addison-Wesley, .

[] G, J., J, B.,  S, G. The Java Language Specification.

Addison-Wesley, .

[] G, J., J, B., S, G.,  B, G. Java(TM) Language

Specification, The (rd Edition) (Java Series). Addison-Wesley Professional, July

.

[] G, I. Object-Oriented Methods. Addison-Wesley, Reading,

Massachusetts, .

[] G, A.,  B, J. An object-oriented effects system. In

ECOOP’ — Object-Oriented Programming, th European Conference (Berlin,

Heidelberg, New York, ), no.  in Lecture Notes in Computer Science,

Springer, pp. –.

[] G, P.,  C, P. Copying, sharing, and aliasing. In Proceedings of

the Colloquium on Object Orientation in Databases and Software Engineering

(COODBSE’) (Montreal, Quebec, May ).

[] G, D., M, G., J, T., H, M., W, Y.,  C, J.

Region-based memory management in Cyclone. In Proceedings of the ACM

Conference on Programming Language Design and Implementation (June ).

[] G, C., P, J.,  V, J. Encapsulating objects with confined

types. In Proceedings of the OOPSLA Conference on Object-Oriented

Programming, Systems, Languages and Applications ().





BIBLIOGRAPHY

[] H, B.,  A, A. How is aliasing used in systems software?,

November . Unpublished.

[] H, D. E.,  W, B. W. Copying and swapping: Influences on the

design of reusable software components. IEEE Transactions on Software

Engineering ,  (May ), –.

[] H, A.,  W, S. C# Language Specification. Microsoft

Corporation, .

[] H, C. A. R. An axiomatic basis for computer programming.

Communications of the ACM (CACM) ,  ().

[] H, J. Islands: Aliasing protection in object-oriented languages. In

Proceedings of the OOPSLA Conference on Object-Oriented Programming,

Systems, Languages and Applications (Nov. ).

[] H, J., L, D., W, A.,  C, D.,  H, R. The Geneva

convention on the treatment of object aliasing. OOPS Messenger ,  (Apr.

), –.

[] J, I. Object Unencapsulated, Java, Eiffel and C++?? Object and

Component Technology Series. Prentice Hall PTR, July .

[] K, S.,  H, J. Value types in Eiffel. In TOOLS  (Paris, ).

[] K, S.,  M, I. Encapsulation and aggregation. In TOOLS Pacific 

().

[] K, G.,  T, D. JAC—access right based encapsulation for Java.

Software — Practice and Experience ,  (May ), –.

[] K, N. Quasi-linear types. In th ACM Symposium on Principles of

Programming Languages (Jan. ).

[] K, N.,  A, J. Permission-based ownership:

encapsulating state in higher-order typed languages. In PLDI ’: Proceedings of

the  ACM SIGPLAN conference on Programming language design and

implementation (New York, NY, USA, ), ACM Press, pp. –.





BIBLIOGRAPHY

[] K, G. W. Direct Reasoning. PhD thesis, Graduate School of Clemson

University, May .

[] L, D. Concurrent-Programming in Java: Design Principles and Patterns. Java

Series. Addision-Wesley, .

[] L, G. T., B, A. L.,  R, C. JML: A notation for detailed

design. In Behavioral Specifications of Businesses and Systems, H. Kilov,

B. Rumpe, and I. Simmonds, Eds. Kluwer Academic Publishers, Boston, ,

pp. –.

[] L, K. R. M. Data Groups: Specifying the Modification of Extended State.

In Proceedings of the OOPSLA Conference on Object-Oriented Programming,

Systems, Languages and Applications ().

[] L, K. R. M.,  M, P. Object invariants in dynamic contexts. In

Proceedings of the European Conference on Object-Oriented Programming

(ECOOP) (), vol.  of Lecture Notes in Computer Science, pp. –.

[] L, K. R. M.,  M, P. Modular verification of static class invariants.

In Formal Methods (FM) (), J. Fitzgerald, I. Hayes, and A. Tarlecki, Eds.,

vol.  of Lecture Notes in Computer Science, Springer-Verlag, pp. –.

[] L, K. R. M., P-H, A.,  Z, Y. Using data groups to

specify and check side effects. In Proceedings of the ACM SIGPLAN 

Conference on Programming Language Design and Implementation (June ),

vol. (), pp. –. Available at http://softech.informatik.uni-kl.

de/downloads/publications/pldi02.pdf.

[] L, K. R. M.,  S, R. Virginity: A contribution to the specification of

object-oriented software. Information Processing Letters ,  (April ),

–.

[] M, C.,  S, H. Foundations of Statistical Natural Language

Processing. MIT Press, .

[] M, B. Object-Oriented Software Construction. Prentice Hall, .

[] M, B. Eiffel: The Language. Prentice Hall, .



http://softech.informatik.uni-kl.de/downloads/publications/pldi02.pdf
http://softech.informatik.uni-kl.de/downloads/publications/pldi02.pdf


BIBLIOGRAPHY

[] M, N. Towards alias-free pointers. In Proceedings of the European

Conference on Object-Oriented Programming (ECOOP) (July ).

[] M, N.,  S, G. Leakbot: An automated and lightweight tool

for diagnosing memory leaks in large java applications. In Proceedings of the

European Conference on Object-Oriented Programming (ECOOP) (January

), L. Cardelli, Ed., vol. , pp. –.

[] M, P. Modular Specification and Verification of Object-Oriented Programs.

PhD thesis, FernUniversität Hagen, .

[] M, P.,  P-H, A. Universes: A type system for

controlling representation exposure. In Programming Languages and

Fundamentals of Programming (), A. Poetzsch-Heffter and J. Meyer, Eds.,

Fernuniversität Hagen.

[] N, J. Iterators and Encapsulation. In TOOLS Europe  (Mont St-Michel,

La Belle France, June ), pp. –.

[] N, J., B, R., T, E., P, A.,  C, D. Towards a

model of encapsulation. In International Workshop on Aliasing, Confinement

and Ownership in Object-oriented Programming (July ), D. Clarke, Ed.,

UU-CS--, Utrecht University.

[] N, J.,  P, A. Checking ownership and confinement properties.

In th Workshop on Formal Techniques for Java Programs (Malaga, Spain, June

).

[] N, J., V, J.,  P, J. Flexible alias protection. In

ECOOP’—Object-Oriented Programming (Berlin, Heidelberg, New York, July

), E. Jul, Ed., vol.  of Lecture Notes In Computer Science,

Springer-Verlag, pp. –.

[] N, N., C, M. R.,  M, A. C. Polyglot: An extensible

compiler framework for java. In Proc. th International Conference on

Compiler Construction (Warsaw, Poland, April ), vol.  of Lecture Notes

in Computer Science, Springer Verlag, pp. –. Available from

http://www.cs.cornell.edu/Projects/polyglot/.



http://www.cs.cornell.edu/Projects/polyglot/


BIBLIOGRAPHY

[] O’H, P., R, J.,  Y, H. Local reasoning abour programs

that alter data structures. In CSL, Springer Verlag, LNCS  ().

[] O’H, P., R, J. C.,  Y, H. Separation logic and information

hiding. In Proceedings of the POPL Symposium on Principles of Programming

Languages (), ACM.

[] Ö, J. Realizing external uniqueness . . . or how I learned to stop

worrying (about representation exposure) and love the owner. Master’s thesis,

DSV, Stockholm University, December .

[] P, J. Protected program modules in Simula . Modern Datateknik 

().

[] P, M.,  B, G. Separation logic and abstraction. In

Proceedings of the POPL Symposium on Principles of Programming Languages

(Long Beach, California, USA, January ), ACM.

[] P J, S., H, J.,  . Haskell  — A non-strict, purely

functional language. Available from http://haskell.org, Feb. .

[] P, B. C. Types and programming languages. MIT Press, Cambridge, MA,

USA, .

[] P, F., F, J. M., H, D.,  V, J. Real-time Java scoped

memory: Design patterns and semantics. In Proceedings of the th IEEE

International Symposium on Object-oriented Real-time distributed Computing,

(ISORC) ().

[] P, A., N, J.,  B, R. Generic ownership: practical

ownership control in programming languages. In OOPSLA ’: Companion to

the th annual ACM SIGPLAN conference on Object-oriented programming

systems, languages, and applications (New York, NY, USA, ), ACM Press,

pp. –.

[] P, A., N, J., C, D.,  B, R. Featherweight generic

ownership. In Formal Techniques for Java-like Programs (FTfJP) (July ).





BIBLIOGRAPHY

[] P, J., N, J.,  C, D. The ins and outs of objects. In

Australian Software Engineering Conference (Adelaide, Australia, November

), IEEE Press.

[] R, J. C. Towards a theory of type structure. In Programming

Symposium (Berlin, ), B. Robinet, Ed., vol.  of Lecture Notes in Computer

Science, Springer-Verlag, pp. –.

[] R, J. C. Separation logic: A logic for shared mutable data structures.

In LICS (), pp. –.

[] R, J. R., B, M. R., L, W., E, F.,  P, W.

Object-Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs, New

Jersey, .

[] S, G.,  K, D. Microsoft Visual C++ .NET (Core

Reference). Microsoft Press, Redmond, WA, USA, .

[] Secture internet programming group, .

http://www.cs.princeton.edu/sip/news/april.html.

[] S, M.,  W, T. A mode system for read-only references in

java. In Formal Techniques for Java Programs, in Conjunction with ECOOP 

(Budapest, Hungary, ).

[] S, M.,  W, T. Alias control with read-only references. In

Sixth Conference on Computer Science and Informatics (March ).

[] S, F., W, D.,  M, G. Alias types. In European

Symposium on Programming (Berlin, Germany, March ), vol. .

[] S, M.,  D, S. Cheaper reasoning with ownership types.

In International Workshop on Aliasing, Confinement and Ownership in

Object-oriented Programming, D. Clarke, Ed., UU-CS--. Utrecht

University, July , pp.  – .

[] S, A. Encapsulation and inheritance in object-oriented programming

languages. Proceedings of OOPSLA ’, ACM SIGPLAN Notices ,  (),

–.





BIBLIOGRAPHY

[] S, B. The C++ Programming Language, rd ed. Addison-Wesley,

.

[] T, J.-P.,  J, P. Polymorphic type, region, and effect inference.

Journal of Functional Programming ,  (July ), –.

[] T, D., F, C.,  H, A. Programming Ruby: A Pragmatic

Programmer’s Guide, nd ed. Addison-Wesley, October .

[] T, M.,  T, J.-P. Region-Based Memory Management.

Information and Computation ,  (), –.

[]  R, G. Python reference manual. Report CS-R, Centrum voor

Wiskunde en Informatica, P. O. Box ,  AB Amsterdam, The

Netherlands, April .

[] W, P. Linear types can change the world! In IFIP TC  Working

Conference on Programming Concepts and Methods (Sea of Gallilee, Israel, April

), M. Broy and C. B. Jones, Eds., North-Holland, pp. –.

[] W, D.,  M, G. Alias types for recursive data structures. In

Workshop on Types in Compilation (Montreal, Canada, September ).

Avaliable as Carnegie-Mellon University Technical Report CMU-CS--.

[] W, D.,  W, K. On regions and linear types. In International

Conference on Functional Programming (), pp. –.

[] W-B, R., W, B.,  W, L. Designing Object-Oriented

Software. Prentice-Hall, Englewood Cliffs, New Jersey, .

[] W, T. External uniqueness: A theory of aggregate uniqueness for

object-orientation, September . Licentiate Thesis, Department of

Computer and Systems Sciences, Stockholm University.

[] Y, B. N. A type-and-effect system for encapsulating memory in Java.

Master’s thesis, Department of Computer and Information Science and the

Graduate School of the University of Oregon, August .

[] Z, T., N, J.,  V, J. Scoped types for real-time java. In th IEEE

International Real-Time Systems Symposium (RTSS’) (), pp. –.





BIBLIOGRAPHY

[] Z, T., P, J.,  V, J. Type-based confinement. In Journal of

Functional Programming (), vol. (), pp. –.





BIBLIOGRAPHY

Department of Computer and Systems Sciences
Stockholm University/KTH

http://www.dsv.su.se/eng/publikationer/index.html

Ph.D. theses

No - Olsson, Jan

An Architecture for Diagnostic Reasoning Based on Causal Models

No - Orci, Terttu

Temporal Reasoning and Data Bases

No - Eriksson, Lars-Henrik

Finitary Partial Definitions and General Logic

No - Johannesson, Paul

Schema Integration Schema Translation, and Interoperability in Federated Information

Systems

No - Wangler, Benkt

Contributions to Functional Requirements Modelling

No - Boman, Magnus

A Logical Specification for Federated Information Systems

No - Rayner, Manny

Abductive Equivalential Translation and its Application to Natural-Language Database

Interfacing

No - Idestam-Almquist, Peter

Generalization of Clauses

No - Aronsson, Martin

GCLA: The Design, Use, and Implementation of a Program Development

No - Boström, Henrik

Explanation-Based Transformation of Logic programs

No - Samuelsson, Christer

Fast Natural Language Parsing Using Explanation-Based Learning

No - Ekenberg, Love

Decision Support in Numerically Imprecise Domains



http://www.dsv.su.se/eng/publikationer/index.html


BIBLIOGRAPHY

No - Kowalski, Stewart

IT Insecurity: A Multi-disciplinary Inquiry

No - Asker, Lars

Partial Explanations as a Basis for Learning

No - Kjellin, Harald

A Method for Acquiring and Refining Knowledge in Weak Theory Domains

No - Britts, Stefan

Object Database Design

No - Kilander, Fredrik

Incremental Conceptual Clustering in an On-Line Application

No - Song, Wei

Schema Integration: Principles, Methods and Applications

No - Johansson, Anna-Lena

Logic Program Synthesis Using Schema Instantiation in an Interactive Environment

No - Stensmo, Magnus

Adaptive Automated Diagnosis

No - Wærn, Annika

Recognising Human Plans: Issues for Plan Recognition in Human-Computer Interaction

No - Orsvärn, Klas

Knowledge Modelling with Libraries of Task Decomposition Methods

No - Dalianis, Hercules

Concise Natural Language Generation from Formal Specifications

No - Holm, Peter

On the Design and Usage of Information Technology and the Structuring of

Communication and Work

No - Höök, Kristina

A Glass Box Approach to Adaptive Hypermedia

No - Yngström, Louise

A Systemic-Holistic Approach to Academic Programmes in IT Security





BIBLIOGRAPHY

No - Wohed, Rolf

A Language for Enterprise and Information System Modelling

No - Gambäck, Björn

Processing Swedish Sentences: A Unification-Based Grammar and Some Applications

No - Kapidzic Cicovic, Nada

Extended Certificate Management System: Design and Protocols

No - Danielson, Mats

Computational Decision Analysis

No - Wijkman, Pierre

Contributions to Evolutionary Computation

No - Zhang, Ying

Multi-Temporal Database Management with a Visual Query Interface

No - Essler, Ulf

Analyzing Groupware Adoption: A Framework and Three Case Studies in Lotus Notes

Deployment

No - Koistinen, Jari

Contributions in Distributed Object Systems Engineering

No - Hakkarainen, Sari

Dynamic Aspects and Semantic Enrichment in Schema Comparison

No - Magnusson, Christer

Hedging Shareholder Value in an IT dependent Business society—the Framework BRITS

No - Verhagen, Henricus

Norm Autonomous Agents

No - Wohed, Petia

Schema Quality, Schema Enrichment, and Reuse in Information Systems Analysis

No - Hökenhammar, Peter

Integrerad Beställningsprocess vid Datasystemutveckling

No - von Schéele, Fabian

Controlling Time and Communication in Service Economy





BIBLIOGRAPHY

No - Kajko-Mattsson, Mira

Corrective Maintenance Maturity Model: Problem Management

No - Stirna, Janis

The Influence of Intentional and Situational Factors on Enterprise Modelling Tool

Acquisition in Organisations

No - Persson, Anne

Enterprise Modelling in Practice: Situational Factors and their Influence on Adopting a

Participative Approach

No - Sneiders, Eriks

Automated Question Answering: Template-Based Approach

No - Eineborg, Martin

Inductive Logic Programming for Part-of-Speech Tagging

No - Bider, Ilia

State-Oriented Business Process Modelling: Principles, Theory and Practice

No - Malmberg, Åke

Notations Supporting Knowledge Acquisition from Multiple Sources

No - Männikkö-Barbutiu, Sirkku

SENIOR CYBORGS—About Appropriation of Personal Computers Among Some

Swedish Elderly People

No - Brash, Danny

Reuse in Information Systems Development: A Qualitative Inquiry

No - Svensson, Martin

Designing, Defining and Evaluating Social Navigation

No - Espinoza, Fredrik

Individual Service Provisioning

No - Eriksson-Granskog, Agneta

General Metarules for Interactive Modular Construction of Natural Deduction Proofs

No - De Zoysa, T. Nandika Kasun

A Model of Security Architecture for Multi-Party Transactions





BIBLIOGRAPHY

No - Tholander, Jakob

Constructing to Learn, Learning to Construct—Studies on Computational Tools for

Learning

No - Karlgren, Klas

Mastering the Use of Gobbledygook—Studies on the Development of Expertise Through

Exposure to Experienced Practitioners’ Deliberation on Authentic Problems

No - Kjellman, Arne

Constructive Systems Science—The Only Remaining Alternative?

No - Rydberg Fåhræus, Eva

A Triple Helix of Learning Processes—How to cultivate learning, communication and

collaboration among distance-education learners

No - Zemke, Stefan

Data Mining for Prediction—Financial Series Case

No - Hulth, Anette

Combining Machine Learning and Natural Language Processing for Automatic Keyword

Extraction

No - Jayaweera, Prasad M.

A Unified Framework for e-Commerce Systems Development: Business Process Patterns

Perspective

No - Söderström, Eva

BB Standards Implementation: Issues and Solutions

No - Backlund, Per

Development Process Knowledge Transfer through Method Adaptation, Implementation,

and Use

No - Davies, Guy

Mapping and Integration of Schema Representations of Component Specifications

No - Jansson, Eva

Working Together when Being Apart—An Analysis of Distributed Collaborative Work

through ICT from an Organizational and Psychosocial Perspective

No - Cöster, Rickard

Algorithms and Representations for Personalised Information Access





BIBLIOGRAPHY

No - Ciobanu Morogan, Matei

Security System for Ad-hoc Wireless Networks based on Generic Secure Objects

No - Björck, Fredrik

Discovering Information Security Management

No - Brouwers, Lisa

Microsimulation Models for Disaster Policy Making

No - Näckros, Kjell

Visualising Security through Computer Games Investigating Game-Based Instruction in

ICT Security: an Experimental approach

No - Bylund, Markus

A Design Rationale for Pervasive Computing

No - Strand, Mattias

External Data Incorporation into Data Warehouses

No - Casmir, Respickius

A Dynamic and Adaptive Information Security Awareness (DAISA) approach

No - Svensson, Harald

Developing Support for Agile and Plan-Driven Methods

No - Rudström, Åsa

Co-Construction of Hybrid Spaces

No - Lindgren, Tony

Methods of Solving Conflicts among Induced Rules




	thesis front
	FULLTEXT01-1
	Introduction
	Living with Aliasing
	Alias Encapsulation and Pointer Restrictions

	Contributions of This Dissertation
	Outline

	Background and Related Work
	Aliasing
	Different Types of Aliases
	Representation Exposure

	Encapsulation
	Name-based Encapsulation and Selective Export

	Related Work on Encapsulation
	Unique Pointers
	Systems offering Strong Encapsulation
	Systems offering Lightweight Encapsulation
	Ownership-Based Systems

	Related Alias Management Techniques
	Effects and Read-Only
	Separation Logic and Representation Independence

	Concluding Remarks

	The Joline Programming Language
	Ownership Types in Joline
	Implementing Deep Ownership
	Encapsulation Example

	Joline, Statically
	Joline's Syntax
	Joline's Type System
	Well-formedness Rules

	Joline, Dynamically
	Syntax definitions
	Store Type
	Configurations
	Operational Semantics for Joline

	Soundness of The Joline Language
	Helper Functions
	Lemmas
	Subject Reduction
	Canonical Forms
	Progress

	Owners-as-Dominators
	Helper Functions
	Owners-as-Dominators

	Concluding Remarks

	Owner-Polymorphic Methods
	Ownership and Dynamic Aliasing
	Ownership and Argument-Polymorphic Methods
	Borrowing and the Preservation of Separation
	Problem Analysis

	Owner-Polymorphic Methods
	Informal Syntax and Semantics
	Solutions to the Problems in Sections 4.1.1 and 4.1.2
	Borrowing and Preservation of Separation
	The ``Hide Owner'' Pattern
	Discussion

	--Formalising Owner-Polymorphic Methods
	Static Semantics
	Dynamic Semantics

	Concluding Remarks

	Scoped Regions
	Stack-Based Confinement
	Stack-Based Confinement in Joline
	Value Objects

	Scoped Regions
	Formalising Scoped Regions
	Static Semantics
	Dynamic Semantics
	Related Work

	Concluding Remarks

	External Uniqueness
	Contribution
	Recapping Uniqueness
	Uniqueness and Object-Orientation
	Problems with Class-Level and Method-Level annotations 
	Uniqueness and a Problem with Abstraction
	Uniqueness and Aggregates

	External Uniqueness
	Unique Owners
	Operations on Externally Unique Pointers
	Creating Unique Objects

	Discussion
	Aggregate Uniqueness and Dominating Edges
	Back-pointers and Effective Uniqueness
	Overcoming the Abstraction Problem

	Formalising External Uniqueness
	Static Semantics
	Dynamic Semantics
	Lemmas for Unique and Borrowing Pointers
	Subject Reduction Proof

	External-Uniqueness-as-Dominating-Edges
	Concluding Remarks

	Discussion
	Generational Ownership
	Stack Frames are Generations
	Ownership is a dag

	Orthogonality

	Applications
	Applications for External Uniqueness
	Transfer of Ownership
	Merging Representations
	Simulating Borrowing
	Movable Aliased Object Pattern
	The Initialisation Problem


	Extensions
	Unique Borrowing
	Towards Unique Borrowing
	Borrowing Blocks that Preserve Uniqueness

	Existential Downcasting
	The Importance of Downcasting
	Existential Owners

	Iteration Revisited

	Practical Evaluation
	The Joline Compiler
	Class Variables
	String Literals
	Studies of Aliasing and Programming with Ownership

	Case Studies
	Case 1: Informal Ownership
	Case 2: A Library System
	Case 3: SuDoku
	Case 4: Linked List

	Results
	Design Delicacy
	The Importance of Generics and Downcasts
	Id-aliases
	Unique Listener Proxy Pattern
	Syntactic Overhead
	Concluding Remarks


	Conclusions
	Critique
	The Joline Language
	Practical Evaluation

	Summary of Conclusions
	Future Work



