
Tribe: More Types for Virtual Classes?

Dave Clarke1, Sophia Drossopoulou2, James Noble3, and Tobias Wrigstad4

1 CWI, Amsterdam, The Netherlands
2 Imperial College London, UK

3 Victoria University of Wellington, Wellington, NZ
4 Stockholm University, Stockholm, Sweden

Abstract. Beginning with Beta, a range of programming language
mechanisms have been developed to allow inheritance in the presence
of mutually dependent classes. This paper presents Tribe, a type system
which generalises and simpli�es other formalisms of such mechanisms,
by treating issues which are inessential for soundness, such as the pre-
cise details of dispatch and path initialisation, as orthogonal to the core
formalism. Tribe can support path types dependent simultaneously on
both classes and objects, which is useful for writing library code, and
ubquitous access to an object's family (= owner), which o�ers family
polymorphism without the need to drag around family arguments. Lan-
guages based on Tribe will be both simpler and more expressive than
existing designs, while having a simpler type system, serving as a useful
basis for future language designs.

1 Introduction

Languages and formalisms such as Beta [13], gBeta [5], Caesar [15], Scala [8],
Jx [16], .FJ [11], Concord [12] and vc [7] o�er advanced notions of inheritance
which overcome many of the weaknesses of standard single and multiple inher-
itance. In particular, they feature a notion of family polymorphism in which a
group of mutually dependent classes can be inherited together in such a way
that the relationship between the classes is preserved through inheritance. Vir-
tual classes are one means for achieving family polymorphism. A virtual class
is a nested class which can be overridden like a method. A key advantage of
overriding a class de�nition, as opposed to extending it, is that the class name
remains the same. This enables any code which operates on one family to also
work for extensions of that family.

In this paper, we introduce Tribe, a general yet simple system which incorpo-
rates these mechanisms into a single seamless framework, extends the language
of types, the notion of subtypes, o�ers powerful inheritance, and tackles method
overriding.

In this section we illustrate the basics of family polymorphism, and outline
our extensions to existing systems. In the following example, nested classes are

? Work partially supported by a gift from Microsoft Research, , by the Royal Society
of New Zealand Marsden Fund, and the EU grant MOBIUS.

used to express that the family Graph has member (virtual) classes Node and
Edge.

class Graph {
class Node {

Edge connect(Node other) { return new Edge(this, other); }
}
class Edge {

Node from, to;
Edge(Node f, Node t) { from = f; to = t; }

}
}

Subclassing enables the construction of new families from existing ones. In the
example below, the family ColouredGraph inherits member classes Node and
Edge, and can extend them using a mechanism known as further binding. Here,
a new �eld nodeColour is added to Node inherited from Graph.

class ColouredGraph extends Graph {
class Node {

Colour nodeColour;
}

}

Distinguishing the Families Grouping classes into families raises the question
as to whether mixing objects from di�erent families should be allowed. In our
example the intention is that coloured nodes should be connected to coloured
nodes only. However:

Graph.Node n = new Graph.Node();
Graph.Node cn = new ColouredGraph.Node(); // dubious subsumption

n.connect(cn); // mixes two kinds of nodes

Through the|prima facie obvious|subtype relation ColouredGraph.Node ≤
Graph.Node, we can create an edge between a node and a coloured node. If the
coloured node de�nes additional methods not found in node, this dubious use of
subsumption could lead to \message not understood" errors.

A number of approaches have been devised to address this problem, by keep-
ing better track of the family through the type system. The �rst approach, used
in Concord, .FJ, and Jx, [12, 11, 16, 15] uses types (e.g. Graph.Node) based on a
static notion of a type family, typically a class family, and achieves its goal by
eliminating relationships such as ColouredGraph.Node ≤ Graph.Node. The sec-
ond approach, used in vc [7] and vObj/Scala [17, 8], keeps close track of which
object family the nested classes belong to by using paths in types. An object
family type such as x.f.C refers to the class C which is nested within the object
at the end of path x.f. Paths have to be invariant, and so consist of chains of
�nal �elds or variables and some class. To illustrate how the error in the above
example is caught, consider the following:

2

Graph g = new Graph();
g.Node n = new g.Node();
ColouredGraph cg = new ColouredGraph();
cg.Node cn = new cg.Node();

n.connect(cn); // Type Error !!!

The type error occurs because the type system is unable to derive a relationship
between g.Node and cg.Node, as it (correctly) cannot derive that g and cg are
the same family.

Note, that in contrast to Jx, .FJ, and Concord, our approach, vc and vObj/
Scala can distinguish nodes coming from di�erent coloured graphs, e.g.,

ColouredGraph cg1, cg2;
cg1.Node cn1, cn3; cg2.Node cn2;

cn1.connect(cn3); // Type Correct
cn2.connect(cg3); // Type Error!!!

Family Parameters When writing library code which operates on objects of
nested classes, it is sometimes necessary to pass around an object to represent
the family. For example, in a vc-like setting, in a library outside the Graph family,
to copy edges, one would have:

class Library {
g.Edge copyEdge(Graph g, g.Edge e) {
g.Node from = e.from;
g.Node to = e.to;
return new g.Edge(from, to); }

}

where the parameter g is in some sense superuous, as it serves no other purpose,
than to express the type of the parameter e, and the result.

Some languages have types to cater for cases where the family object is not
needed. For example, Scala [8] has projection types Graph#Node, and Jx [16] has
types such as Graph.Node. The natural subtype relation g.Node ≤ Graph.Node
is valid and has a natural reading: while g.Node can be read as saying a Node
from family g, Graph.Node can be read as a node from some graph family.

Both vc and Scala (and Java) have types which are used to refer to the
surrounding instance of a given class (from within that class). vc uses types
of the form this.out.out.out.C to refer the surrounding C instance (Scala's
syntax is di�erent, and closer to Java's). Types are further generalised to have the
form this.out.out.out.f.g.h.C, which access some path of some surrounding
class.

Tribe extends this approach by supporting types that cater for the case where
the family object is not needed using the owner keyword, and also supports path
types to talk about types depending on it. Thus, it can avoid passing superuous
family parameters:

3

class Library{
int distance(Graph.Node n1, n1.owner.Node n2) { ... }

e.owner.Edge copyEdge(Graph.Edge e) {
e.owner.Node from = e.from;
e.owner.Node to = e.to;
new e.owner.Edge(from, to);

}
}

This kind of code gives the bene�ts of family polymorphism without having
to pass the family around. It is also quite robust to change. For example, a
method may originally be designed to only require a Graph.Node. Subsequent
changes may require it to use other features of Graph. Without types such as
n1.owner.Node this possible only by adding an extra argument to pass in a
family object.

Tribe Types We have shown a number of di�erent kinds of types that appear
(and ought to appear) in di�erent systems. All are based on some restriction of
the following (where � are �nal �elds including \owner"):

T ::= (x | this | C).(C | �)∗

In this paper we eliminate any restrictions, and make the type system both
simpler and more expressive. Following this grammar, Tribe Types have a very
natural reading, and subtyping is general and natural, as the following example
illustrates. Consider the following code:

class Musician {
class Instrument { }

}
class Guitarist extends Musician {
final Guitar axe;
class Guitar extends Instrument {
final String first, second, third, ...;
class String { }

}
}
final Guitarist slash;

The following are some of the possible types our system can describe:

Type Interpretation
slash ex-Guns 'n' Roses' guitarist Slash
Guitarist Some guitarist
slash.axe Slash's main guitar
slash.Guitar one of Slash's guitars
Guitarist.axe the main guitar of some guitarist
Guitarist.Guitar some guitarist's guitar
slash.axe.String some string of Slash's main guitar
slash.Guitar.first the �rst string of one of Slash's guitars
Guitarist.Guitar.String some string of some guitarist's guitar

4

The natural reading of types in Tribe also extends in an obvious manner to
subtyping. For the above code snippet, the following subtyping relations hold:

slash.axe ≤ Guitarist.axe≤ ≤

slash.Guitar ≤ Guitarist.Guitar≤ ≤

slash.Instrument ≤ Guitarist.Instrument ≤ Musician.Instrument

Formalising Tribe Developing sound static type systems for the mechanisms de-
scribed thus far is a challenge to which many researchers have risen (see citations
above). Extending such languages and type systems often requires considerable
work due to their subtle nature. For instance, Ernst, Ostermann and Cook's
formalisation of virtual classes was the �rst account establishing their sound-
ness [7].

This paper presents a formalisation of virtual classes which is both simpler
and more general than vc. The changes we have made are as follows:

{ The notions of type and hence subtyping have been generalised.
{ We are non-committal as to exactly which method is dispatched in the case of
ambiguity. Requiring that all candidates satisfy the desired typing constraint
is su�cient for soundness. Any more precise choice is a re�nement of our
approach, and thus also sound.

{ Correct �nal �eld initialisation and use is crucial for soundness of path-
based types, but dealing with it can signi�cantly increase the complexity of
a type system. Rather than cluttering the type system with tests for handling
this properly, we simply treat both uninitialised �nal �elds and attempts at
reassigning �nal �elds as errors. Dealing with �nals properly is known and
orthogonal to the rest of the system.

{ We present both classes and methods, rather than unify them as in Beta.
{ Class tables are statically resolved, whereas in vc they are dynamically com-
puted.

{ We adopt a small-step semantics rather than a large-step semantics.

The culmination of all of these changes is a simpler formalism and simpler
proofs. As a result, we hope that our approach gives a simpler and more general
model of the main issues underlying virtual classes, which will serve as the basis
for future developments.

We also present a way of dealing with method invocation in the presence of
overriding and multiple inheritance, and outline two novel constructs|over-the-
top types and adoption|that allow cross-family subclassing while retaining the
advantages of virtual classes.

2 The Tribe Programming Language

The syntax of Tribe is given in Figure 1, where x ranges over variables, f over
all �eld names, � over �nal �eld names, m over method names, C over class

5

names, and ι over addresses. For convenience, all variables are �nal. At times we
use the syntactic category � to indicate �nality, other times we use the final
keyword, and sometimes both.

class ::= class C extends C { cnstr d∗ class∗ mthd∗ } Classes
cnstr ::= C(T x) { this.� := e; } Constructors
d ::= T f; | final T � ; Fields
mthd ::= T md (T x) { e } Methods
var ::= this | x | ◦ | ι Targets
T ::= var.(C | �)∗ Types
p ::= var.� ∗ Paths
e ::= null | error | p | e.f | p.f := e Expressions

| p.m(p) | new p.C(p) | final T x := e; e | e; e

Fig. 1. Syntax of Tribe, with run-time entities in grey.

A class consists of a collection of �elds, methods and nested classes. Classes
inherit from multiple other classes. ◦ denotes the top-level collection of classes.

Fields can either be �nal or not. Final �elds can be used to form paths in
order to refer to speci�c families. Each object has a special �eld called owner
(part of the � syntax) which refers to the object's surrounding object (or ◦ for
instances of top level classes).

Types in Tribe are formed out of paths, and may, but need not, include class
names. Types which do not include a class name are singleton types, referring
to a single object. For example, the type of this is singleton type this, and
the type of owner is singleton type this.owner (e�ectively, owner). A type T.C
describes all the objects of class C nested inside an object of type T (a class
family). A type T.� describes all the objects which may be referred to through
the �eld � of an object of type T (an object family). Run-time types may contain
addresses.

Expressions are as usual. Following the syntax from Jx [16], the \let" ex-
pression final T x := e1; e2 introduces the �nal variable x with value e1 which
can used within e2. Run-time expressions may contain addresses. Constructors
support �eld initialisation, which is required because of the existence of �nal
�elds. In order to keep the language description simple, we do not support calls
to the superclass constructor; instead, we allow a constructor to initialise all
�elds, including inherited �elds. For the same reason, we do not statically check
that all �elds have been initialised. As a consequence, uninitialised �elds may
be accessed in a running program, or �nal �elds may be assigned twice; in both
cases we raise errors. As for null pointer exceptions, such errors do not a�ect
type safety. We consider these simpli�cations to be legitimate, since techniques
exist for ensuring that �nal �elds' initialisation and superclass constructor calls
take place exactly once [14, 10, 9, 20].

6

(Def-Obj)

P (A) de�ned
` A.Object cls

(Def-Prog)

class C · · · ∈ P (A)
` A.C cls

(Def-Inh)

` A′ vi A ` A.C cls
` A′.C cls

(Subcl-Prog)

class C′ extends C · · · ∈ P (A)
` A.C′ vs A.Ci

(Subcl-Inh)

` A′ vi A ` A.C' vs A.C

` A′.C′ vs A′.C

(Further-Bind)

` A vi A
′ ` A′.C cls

` A.C vf A′.C

(Inh)

` A vs A′ ∨ ` A vf A′

` A vi A
′

Fig. 2. Classes and Subclassing and Further Binding Resolution

3 Class Tables

The semantics of Tribe is de�ned in terms of class tables, CT, which map class
identi�ers to the members (i.e., �elds, methods and nested class constructors)
available in the class. In contrast to calculi such as .FJ [11], class tables represent
more than the contents of the program. Following approaches used for the se-
mantics of mixins and traits [2, 19], a class table represent a \attened" version
of the program, where a class not only contains the members directly declared
in the class itself, but also all the members inherited by the class.

3.1 Subclasses and Further Binding

Classes appear within other classes, and the same identi�er may be used to
describe classes within several classes, e.g., Edge is de�ned both within Graph and
within ColourGraph. We therefore distinguish between absolute classes, which
are absolute paths starting from the program's root, e.g., ◦.ColourGraph.Node,
and classes, which consist of a class identi�er, e.g., Node.

The syntax of absolute class names, where ◦ corresponds to the root of the
program, is:

A ::= ◦ | A.C

We use P to denote the program text. P (A) correspond to the code which
is inside absolute class A. P (◦) corresponds to the entire program. To reduce
clutter, we assume that P is global across the type system, and can be used
wherever required.

We introduce the following judgements, de�ned by the rules in Figure 2:

` A cls A is a class in the program ` A vs A′ A is a direct subclass of A′

` A vf A′ A directly further binds A′ ` A vi A
′ A directly inherits from A′

We demonstrate the above judgements in terms of the following nest of
classes, where, for simplicity, we show class nesting but drop class contents:

7

class A
class B

class C
class C' extends C

class B' extends B
class A' extends A

Rule (Def-Obj) de�nes Object as nested in every class, e.g., ` ◦.A.B.Object cls.
Facts expressed directly in the program are reected through rules (Def-Prog)
and (Subcl-Prog), e.g., ` ◦.A.B cls, and ` ◦.A.B′ cls, and ` ◦.A′ vs ◦.A. Sub-
classing implies inheritance (Inh), therefore ` ◦.A′ vi ◦.A. Rules (Subcl-Inh) and
(Def-Inh) express that inheritance implies \copying" nested classes and their re-
lationships; thus, ` ◦.A′.B′ cls, and ` ◦.A′.B′ vs ◦.A′.B. By repeated application
of above rules we obtain, e.g., that ` ◦.A′.B′.C′ vs ◦.A′.B′.C, even though classes
◦.A′.B′.C′ and ◦.A′.B′ do not appear in the program.

The following lemma guarantees that 1) the subclassing relationship holds
only between classes which are (derived to be) nested within the same class; 2)
further binding implies that the two types are identical up to subclassing at some
point in their path; and 3) that inheritance of nested classes implies inheritance
of their surrounding classes.

Lemma 1.

1. If ` A′ vs A, then ∃A′′, C, C′ such that A′ = A′′.C′ and A = A′′.C.

2. If ` A′ vf A, then ∃A′′,C,C′,C 6= ε such that A′ = A′′.C′.C, A = A′′.C.C,
and ` A′′.C′ vs A′′.C.

3. ` A.C v∗
i A′.C if and only if ` A v∗

i A′ and ` A′.C cls.

3.2 Class Table Construction

Class tables, CT, map absolute class names As to tuples (fs,ms, cn) representing
the �elds, methods, and nested class constructors that are either directly present
in the class or inherited. Class tables are constructed using the operation ⊕ on
tuples, which gives priority to the �rst argument.

De�nition 1 (⊕). For functions g and g′, de�ne function g ⊕ g′ as:

(g ⊕ g′)(x) =

{
g(x), if g(x) is de�ned;
g′(x) otherwise.

De�ne ⊕ for tuples as:

(fs,ms, cn)⊕ (fs ′,ms′, cn′) = (fs ⊕ fs ′,ms⊕ms′, cn⊕ cn′)

The construction of class tables is de�ned as follows.

8

De�nition 2. For a program P , we de�ne the class table CT as

BT(◦) = (∅, ∅, {cnstr | class . . . { cnstr . . . } ∈ P (◦)})
BT(A.C) = (ds,mthds, cnstrs)

where class C extends C′ { ... classes ds mthds } ∈ P (A)
and cnstrs = {cnstr | class . . . { cnstr . . . } ∈ classes}

CT(A.Object) = ({final owner : this.owner}, ∅, ∅)
CT(A) = BT(A)⊕ CT(A), where A = {A′ | ` A vi A

′}

The auxiliary function BT collects the �elds and methods directly present
in a class, as well as the constructors de�ned in directly enclosed classes. Note,
that the treatment of constructors di�ers from that of methods and �elds. This
is so, because for a class C de�ned within A, objects of class A.C can only be
constructed within A objects; therefore, the C constructor is in some sense a
special method of A.

The de�nition of CT(A.Object) has the e�ect that every object has a �eld
called owner which refers to an object of its surrounding class (even when the
class is at the top-level). The de�nition of CT(A) collects all the inherited �elds,
methods and constructors, using those de�ned in BT as overriding de�nitions.

Class tables o�er a attened view of the program which directly classes with
the members inherited from superclasses or further bound classes. This approach,
�rst used in the study of mixins [2], separates the mechanisms that produce
inheritance (in our cases subclasses and further binding), from the e�ects of
inheritance (i.e., the copying and potential overriding of members. This simpli�es
the model considerably, simpli�es the proofs, and demonstrates easily how Tribe
could be implemented.

Remark 1. Observe that we are not too concerned with the order in which meth-
ods are inherited. Our system ensures that all inherited methods work soundly;
the decision about which one to use is an orthogonal issue to soundness.

The following shorthands will be used throughout the remainder of the paper.

De�nition 3. Given a class table CT, de�ne the following shorthands:

{ �elds(A) = fst(CT(A)).
{ �nals(A) = {� : T | final � : T ∈ fst(CT(A))}.
{ methods(A) = snd(CT(A)).
{ constructors(A) = thd(CT(A)).
{ (fs,ms, cn) v (fs ′,ms′, cn′) i� there exist fs ′′, ms′′, and cn′′ such that fs =

fs ′′ ⊕ fs ′, ms = ms′′ ⊕ms′, and cn = cn′′ ⊕ cn′.

Finally, de�ne v∗
i as the reexive transitive closure of vi. The following

lemma guarantees that 1) class table entries exist only for well formed abso-
lute classes, 2) each class table entry has an owner �eld of appropriate type,
inheritance implies that the class table entry expands that of the inherited class.

9

v ::= ◦ | ι Non-Null values
v ::= v | null Values
E ::= [−] | E.f | E.f := e | v.f := E Reduction Context

| E.m(e) | v.m(v, E, e) | new E.C(e)
| new v.C(v, E, e) | E; e

err ::= null | error Error Values
N ::= err.f | err.f := e | err.� := e Error Contexts

| v.� := error | err.m(e) | new err.C(e)

Fig. 3. Dynamic Expressions

Lemma 2. The following properties hold for a class table CT:

1. CT(A) 6= ⊥ if and only if ` A cls.
2. If CT(A) 6= ⊥, then Object ∈ classes(A) and owner : this.owner ∈ �nals(A).
3. If ` A v∗

i A′, then CT(A) v CT(A′).

4 Dynamic Semantics

The semantics of Tribe is presented as a small-step reduction relation of the
form H, e ; H ′, e′, which states that con�guration H, e reduces (in one step) to
H ′, e′, where H and H ′ are heaps and e and e′ are expressions. The syntax of
heaps H, and objects o:

H ::= ∅ | ι 7→ o,H o ::= [�f 7→ �v]A

An object consists of the name of its absolute class, A, and values for all of its
�elds, denoted �f 7→ �v. The �elds also contain a value for the owner �eld.

De�ne H(ι), H + ι 7→ o and H[ι 7→ o] as look-up, extend, and update of a
heap, and analogously for o. Also let H(ι).f denote H(ι)(f) and H(ι).f := v
denote H[ι 7→ (H(ι)[f 7→ v])], as shorthands for accessing and updating the �eld
of some object in the heap.

Figure 3 contains additional syntax used in the operational semantics. A
reduction context, E[−], is de�ned to be an expression with a hole in it, in the
standard manner. We also have error contexts, N , (called null contexts in Jx's
semantics [16]) to gracefully handle dereferencing of null. For convenience a
null-dereference evaluates immediately to error. We apply the same treatment
to errors arising from assigning to already initialised �nal �elds and to errors
resulting from accessing a �nal �eld which has not yet been initialised. Such
expressions are not stuck, and the value they reduce to can have any type, thus
their presence does not interfere with subject reduction and progress lemmas.

The rules for the operational semantics are given in Figure 4.
(Eval-Field) returns the value of an object's �eld. Both (Eval-FieldAsgn)

and (Eval-FinalFieldAsgn) update �elds. (Eval-FinalFieldAsgn) is only ap-
plicable if the �eld contains error, indicating that it is uninitialised. (Eval-
FinalFieldAsgn-Error) traps the case when an attempt to initialise an already

10

(Eval-FieldAsgn)

H(ι) = [. . .]A
f ∈ non�nals(A)
H ′ = H(ι).f := v

H, ι.f := v ; H ′, v

(Eval-FinalFieldAsgn)

H(ι) = [. . .]A � ∈ �nals(A)
H(ι).� = error
H ′ = H(ι).f := v

H, ι.� := v ; H ′, v

(Eval-FinalFieldAsgn-Error)

H(ι) = [. . .]A
� ∈ �nals(A)

H(ι).� 6= error
H, ι.� := v ; H, error

(Eval-New)

v = ◦ = A ∨ v = ι′ ∧H(ι′) = [. . .]A
C(T x){ e } ∈ constructors(A)

dom(non�nals(A.C)) = f dom(�nals(A.C)) = �

ι /∈ dom(H) H ′ = H + ι 7→ [owner 7→ v, f 7→ null,� 7→ error]A.C

H, new v.C(v) ; H ′, e[ι/this, v/x]; ι

(Eval-Meth)

H(ι) = [. . .]A T m(T z){ e } ∈ methods(A)
H, ι.m(v) ; H, e[ι/this, v/z]

(Eval-Let)

H, final T x := v; e ; H, e[v/x]

(Eval-Field)

H(ι).f = v

H, ι.f ; H ′, v

(Eval-Seq)

H, v; e ; H, e

(Eval-Context)

H, e ; H ′, e′

H, E[e] ; H ′, E[e′]

(Eval-Error)

H, E[N] ; H, error

Fig. 4. Reduction Rules

initialised �nal �eld is made. (Eval-New) determines �rstly which class table
to look-up to �nd the constructors. This depends upon the path for which the
new class is being created|the new owner. A new object is created, with the
owner �eld set appropriately, all non-�nal �elds set to null, and all �nal �elds
set to error to indicate that they are not initialised. The result is an expression
which will evaluate the constructor and return the new location. (Eval-Meth)
�nds the code for the method in the class table, and reduces to the body with
the targets and arguments substituted. (Eval-Let) is standard let statement.
(Eval-Seq) is standard sequential composition, which discards the result of the
�rst expression. (Eval-Context) is also standard, stating that the evaluation of
any expression proceeds by evaluating one of its redexes. (Eval-Error) detects
an error condition and immediately reduces to an error.

5 Type System

The type system is de�ned in terms of the following judgements:

Γ ` 3 Γ is a good typing environment Γ ` T T is a good type
Γ ` T ⇑ A Class A corresponds to type T Γ ` T ≤ T ′ T is a subtype of T ′

Γ ` e : T expression e has type T

Typing environments have the following syntax:

Γ ::= ∅ | A | Γ, x : T | Γ, ι : T | Γ, ι.� = v

11

(Env-Empty)

∅ ` 3

(Env-AbsClass)

` A cls
A ` 3

(Env-Decl)

Γ ` T x /∈ dom(Γ)
Γ, x : T ` 3

(Env-Eq)

ι.� = v′ /∈ Γ Γ ` ι ⇑ A � : T ∈ �nals(A) Γ ` v : T [ι/this]
Γ, ι.� = v ` 3

Fig. 5. Good Environments|(Env-Decl) applies to both variables and addresses

A typing environment maps variables, including the receiver this, and addresses
to types. The absolute class name A in a typing environment indicates the context
in which type checking is performed. Equations of the form ι.� = v in a typing
environment keep track of paths; they are used to track paths when proving
soundness, and are not used in the static semantics.

Figure 5 de�nes well-formed environments, Γ ` 3. The rules are mostly
straightforward. The non-obvious rule, (Env-Eq), is applicable for run-time en-
vironments, and enables an equation to be added to the typing environment, if
no equation is already present for the given object �eld. It simply requires that
v is a value which can be stored in �nal �eld � of object ι.

5.1 Well-formed Types

A well-formed type T corresponds to an absolute class, A, as expressed through
the judgement Γ ` T ⇑ A in Figure 6. Only types which correspond to absolute
classes are well formed, from rule (Type).

(Type-Start)

Γ ` 3
Γ ` ◦ ⇑ ◦

(Type-Decl)

x : T ∈ Γ x 6= this Γ ` T ⇑ A

Γ ` x ⇑ A

(Type-This)

Γ ` 3 A, this : this ∈ dom(Γ)
Γ ` this ⇑ A

(Type-Final-Field)

Γ ` T ⇑ A � : T ′ ∈ �nals(A) A, this : this ` T ′ ⇑ A′

Γ ` T.� ⇑ A′

(Type-Class)

Γ ` T ⇑ A ` A.C cls
Γ ` T.C ⇑ A.C

(Type-Owner)

Γ ` T ⇑ A.C

Γ ` T.owner ⇑ A

(Type)

Γ ` T ⇑ A

Γ ` T

Fig. 6. Good Types

Rule (Type-Start) allows ◦ as the starting point for absolute types. Rule
(Type-Decl) states that variables and addresses can be used as singleton types.

12

(Sub-Refl)

Γ ` T

Γ ` T ≤ T

(Sub-Trans)

Γ ` T ≤ T ′ Γ ` T ′ ≤ T ′′

Γ ` T ≤ T ′′

(Sub-Subclass)

Γ ` T ⇑ A ` A.C vs A.C′

Γ ` T.C ≤ T.C′

(Sub-Decl)

x : T ∈ Γ

Γ ` x ≤ T

(Sub-Final-Field)

Γ ` T ⇑ A � : T ′ ∈ �nals(A)
Γ ` T.� ≤ T ′[T/this]

(Sub-Abs)

Γ ` T ⇑ A

Γ ` T ≤ A

(Sub-Owner-1)

Γ ` T.C.owner
Γ ` T.C.owner = T

(Sub-Owner-2)

Γ ` T ⇑ A.C

Γ ` T ≤ T.owner.C

(Sub-Owner-3)

Γ ` T ≤ T ′.owner.C
Γ ` T.owner = T ′.owner

(Sub-Nest-Final)

Γ ` T ≤ T ′ Γ ` T ′.�
Γ ` T.� ≤ T ′.�

(Sub-Nest-Class)

Γ ` T ≤ T ′ Γ ` T ′.C

Γ ` T.C ≤ T ′.C

Fig. 7. Good Subtyping|T = T ′ is interpreted as T ≤ T ′ and T ′ ≤ T .

The absolute class to which a variable or address corresponds is determined
using its declared type. Rule (Type-This) declares this to be a singleton type,
which corresponds to the absolute class given by the present context. By rule
(Type-Class), any valid type for which it makes sense to have a nested class C
can be extended with su�x C. Similarly, rule (Type-Final-Field) enables any
type which contains a �nal �eld � to be extended with su�x � . (Type-Owner)
states that any type can be extended with su�x owner, as long as the type
corresponds to an actual absolute class, not ◦.

Note that we not only have more types that vc, as described in the intro-
duction. We even permit types to go outside of a hierarchy. For example, in a
topmost class A the type this.owner.B refers to an instance of the topmost class
B, even though the two classes are not enclosed in another class. This is useful
when using adoption (Section 7).

We can prove that 1) a type corresponds to at most one absolute class; 2) if
a type corresponds to an absolute class, then this absolute class is a class (pos-
sibly inferred through inheritance); and 3) types correspond to more specialised
absolute classes in more specialised contexts.

Lemma 3. For program P , environment Γ , type T , absolute classes A0, A, A′:

1. If Γ ` T ⇑ A and Γ ` T ⇑ A′, then A = A′.
2. If Γ ` T ⇑ A, then ` A cls.
3. If ` A1 v∗

i A2, A1, Γ ` T ⇑ A3, and A2, Γ ` T ⇑ A4, then, ` A3 v∗
i A4.

5.2 Subtyping

Subtyping in Tribe is very rich. The rules are presented in Figure 7.
As usual, the type system supports reexivity (Sub-Refl) and transitivity

(Sub-Trans) of the subtype relation. (Sub-Subclass) converts subclassing into

13

subtyping. (Sub-Decl) states that a singleton type which corresponds to either
a variable or an address is a subtype of its declared type. (Sub-Abs) establishes
a subtype relation between any type and its absolute class.

(Sub-Final-Field) establishes a relationship between a type with a �nal �eld
su�x and the type of the �eld in the given context. This is achieved by substitut-
ing the pre�x into the type of the �nal �eld. For example, if Γ ` T ⇑ ◦.A.B and
class ◦.A.B has �nal �elds � 1 : ◦.C.D and � 2 : this.E, then (Sub-Final-Field)
gives that Γ ` T.� 1 ≤ ◦.C.D and Γ ` T.� 2 ≤ T.E.

Rule (Sub-Owner-1) is two rules combined into one statement. The equality
is to be read both left to right and right to left as a subtype rule. A type can
have C.owner added or removed from the end (whenever it produces a sensible
type). This works since C is a nested type, and owner goes back to the enclosing
instance. Rule (Sub-Owner-2) allows any type to be given in terms of a type in
the surrounding class. This is essential for obtaining that this : this.owner.C,
for the appropriate C. Rule (Sub-Owner-3) is again really two rules. This enables
one to determine whether two types reside in the same family, in which case,
their owners are the same.

Both rules (Sub-Nest-Final) and (Sub-Nest-Class) enable a pre�x of a type
to be replaced by any subtype. Combined with transitivity, these two rules
enable any internal part of a type path to be replaced by its subtype. Rule
(Sub-Nest-Class) resembles the rule (≤-Nest) from Jx [16], with an additional
well-formedness check.

The following lemma states that 1) subtyping of absolute classes implies
inheritance; 2) the absolute class corresponding to a type is its most speci�c
absolute supertype; 3) the absolute classes corresponding to subtypes are in
the inheritance relationship, meaning that everything expected of some type is
available in all subtypes (crucial for proving progress); 4) subtype relations are
preserved in more specialised contexts. The last property means that subtype
relations remain true in all inherited code. A similar property applies to typing,
as we will see in the next section. Such preservation properties are crucial for
proving soundness.

Lemma 4.

1. If Γ ` A ≤ A′, then ` A v∗
i A′.

2. If Γ ` T ⇑ A, and Γ ` T ≤ A′, then Γ ` A ≤ A′.
3. If Γ ` T ≤ T ′, Γ ` T ⇑ A, and Γ ` T ′ ⇑ A′, then ` A v∗

i A′.
4. If ` A1 v∗

i A0 and A0, Γ ` T ≤ T ′, then A1, Γ ` T ≤ T ′.

5.3 Expression Typing

Expression typing is given in Figure 8.
(Expr-Bullet) gives to ◦ the type ◦ so that it ◦ be used in expressions which

create absolute types. (Expr-Decl) gives a singleton type to any variable or
address (as they are �nal). Through a combination of (Sub-Decl) and (Expr-
Subsumption) we obtain, for example, that if x : T ∈ Γ , then Γ ` x : T ,

14

(Expr-Bullet)

Γ ` 3
Γ ` ◦ : ◦

(Expr-Decl)

Γ ` 3 x : T ∈ Γ

Γ ` x : x

(Expr-Null)

Γ ` T

Γ ` null : T

(Expr-Error)

Γ ` T

Γ ` error : T

(Expr-Final-Field)

Γ ` e : T Γ ` T ⇑ A
� : T ′ ∈ �nals(A)

Γ ` e.� : T.�

(Expr-Field)

Γ ` e : T Γ ` T ⇑ A
f : T ′ ∈ non�nals(A)
Γ ` e.f : T ′[T/this]

(Expr-FieldAsgn)

Γ ` p : T Γ ` T ⇑ A
[final] f : T ′ ∈ �elds(A)

Γ ` e : T ′[p/this]
Γ ` p.f := e : T ′[p/this]

(Expr-New)

Γ ` p0 ⇑ A C(T x){ . . . } ∈ constructors(A) Γ ` p : T [p/x]
Γ ` new p0.C(p) : p0.C

(Expr-Call)

Γ ` p0 ⇑ A T m(T x){ . . . } ∈ methods(A) Γ ` p : T [p0/this][p/�x]
Γ ` p0.m(p) : T [p0/this][p/�x]

(Expr-Let)

Γ ` e : T Γ, x : T ` e′ : T ′ Γ ` T ′

Γ ` final T x := e; e′ : T ′

(Expr-Seq)

Γ ` e : T Γ ` e′ : T ′

Γ ` e; e′ : T ′

(Expr-Subsumption)

Γ ` e : T Γ ` T ≤ T ′

Γ ` e : T ′

Fig. 8. Expression Typing

as expected. (Expr-Null) is standard, giving any type to null. Rule (Expr-
Error) is similar. It is used to enable the subject reduction result to go through
in the presence of errors.

(Expr-Field) is as expected, giving the type of the �eld relative to the type
of the object whose �eld it is (since the �eld type may contain this). (Expr-
Final-Field) instead extends the type with a singleton type, though whether
the resulting type is singleton depends upon the type T . For example, from
Γ ` x : x we might obtain that Γ ` x.� : x.� , which is a singleton type, but
from Γ ` x : y.D we obtain Γ ` x.� : y.D.� , which is not a singleton type.

(Expr-FieldAsgn) handles �eld assignment. For precise typing, the target
containing the �eld must be a path. This path is then used to give a precise type
to the value assigned to the �eld. This rule permits both assignment of both �nal
and non-�nal �elds. This is for uniformity, since �nal �elds need to be initialised
in the constructor. Attempts at assigning an initialised �nal �eld or attempts at
accessing non-initialised �elds result in errors, as previously discussed.

(Expr-New) describes the type of object creation The arguments p must
have the types required by the constructor, where any appearance of the formal
parameter has been updated by the actual paths. Note that rule (Expr-Call)
is similar to (Expr-New) in the treatment of the arguments. In fact, vc uni�es
the two (following Beta and gBeta), eliminating methods.

The rules (Expr-New) and (Expr-Method) may seem somewhat odd in that
they don't give a type to the receiver. Observe the following lemma:

Lemma 5. If Γ ` p ⇑ A, then Γ ` p : p.

15

(Good-Program)

∀class ∈ P (◦). ◦ ` class v+
i is acyclic

` P

(Good-Method)

Γ, x : T ` e : T

Γ ` T md(T x){ e }

(Good-Class)

Γ = A.C, this : this sup = {A.C | C ∈ C′} A = sup ∪ {A′ | ` A.C vf A′}
` A cls for each A ∈ sup ∀f : T ∈ ds. � ` T A.C ` classes � ` mthds

∀m, m′ ∈ (mthds ∪methods(A)). name(m) = name(m′) =⇒ type(m) = type(m′)
∀f. f : T, f : T ′∈(ds ∪ �elds(A)) =⇒ T = T ′ Γ, x : T ` e : T ′ for some T ′

∀A′ :` A vi A
′ and C(T ′ x′){ ... } ∈ constructors(A′) =⇒ T ′ = T

A ` class C extends C′ { C(T x){ e } ds classes mthds }

Fig. 9. Program, Class and Method Typing.

With the above lemma, the additional premise Γ ` p0 : p0 could be redundantly
added to the premises of (Expr-New), thus giving the target a type.

(Expr-Let) is for \let" expressions. It is standard, including the last premise
to ensure that variable x, which could occur in the resulting type, does not escape
its scope. This is standard in dependent typing [1]. (Expr-Seq) handles sequential
composition in a straightforward fashion. Finally, (Expr-Subsumption) is the
standard subsumption rule.

5.4 Well-formed Programs and Classes

Figure 9 de�nes well-formed programs and classes.
A program is well-formed if all its top level classes are well-formed, and there

are no cyclic dependencies in the inheritance hierarchy.
A class is well-formed if its super classes are all valid classes in the present

context, the �elds have types that are well-formed in the current context, all
methods and nested classes are well formed. In addition, all methods of the
same name which are either declared in the present class or inherited must have
the same type (where name gets a method's name and type gets a method's
signature). Any inherited �elds or local �elds with the same name must have
the same type; this last constraint simpli�es matters.5 Finally, the constructor
must have the same type as all inherited constructors.

A method is well-de�ned in the usual sense, though the types of arguments
may depend upon the path of other arguments and on the path of the receiver.

Finally, we will give some further results about well-formed programs. De-
�ne the the relation (fs,ms, cn) ≤ (fs ′,ms′, cn′) to express that the members
(fs,ms, cn) enhance those from (fs ′,ms′, cn′), while preserving types.

5 Another approach would be to have a compiler phase which annotated �eld use
with the class containing their de�nition, as is done by Java and C++ compilers.
The description of such an approach is not di�cult, but we consider this matter
orthogonal to soundness.

16

De�nition 4. De�ne (fs,ms, cn) ≤ (fs ′,ms′, cn′) i� the following four condi-
tions hold:

{ (fs,ms, cn) v (fs ′,ms′, cn′);
{ If f : T ∈ fs ′ and f : T ∈ fs, then T ′ = T ;

{ If m ∈ names(ms) ∩ names(ms′), then type(ms(m)) = type(ms′(m)); and
{ If C(Tx){ ... } ∈ cn and C(T ′x){ ... } ∈ cn′, then T = T ′.

The following lemma guarantees that in well formed programs 1) expressions
preserve their type in more specialised contexts; 2) class table entries of inheriting
classes enhance those of the inherited class while preserving types, and 3) method
de�ned in or inherited by an absolute class is well formed in that class context.
The last guarantee is stronger than what is required by rule (Good-Class),
because the rule only guarantees well-formedness for methods directly de�ned
in the class.

Lemma 6. For any well-formed program and its associated class table CT:

{ If ` A1 v∗
i A0 and A0, Γ ` e : T , then A1, Γ ` e : T .

{ If ` A v∗
i A′, then CT(A) ≤ CT(A′).

{ If T md(T x){ e } ∈ methods(A), then A, this : this, x : T ` e : T .

6 Soundness of the Type System

The soundness of the Tribe type system is established using the standard tech-
nique of providing subject reduction and progress theorems due to Wright and
Felleisen [21]. We now present a number of auxiliary notions and the rules for
well-de�ned heaps.

In order to type run-time expressions, we need to extract a typing environ-
ment from a heap. This information includes the types of addresses and equations
involving the values of �nal �elds. This is achieved using the following de�nition:

De�nition 5. Given a heap H, we de�ne operation Hγ as follows:
∅γ = ∅

(H, ι 7→ [fds]A.C)γ = Hγ , ι : v.C, ι.� 1 = v1, . . . , ι.� n = vn

where H(ι).owner = v and

fds = {� 7→ v,� ′ 7→ error, f 7→ }, vi 6= error

Note that only equations on de�ned �nal �elds get recorded in Hγ . Uninitialised
�nal �elds, those containing error, do not contribute to the typing environment.

Hγ has the same shape as an environment Γ , so the judgements from the
static semantics can be reused to type dynamic expressions. Rather than explic-
itly inserting the extraction operation, we use it implicitly. Thus, whenever we
write, for example, H ` T ⇑ A, we really mean Hγ ` T ⇑ A. This applies to all
rule shapes.

17

(Object)

�elds(A) = �f : T fds = �f 7→ �v H ` �v : T [ι/this] fds(owner) 6= error
H ` ι 7→ [fds]A

(Expr-Eq)

Γ ` ι′ : T ι′.f = v ∈ Γ

Γ ` v : T.f

(Heap)

∀ι 7→ o ∈ H : H ` ι 7→ o

` H

(Config)

` H H ` e : T

` H, e : T

Fig. 10. Heap Typing

6.1 Well-formed heaps

The type rules for heaps, objects and con�gurations are given Figure 10.
(Object) requires that all the �elds have the correct type with respect to

some absolute class and the present object id. The fact that the object id appears
in the types takes care of the family requirements. In particular, the owner
is a �nal �eld, and therefore, the type rules require that it should have type
this.owner[ι/this], i.e., for H(ι).owner = v, we require Hγ ` v : ι.owner,
which is satis�ed from the de�nition of Hγ and rule (Expr-Eq).

(Expr-Eq) is an additional rule used to establish equivalences between a type
involving a path and object to which the path refers. (Heap) states that a heap
is well-formed whenever all of its objects are well-formed. (Config) states that a
well-formed heap and expression typed against it form a con�guration with the
type of the expression.

We have the following properties of well-formed heaps: 1) a well-formed heap
can act as a well-formed environment; 2) the class corresponding to an address
(as a singleton type) is the class of that address; 3) the surrounding class of the
object surrounding an object is the surrounding class of the object's class; and
4) the chains of owners forms a �nite tree rooted at ◦.

Lemma 7. Assume ` H. Then:

1. Hγ ` 3.
2. Hγ ` ι ⇑ A if and only if H(ι) = [. . .]A.
3. Assume H(ι).owner = v. If Hγ ` ι ⇑ A.C, then Hγ ` v ⇑ A.
4. The graph G = (dom(H) ∪ {◦}, {(ι,v) | ι ∈ dom(H) ∧H(ι).owner = v}) is

a tree with root ◦.

6.2 Soundness

We can prove subject reduction and progress properties. We �rst state our vari-
ants of the standard meta-theory required to establish these results.

Lemma 8. If A, this : this, Γ ` e : T and H ` ι ⇑ A, then H,Γ [ι/this] `
e[ι/this] : T [ι/this].

18

Lemma 9 (Substitution). If Γ, x : T, Γ ′ ` e : T ′, and Γ ` v : T , then
Γ, Γ ′[v/x] ` e[v/x] : T ′[v/x].

De�nition 6 (Environment Extension, Heap Extension).

{ De�ne Γ ⊆ Γ ′ i� ∃Γ ′′ with Γ ′ = Γ, Γ ′′.
{ De�ne H ⊆ H ′ i� Hγ ⊆ H ′γ .

Note, that H ⊆ H ′ implies that dom(H) ⊆ dom(H ′), ∀ι ∈ dom(H).type(H(ι)) =
type(H ′(ι)), and that �nal �elds are more de�ned in H ′ than in H. The last point
means that �nal �elds containing error in H may become de�ned in H ′, but
already de�ned �nal �elds must preserve their contents.

Lemma 10 (Extension). If Γ ` e : T , Γ ⊆ Γ ′ and Γ ′ ` 3, then Γ ′ ` e : T .

Lemma 11 (Retraction). If Γ, x : T ′ ` e : T and x /∈ fv(e) ∪ fv(T), then
Γ ` e : T .

Lemma 12 (Subformula Property). If Γ ` E[e] : T , then there exist a Γ ′

and a T ′ such that Γ ⊆ Γ ′ and Γ ′ ` e : T ′.

Lemma 13 (Replacement). If Γ ′ ` e : T ′ is a sub-derivation of Γ ` E[e] : T ,
and Γ ′ ` e′ : T ′, then Γ ` E[e′] : T .

De�nition 7. A redex is an expression which has the form of one of the left
hands sides of our reduction rules (apart from the two context rules): v.f , v.f :=
v, new v.C(v), v.m(v), final T x := v; e, or v; e.

Lemma 14. Any expression e factored uniquely as an evaluation context E[−]
and another expression e′, such that e = E[e′]. Either e′ is a redex or an N .

And now for subject reduction and progress, which together give soundness6.

Theorem 1 (Subject Reduction). If ` H, e : T and H, e ; H ′, e′, then
H ⊆ H ′ and ` H ′, e′ : T .

Proof. By induction on the structure of e.

Theorem 2 (Progress). If H ` e : T , then either e is a value, or there exist
an H ′ and an e′ such that H, e ; H ′, e.

Proof. By case analysis on the structure of e. The result depends on Lemma 6
to do all the work.

7 Advanced Tribe

This section addresses a number of issues concerning the design of Tribe.

6 Proof sketches are available at http://dsv.su.se/~tobias/appendix.pdf.

19

(Expr-Call-Overridden)

Γ ` p ⇑ A′ Γ ` p.qual ⇑ A ` A′ v∗
i A

T m(T x){ . . . } ∈ methods(A) Γ ` p : T [p/this][p/�x]
Γ ` p :: qual .m(p) : T [p/this][p/�x]

(Eval-Call-Overridden)

H(ι) = [. . .]A′ T m(T z){ e } ∈ methods(A)
H, ι :: A.m(v) ; H, e[ι/this, v/z]

Fig. 11. Type and Reduction Rules for Overridden Method Call

7.1 Calling Overridden Methods

Name clashes and ambiguous super calls are problems faced by every language
with multiple inheritance. In Tribe, we force the caller to explicitly state which
class' implementation a method should be bound to, though we do so using a
relative path to the desired class. This is more stable under changes to the inher-
itance hierarchy, so long as the targeted class is inherited where it is expected.
Tribe provides uniform access for both methods appearing in super- and further
bound classes. The syntax is:

e ::= . . . | p :: qual .m(p) qual ::= owner∗.C∗ | A

In an overridden method call, qual is a quali�er which is used to refer to some
inherited class, relative to the present context. It uses owner to enter surrounding
classes and class names to go select speci�c classes within the surrounding class.
The relative path to a class is resolved to a static class name at compiler time.

The type rule for overridden method call is found in Figure 11. The rule
checks that the path of the target, merged with the quali�er, corresponds to
some class the present class inherits from that contains the named method. The
rest is the same as for ordinary method call.

An overridden method call binds to the implementation in the class denoted
statically by the quali�er. Thus our approach is the same as that taken in C++,
Java and Smalltalk, except that our paths are relative rather than absolute.
At compile time, all method calls that use quali�ers are rewritten as follows:
Replace the call p :: qual .m(p) by p :: A.m(p), where Γ ` p.qual ⇑ A.

The reduction rule, which uses the absolute class name, appears in Figure 11.
The following example illustrates how the quali�er can be used to resolve

ambiguous method calls (comments from *.Y.A's point-of-view).

class X { // owner.owner.X
class A { void m() { ... } }

}
class Y extends X { // owner
class C { void m() { ... } }
class D { void m() { ... } }

20

class A extends C, D { // inherits classes X.A, Y.C, Y.D
this::owner.C.m(); // uses Y.C's impl. of m()
this::owner.D.m(); // uses Y.D's impl. of m()
this::owner.owner.X.A.m(); // uses A.B's impl. of m()

}
}

As in C++, quali�ers can be used for paths not starting with this.
Finally, recall that class construction (§3) non-deterministally resolved meth-

od calls when no overriding was present. A simple super-call can break this non-
determinism. For example, assume that a class C inherits A and B, which both
contain method m. The following code in C chooses the m method from A.

void m() { this::owner.A.m(); }

7.2 Adoption and Over-the-top Types

In Tribe, every class contains an nested class Object as the root of the nested
subclass hierarchy. Furthermore, subclassing occurs only between classes nested
within the same class. While o�ering simplicity, this approach su�ers from prac-
tical limitations. In this section, we describe the notions of adoption and of
over-the-top types which overcome these limitations.

Consider the following top-level classes|not nested within another class:

class Observer {
this.owner.Subject subject; // relative type

}
class Subject { }

The subject �eld of Observer refers to a Subject type using a relative type
rather than the absolute type ◦.Subject. This is okay as the absolute class of
this.owner is ◦, which contains class Subject. Such relative types appearing in
a top-level class|over-the-top types|are useful in combination with adoption.

Adoption occurs when a top-level class hierarchy is grafted into some other
class, enabling better reuse of code which may have been written without family
polymorphism in mind. The following syntax incorporates adoption into Tribe:

class ::= class C extends C { cnstr d∗ class∗ mthd∗ adpt∗ }

adpt ::= adopt ◦ .C

Note that adopting classes which are not at the top-level has no clear semantics.
The following code uses adoption to graft classes ◦.Observer and ◦.Subject

into ◦.Spy to produce the classes ◦.Spy.Observer and ◦.Spy.Subject.

class Spy {
adopt *.Observer;
adopt *.Subject;
class Observer { ... } // further binds adopted Observer
class MaleSubject extends Subject { } // extension of adopted class

}

21

Class ◦.Spy.Observer inherits the �eld this.owner.Subject subject, whose
type now corresponds to ◦.Spy.Subject. Without over-the-top types, this �eld
would still have type ◦.Subject, and losing the advantages of virtual classes.

The following minor additions and modi�cations are required to incorporate
adoption into the type system. Firstly, the following additional rules are added
to subclassing and further binding resolution:

(Adopt-Class)

classC · · · { . . . adopt ◦ .C } ∈ P (A)
` A.C.Ci cls

(Adopt-SubClass)

classC · · · { . . . adopt ◦ .C } ∈ P (A)
` A.C.Ci vs ◦.Ci

The only change that need be made is to (Class-Table) is to add ` ◦.C cls
for each adopted class, and to check that the class C is not already inherited.
The �nal change required is ensuring that every top-level class referred to in
an adopted class through an over-the-top type is also adopted. If, for example,
◦.Subject above is not adopted, the type of �eld subject in ◦.Spy.Observer
would refer to a non-existant class. Worse, a totally di�erent class with the same
name could be introduced into ◦.Spy, which would be unsound.

We have not proven the soundness of this extension, but believe it to be so.
Adoption sometimes requires the adoption of many classes, potentially every

top-level class. We plan to investigate alternatives designs as future work.

7.3 Dynamic Type Casts

Extending Tribe to support dynamic casts is straightforward, as every object
carries around su�cient information, an absolute class and an owner. The type
rule is obvious. The reduction rules for type cast are as follows:

(Expr-Cast)

Γ ` e : T ′ Γ ` T
Γ ` (T)e : T

(Eval-TypeCast-Success)

H ` v : T
H, (T)v ; H, v

(Eval-TypeCast-Fail)

¬(H ` v : T)
H, (T)v ; H, error

7.4 Decidability of Type Checking

As our type system is not syntax directed, it is not clear whether type checking
is decidable. At the time of writing, we have determined that Γ ` T ⇑ A is
decidable, and that decidability depends on the decidability of subtyping. Note
that vc's type system is decidable, and we believe that a fragment of our system
corresponding to vc can easily be carved out (and would be decidable).

8 Related Work

There has been a range of research on family polymorphism since Ernst's original
proposal [6], built on gBeta [5]. Systems that support family polymorphism can
be divided into two categories: those that support class families and those that
support object families. In class families, classes are nested in other classes,

22

whereas in object families, classes are nested in objects and types depend on
paths. In terms of our initial graph example, class families can prevent non-
coloured nodes from appearing in a coloured graph, but cannot prevent attempts
at connecting nodes belonging to di�erent graph instances. Object families can
do both.

In this sense Concord [12] and Caesar [15] groups are class families as well
as the nested class system of .FJ [11]. The class families of Concord and .FJ
are also \shallow" as they do not allow more than one level of nesting. Nystrom
et al.'s Jx [16] presents a notion of nested inheritance that works much like
class families with support for nestings of arbitrary depth. To enable family-
polymorphic methods, Jx introduces the notion of pre�x types of the form C[C′]
that denote the innermost enclosing class of class C′ that is a subtype of C.
To solve a similar problem, .FJ uses a bounded type parameter that is passed
in separately. We believe that neither of these solutions is as intuitive as using
relative paths based on owner or out.

Scala [8] and vObj [17] have both object family and class family polymor-
phism, although vObj does not support virtual classes, only virtual types. They
both lack an out or outer construct but can use the syntax C.this to refer
to the innermost object enclosing this with type C. Note that Tribe allows the
description of such a type using a path starting from any �eld or variable, not
just this; and allows classes at any point in a part.

Our proposal is closest both in spirit and expressiveness to vc [7]. The main
di�erence is that in vc, all paths are relative to the current this, whereas Tribe
supports absolute paths; paths beginning with variables; and paths intermixing
classes and objects in any order. One practical bene�t is the way Tribe handles
family parameters. Writing our example from page 3 in vc would not allow
the use of e.owner to obtain the class enclosing the argument edge, requiring
the \family" class to be passed in separately. Tribe also has richer types and
subtypes. For example, vc only de�nes subtyping for class names in the same
path, whereas Tribe de�nes subtyping for variables and absolute class names.

Table 1 summarises this brief comparison of related systems. Ernst et al.'s vc
paper includes a more comprehensive account [7].

Table 1. Comparison. 1) through myGrp, only one level and for class families only;
2) through pre�x types, for class families only; 3) only from this; 4) only from this
through C.this that denotes the innermost class enclosing this with type C.

Concord Caesar .FJ Jx vc vObj Scala Tribe
Object families no no no no yes yes yes yes

Class family types (C.C′) yes yes yes yes no yes yes yes
Relative paths yes1 no no yes2 yes3 yes4 yes4 yes

Over-the-top types no no no no no no no yes
Adoption no no no no no no no yes

23

9 Conclusions and Future Work

We have presented Tribe, a type system for generalised class and family poly-
morphism. Tribe is simpler and more powerful than existing systems, with more
exible path-based types and extended subtype relations, resulting in a more
expressive of the calculus with little additional conceptual overhead.

We are currently implementing a prototype programming system based upon
Tribe, and more generally, we hope Tribe will serve as a suitable basis for research
in a range of areas:

Ownership Types The savvy reader may have cottoned onto the fact that
we have used the brand-name owner to refer to the surrounding instance.
Our original motivation for doing this work was related to ownership types,
but we found the formalism for vc to be too unwieldy to modify. Hence, we
devised our own, incorporating a number of extensions that we found useful.
The work on ownership types in this setting will be reported in future work.

Dynamic Nesting Structure The owner �eld must be �nal for soundness.
But this prevents object aggregations (or nesting structures) from changing
or evolving. It would be interesting to determine what would be required to
change this. This can probably be achieved by linearising the objects whose
type/ownership/structure will change, leveraging on DeLine and F�ahndrich's
work on type states [4], and Clarke and Wrigstad's External Uniqueness [3,
22].

Generics Adding generics and/or virtual types to our language would be, we
expect, relatively simple to do (following perhaps Scala [8]). Type checking
Scala is, unfortunately, undecidable. Venturing into this territory thus will
require careful steps in order to remain decidable (assuming we can establish
decidability for our system).

References

1. David Aspinall and Martin Hofmann. Dependent types. Chapter in [18].
2. Gilad Bracha. The Programming Language Jigsaw: Mixins, Modularity and Mul-

tiple Inheritance. PhD thesis, University of Utah, 1992.
3. David Clarke and Tobias Wrigstad. External uniqueness is unique enough. In

Proceedings of the 17th European Conference on Object-Oriented Programming
(ECOOP), Darmstadt, Germany, 2003.

4. Robert DeLine and Manuel F�ahndrich. The fugue protocol checker: Is your software
baroque? Technical Report MSR-TR-2004-07, Microsoft Research, 2003.

5. Erik Ernst. gBeta|A Language with Virtual Attributes, Block Structure, and Prop-
agating, Dynamic Inheritiance. PhD thesis, University of Aarhus, Denmark, 1999.

6. Erik Ernst. Family polymorphism. In Proceedings of the 15th European Conference
on Object-Oriented Programming, London, UK, 2001. Springer-Verlag.

7. Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class calculus. In
Proceedings of Principles of Programming Languages (POPL), Charleston, South
Carolina, USA, January 2006.

24

8. Martin Odersky et al. An overview of the scala programming language. Technical
Report IC/2004/64, EPFL Lausanne, Switzerland, 2004.

9. Manuel F�ahndrich and K. Rustan M. Leino. Declaring and checking non-null types
in an object-oriented language. In OOPSLA '03: Proceedings of the 18th annual
ACM SIGPLAN conference on Object-oriented programing, systems, languages,
and applications, 2003.

10. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java Language Speci�ca-
tion. Addison-Wesley Professional, 3rd edition, 2005.

11. Atsushi Igarashi, Chieri Saito, and Mirko Viroli. Lightweight family polymor-
phism. In Proceedings of the 3rd Asian Symposium on Programming Languages
and Systems (APLAS'05), volume 3780 of LNCS, Tsukuba, Japan, 2005.

12. Paul Jolly, Sophia Drossopoulou, Christopher Anderson, and Klaus Ostermann.
Simple dependent types: Concord. In 6th ECOOP Workshop on Formal Techniques
for Java-like Languages, June 2004.

13. Ole Lehrmann Madsen, Birger M�ller-Pedersen, and Kristen Nygaard. Object-
Oriented Programming in the BETA Programming Language. Addison-Wesley,
Reading, MA, USA, 1993.

14. Jan-Willem Maessen and Xiaowei Shen. Improving the java memory model using
crf. In OOPSLA '00: Proceedings of the 15th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, 2000.

15. Mira Mezini and Klaus Ostermann. Conquering aspects with caesar. In Mehmet
Aksit, editor, Proceedings of the 2nd International Conference on Aspect-Oriented
Software Development (AOSD), pages 90{100, Boston, USA, March 2003.

16. Nathaniel Nystrom, Sephen Chong, and Andrew C. Myers. Scalable extensibility
via nested inheritance. In Proceedings of Objects, Programming Langages, Systems
and Applications (OOPSLA), Vancouver, Canada, October 2004.

17. Martin Odersky, Vincent Cremet, Christine R�ockl, and Matthias Zenger. A nomi-
nal theory of objects with dependent types. In Proc. ECOOP'03, Springer LNCS,
July 2003.

18. Benjamin Pierce, editor. Advanced Topics in Types and Programming Languages.
MIT Press, 2004.

19. Nathanael Sch�arli, St�ephane Ducasse, Oscar Nierstrasz, and Andrew P. Black.
Traits: Composable units of behaviour. In Luca Cardelli, editor, ECOOP 2003 {
Object-Oriented Programming: 17th European Conference, volume 2473 of Lecture
Notes In Computer Science, pages 248{274. Springer-Verlag, July 2003.

20. Bjarne Stroustroup. The C++ Programming Language. Addison-Wesley, 3rd edi-
tion, 1997.

21. Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38{94, 1994.

22. Tobias Wrigstad. Ownership-Based Alias Management. PhD thesis, Stockholm
University, 2006. Forthcoming.

25

