A Compiler for Beluga

Francisco Ferreira
McGill University

PhD Student

fferre8@cs.mcgill.ca

~ © Steve Snodgrass



A versatile representation, powerful pattern matching
compilation and dependent types

the normalization function

rec norm : {@:ctx} (exp T) [@] » (exp T) [@] =
fn e = case e of

(2]
1%01%p.. = L[] #p.

| [(p]a'.cm &x. M.x) =

let [o, x:exp _] N.x = norm (| the “fresh-style” representation of bound variables
[¢@] lam Ax. N..x

(5]
| [@] app (M1.) (M2..) =

(case norm ([¢@] M1.) of
| [@] lam (Ax. M'.x) = norm

| [¢@] N1.. =

let [@] N2.. = norm ([¢] M2
[@] app (N1.) (N2.)
)

X

A Link A Name

Compiling dependently typed programs with binders
since... (we are just starting!)




