
Uppsala Programming for Multicore
Architectures Research Center

Alias Management with Ownership and Uniqueness
Johan Östlund, Elias Castegren, Stephan Brandauer and Tobias Wrigstad

Uppsala University, Sweden
sa

Structured Aliasing

– E�ective implementations, share a single copy of a
datum and make in-place updates

– Model real-world scenarios with sharing

Aliasing is powerful
– Complicates programming and program reasoning
– Complicates verification and compiler optimisation
– Increasingly so in an in a parallel world

Aliasing is problematic
– There is no formal theory but many patterns
– Programmer intention hidden between the lines
– No/little support in modern programming languages

Aliasing must be controlled

– Decomposes the heap in an hierarchic fashion; objects live in disjoint nested regions; the
nesting relation forms a tree.

– Originally proposed by Clarke, Potter and Noble (1998) to formalise certain aspects of
Noble, Vitek and Potter’s work on Flexible Alias Protection (1998).

class List[Owner,Data] { // names of external regions
 Link[This,Data] first; // This = list's private region
}

class Link[Owner,Data] { // Owner => region where the
 Object[Data] element; // current object resides
 Link[Owner,Data] next;
}

– Objects live in regions owned by other
objects, and can be given permission to
reference external regions.

– Ownership, nesting and permissions are
reflected in types.

– Di�erent ownership systems enforce
di�erent formal guarantees.

 void prepend(Object[Data] elem) { // elements live in
 first = new Link(elem, first); // the same region
 }

 // Returns internal data!
 Object[This] leakyIfCalledExternally() {
 return first;
 }

– Ownership types restrict access to val-
ues, not names.

– Containment invariant: leaky... can
only be called from objects within the list
aggregate.

– Hence: in ownership types a leak will not
occur.

Ownership Types

world

a

b

list

link

object
in region

nesting

reference

region
 ownership

region – No external access to links of a linked
list.

– Nesting: world > a > b.
– b is the region of a linked list whose

data elements live in region world.
– Incoming pointers (e.g., world æ a

or a æ b) are statically prevented (see
box below).

– Outgoing pointers (e.g., b æ a or
b æ world) are allowed.

Ownership Types Example: List

world

a

b

list

link

iterator

current

Iterator’s direct access through current
breaks encapsulation although it’s imple-
mentation is likely benign.

world

a

b

list

link

current iter ator

Iterators are allowed internal to the list,
but then cannot be accessed externally.

Breaching Encapsulation (Disallowed)

As the examples above show, the strong encapsulation of ownership types can destroy
patterns with intentional breaches of encapsulation—like iterators. Subsequent work
allow principled relaxations of ownership types (here Universes (Müller and Poetzsch-
He�ter, 1999) and Ombudsmen (Östlund and Wrigstad, 2012)).

world

a

b

list

link

iterator

current

Allow incoming read-only aliases

world

a

b

list

link
iterator

current

Allow defining multiple bridge objects

Principled Relaxation of Restrictions

– Originally proposed by Clarke and Wrigstad (2003) as a natural way to combine
ownership with unique pointers.
æ Introduce a relaxation of traditional uniqueness: only a single pointer to an object

from outside of the object.
æ External pointer acts as a guard to access the object, and guarantees internal aliases

are unreachable.

– Accessing a unique object needs an
explicit borrowing operation:

unique List[Data] myList;
// myList is unique
borrow myList { // myList no longer unique
 myList.add(new Object[Data]);
 ... // omitted
}
// myList is unique again

– In practise, almost all borrowing can be
inferred

– May allow global read-access outside of
borrowing

– During borrowing, exclusive access by
the current thread with static guarantee
that no aliases exist that can witness
mutation

CB

A

CB

Aexternally
unique
pointer

– External uniqueness introduces an addi-
tional enclosure to which there is only a
single incoming reference.

– There may be multiple top-level objects in
the enclosure (e.g., B and C).

– Borrowing chooses which top-level ob-
ject is pointed to by the single incoming
reference (left B, right C).

External Uniqueness

– Wrigstad et al. (2009) propose a simple
ownership system where threads own regions
in a flat hierarchy

– Experiments by Zaza (2012) show that few
annotations (1/250 LOC) can capture large
%-age of thread-locality (84% of all thread-
local objects and 97% of all thread-local
memory in DaCapo Xalan)

– Thread-local accesses statically safe, access
to shared data area unsafe

– Eclipse plugin (now deprecated) and Java 8
checker front-end implementations

object
"owned"

by a
thread

java.lang.Thread

references point to same region or shared

thread-local region

region for
objects shared

between threads

Ownership for Thread-Locality

object

active obj

all objects
outside active

objects

immutable
object

external
unique obj

Joelle: Ownership for Active Objects

– Clarke et al. (2008) apply ownership types
“minimally” to create isolated active objects

– Östlund and Wrigstad extend this with more
complicated alias management to allow in-
ternal parallelism in active objects (ongoing)

– Brandauer (2012) shows implementation
speed comparable to Scala and Erlang

– Castegren, Östlund and Wrigstad add struc-
tured parallelism to Joelle (ongoing)

References
1. Dave Clarke and Tobias Wrigstad. External uniqueness is

unique enough. In ECOOP, pages 176–200, 2003.
2. Dave Clarke, Tobias Wrigstad, Johan Östlund, and Einar

Johnsen. Minimal ownership for active objects. In
G. Ramalingam, editor, Programming Languages and
Systems, volume 5356 of Lecture Notes in Computer
Science, pages 139–154. Springer Berlin / Heidelberg,
2008.

3. P. Müller and A. Poetzsch-He�ter. Universes: a type
system for controlling representation exposure. In
Programming Languages and Fundamentals of
Programming. Fernuniversität Hagen, 1999.

4. James Noble, Jan Vitek, and John Potter. Flexible alias
protection. In ECOOP, pages 158–185, 1998.

5. Stephan Brandauer. Task Scheduling Using Joelle’s E�ects.
Master Thesis, Dept. of IT, UU, 2013.

6. Johan Östlund and Tobias Wrigstad. Multiple aggregate
entry point for ownership types. In James Noble, editor,
ECOOP 2012 – Object-Oriented Programming, volume
7313 of Lecture Notes in Computer Science, pages
156–180. Springer Berlin / Heidelberg, 2012.

7. Johan Östlund, Tobias Wrigstad, Dave Clarke, and
Beatrice Åkerblom. Ownership, uniqueness, and
immutability. In TOOLS (46), pages 178–197, 2008.

8. Tobias Wrigstad, Filip Pizlo, Fadi Meawad, Lei Zhao, and
Jan Vitek. Loci: Simple thread-locality for Java. In
ECOOP 2009 – Object-Oriented Programming, volume
5653 of Lecture Notes in Computer Science, pages
445–469. Springer Berlin / Heidelberg, 2009.

9. Nosheen Zaza. Evaluating the Accuracy of Annotations in
the Loci 3.0 Pluggable Type Checker Master Thesis, Dept.
of IT, UU, 2012.

LATEX TikZposter class

