
Uppsala Programming for
Multicore Architectures
Research Center

Race-free Parallelism using Refined Ownership Types with E�ects
Elias Castegren

elias.castegren@it.uu.se

Johan Östlund
johan.ostlund@it.uu.se

Tobias Wrigstad
tobias.wrigstad@it.uu.se

Ownership Types and E�ects
Ownership types allow partitioning the heap into disjoint regions which may be
nested. Each object is ”owned” by a region and is given explicit permission to
reference objects in other regions. By annotating methods with e�ects - which
regions they read and write - potential data-races can be detected statically.

≠ Both lists have elements that
reside in the region Data.

≠ Mutating the elements of both
lists in parallel is subject to data
races.

≠ Each list has access to a private
region of memory containing its
own links and other private data.

≠ Parallel operations on separate
regions can be performed
without interference.

Ownership types allow expressing disjointness between di�erent data structures,
but cannot distinguish between elements in the same data structure. For example,
a parallel map over List1 is free of races, but this can not be expressed with
Ownership types without using inflexible region nesting.

Ownership Types Explained

References may pass outwards in the
nesting hierarchy but not inwards.
Regions are named through parameters
of the class or relative to the current
this:

≠ Rep denotes the private region of
the current this.

≠ Owner is the region containing the
current this.

Refined Ownership Types
Refined ownership types extend ownership-based disjointness to allow static
reasoning about objects in a single region. They work by introducing a local
view of the region:

c lass L i s t [Data]{
Rep : L ink [Data] f i r s t ;

}
c lass L ink [Data = E + Rest]{

E : Object e l ement ;
Owner : L ink [Rest] nex t ;

}

≠ In this code, the elements of a List -object reside in some region Data.
≠ The Link class refines Data into to E and Rest. The intuition is that Data is

split into two disjoint regions; no object in E appears in Rest and vice-versa.
≠ The next-Link (and its successors) will have elements residing in Rest, and

since Rest and E are disjoint, no alias of element can be reached by
following next.

Refinement is a Local Property

≠ Here, the first Link has a local view of Data as disjoint
regions E and Rest. A is in E but not in Rest.

≠ The second Link has a local view of Rest that splits it into a
region containing only B (its element) and another owner
containing C and D, and so forth.

≠ Another object can refine the same region di�erently (or not
refine it at all), and still reference any object in the region.

Race-free Parallelism
c lass Node [Data = L + Root + R]{

Root : Objec t e l ement ;
Owner : L ink [L] l e f t ;
Owner : L ink [R] r i g h t ;

void map(Func t i on f) writes Data{
par{

l e f t . map(f) ; // w r i t e s L
f . app l y (e l ement) ; // w r i t e s Root
r i g h t . map(f) ; // w r i t e s R

}
}

}

≠ Since L, Root and R are
disjoint, writes to these
regions cannot be conflicting.

≠ Race-freedom of statements
in a par-block is checked
statically at compile-time.

≠ The refinements are internal
to the class. Local reasoning
is enough to allow safe
parallel access to objects in
the refined region.

Key points
≠ We can give static guarantees that a data

structure is tree-shaped and contains no
duplicate elements.

≠ We can guarantee safety of parallel mutation
of such data structures, including
permutations (e.g. sorting or balancing).

Future Work
≠ Dynamically merging regions using

disjointness information.
≠ Automatically inferring parallelism from

disjointness information.

