
Uppsala Programming for
Multicore Architectures
Research Center

Race-free Parallelism using Refined Ownership Types with E�ects
Elias Castegren

elias.castegren@it.uu.se

Johan Östlund
johan.ostlund@it.uu.se

Tobias Wrigstad
tobias.wrigstad@it.uu.se

Ownership Types and E�ects
Ownership types allow partitioning the heap into disjoint regions which may be
nested. Each object is ”owned” by a region and is given explicit permission to
reference objects in other regions. By annotating methods with e�ects - which
regions they read and write - potential data-races can be detected statically.



  






≠ Both lists have elements that
reside in the region Data.

≠ Mutating the elements of both
lists in parallel is subject to data
races.

≠ Each list has access to a private
region of memory containing its
own links and other private data.

≠ Parallel operations on separate
regions can be performed
without interference.

Ownership types allow expressing disjointness between di�erent data structures,
but cannot distinguish between elements in the same data structure. For example,
a parallel map over List1 is free of races, but this can not be expressed with
Ownership types without using inflexible region nesting.

Ownership Types Explained





References may pass outwards in the
nesting hierarchy but not inwards.
Regions are named through parameters
of the class or relative to the current
this:

≠ Rep denotes the private region of
the current this.

≠ Owner is the region containing the
current this.

Refined Ownership Types
Refined ownership types extend ownership-based disjointness to allow static
reasoning about objects in a single region. They work by introducing a local
view of the region:

c lass L i s t [Data]{
Rep : L ink [Data] f i r s t ;

}
c lass L ink [Data = E + Rest]{

E : Object e l ement ;
Owner : L ink [Rest] nex t ;

}

≠ In this code, the elements of a List -object reside in some region Data.
≠ The Link class refines Data into to E and Rest. The intuition is that Data is

split into two disjoint regions; no object in E appears in Rest and vice-versa.
≠ The next-Link (and its successors) will have elements residing in Rest, and

since Rest and E are disjoint, no alias of element can be reached by
following next.

Refinement is a Local Property



   
 

≠ Here, the first Link has a local view of Data as disjoint
regions E and Rest. A is in E but not in Rest.

≠ The second Link has a local view of Rest that splits it into a
region containing only B (its element) and another owner
containing C and D, and so forth.

≠ Another object can refine the same region di�erently (or not
refine it at all), and still reference any object in the region.

Race-free Parallelism
c lass Node [Data = L + Root + R]{

Root : Objec t e l ement ;
Owner : L ink [L] l e f t ;
Owner : L ink [R] r i g h t ;

void map(Func t i on f) writes Data{
par{

l e f t . map(f) ; // w r i t e s L
f . app l y (e l ement) ; // w r i t e s Root
r i g h t . map(f) ; // w r i t e s R

}
}

}

≠ Since L, Root and R are
disjoint, writes to these
regions cannot be conflicting.

≠ Race-freedom of statements
in a par-block is checked
statically at compile-time.

≠ The refinements are internal
to the class. Local reasoning
is enough to allow safe
parallel access to objects in
the refined region.

Key points
≠ We can give static guarantees that a data

structure is tree-shaped and contains no
duplicate elements.

≠ We can guarantee safety of parallel mutation
of such data structures, including
permutations (e.g. sorting or balancing).

Future Work
≠ Dynamically merging regions using

disjointness information.
≠ Automatically inferring parallelism from

disjointness information.

