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Overv iew

Joelle is an active object-
based language relying on
ownership types for isola-
tion and e↵ects for internal
parallelism. This project im-
plements task scheduling for
Joelle.

http://tinyurl.com/jsched

Active Object
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Joe l l e :

� Only asynchronous
methods. Method calls
as message sends, return
future values where a
synchronous method
would return a value

� Active objects
transparently run
messages in parallel
when safe: “internal
parallelism”

� Most other active object
implementations use
only one internal thread
of control. We use a
work-stealing thread
pool, but the illusion of
one thread of control

� Objects in Joelle run in
isolated memory regions
which are further
partitioned into regions

⌘

class Foo {
region A , B , C ;

Bar f in A ;

...

def R() rd A {..}
def U() wr A , B {..}
def S() rd B , C {..}
def T() wr C {..}

� Each field is placed in a
region

� Methods are annotated
with what fields they
read or write

� wr implicitly contains
rd

R

U S

T

In terna l Para l l e l i sm:

� Conflict graph (above)
obtained from
e↵ect-annotations;
conflicting methods are
connected

� Two methods accessing
a region conflict if at
least one access is a
write

� Conflicting tasks may
not be executed at the
same time
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(c) after adding 13 tasks

Figure 2.7: The MultiQueueScheduler’s internal queues. The black lines
represent barriers that tied to the tasks. In this example, R0 and T2 can be
handed o↵ to the fork join pool since they have no barrier in front of them.

Imp lementa t ion :

� Mailbox for active
objects

� Each method has a
separate queue

� When R is called, a
corresponding task (R0)
is added to the R-queue
in the receiving object’s
mailbox

� Furthermore, a
Barrier (|) is added to
all queues of all
conflicting methods (U)

Thread 0

Thread 1

Thread 2

execution time

R0

T2 U1

S3

S4

R6

T5

U7

R8

S9

U10

T11 R12

Figure 1.10: An ideal solution of scheduling the standard example, assuming
all tasks have the same duration. Note how sometimes tasks overtake tasks
that were submitted before them, for instance T2 has a higher index than U1

but is still executed first. This is legal since T2 could not observe U1’s changes
anyway as guaranteed by the e↵ects system.

can do additional work while a di�erent CPU core is busy pro-

cessing their messages.

A more fine-grained parallelism is available through the e�ects

system: since the active object implementation is able to run non-

conflicting tasks in parallel, a high potential for parallelisation is

possible, in the best case only bounded by the number of CPU

cores.

We call these two ways to parallelise external and internal paral-

lelisation.

A di�erence between Joelle and competing solutions for parallel

code is a certain transparency of the parallelism: note that the

user declares rather basic and intuitive details about the code:

1) which classes should be active? 2) what are the e�ects of a

method? Based from these declarations, parallelism emerges nat-

urally. The user is not even concerned with threads. We hope that

this implicit parallelisation will greatly reduce development com-

Schedu l ing Example :

� Tasks R0, U1, T2 have
been added to a
mailbox in index-order

� R0 and T2 have no
barriers in front, thus
can be executed by the
threadpool (above
right) immediately

� Execution order of U1

and T2 is irrelevant for
program behaviour and
transparent to the
program

Per formance and

Conc lus ions :

Chain (varying length N) of active

objects, e↵ectless methods. Data

(varying number of values in list)

is sorted and reversed

Parameter Values
threads [1,2,..,4] — [1,2,..,64]
chain length [2 ,12, 102, 1002]
set size [0, 250, 500, 750, 1000]
set count [500]

Table 3.1: The used benchmarking parameters.

might be the case that memory e�ects delay the passing on of

messages between objects.

The number of sets we send through the chain is fixed, this is

mostly in order to save time on benchmarking runs.

A summary of the parameters is available in Table 3.1.

AO0

sort

AO1

reverse

AO2

sort

AO3

reverse

Data

Stop

Data

Stop

Data

Stop

[0.89638, 0.05939, 0.66118]

[0.07574, 0.58414, 0.62895]

[0.49678, 0.4097, 0.41513]

[0.24802, 0.866, 0.57278]

Stop

Figure 3.1: The Data Processing Benchmark for chainLength=4, setSize=3,
setSize=4, without a bottleneck.

Data Processing Benchmark With Bottleneck

This benchmark adds one additional actor and one additional mes-

sage type to the picture: every time an actor receives a data-

message, it will send a count-message (labelled with +1 in Fig-

ure 3.2 to a central counter-actor: this actor will increase an in-

ternal counter by one upon execution of the +1 message.

Input

3. Performance Evaluation

2
A

ct
or

s

0 16 32 48 640

4

8

0 16 32 48 640

4

8

0 16 32 48 640

4

8

12
A

ct
or

s

0 16 32 48 640

4

0 16 32 48 640

4

0 16 32 48 640

4

10
2

A
ct

or
s

0 16 32 48 640

4

8

0 16 32 48 640

4

8

0 16 32 48 640

4

8

1
00

2
A

ct
or

s

0 16 32 48 640

4

8

0 16 32 48 640

4

8

0 16 32 48 640

4

8

Erlang Akka Joelle

0 values 250 values 500 values 750 values 1000 values

Figure 3.5: Speedups on the Server with counter=True. Higher is better The

counter is a serious problem for all tools: even though not adding much actual

work, scalability is su↵ering for all tools. Erlang loses the least performance,

however.

80

Erlang Akka Joelle

� Short chain lengths don’t
allow Erlang and Akka to use more than N cores at a
time, thus limited speedup

� Small tasks (eg. blue lines) lead to poor scalability for all

� In our limited tests:

· On a quad core PC: Joelle scales comparable to the
competition with better absolute runtimes

· On a 64 hardware-thread server: Joelle scales better
for small Ns, worse for large Ns, with better or
comparable absolute runtimes.


