Task Scheduling using Effectsin Joelle

Race-Free Parallelism Through
Active Objects, Ownership Types & Effects

— Stephan Brandauer, Johan Ostlund, Tobias Wrigstad —

Overview

Joelle is an active object-
based language relying on
ownership types for isola-
tion and effects for internal
parallelism. This project im-
plements task scheduling for

Joelle.
[=]ad =]

s
=]
http://tinyurl.com/jsched

Foo

o) e
M

RHUHsHT
Joelle:

o Only asynchronous
methods. Method calls
as message sends, return
future values where a
synchronous method
would return a value

o Active objects
transparently run
messages in parallel
when safe: “internal
parallelism”

o Most other active object
implementations use
only one internal thread
of control. We use a
work-stealing thread
pool, but the illusion of
one thread of control

o Objects in Joelle run in
isolated memory regions
which are further
partitioned into regions

uPM\ARC

Uppsala Programming for Multicore
Architectures Research Center

o Each field is placed in a
region

o Methods are annotated
with what fields they
read or write

o wr implicitly contains
rd

class Foo {
region s s ;

Bar f in ;

def R() rd {..}
def UQ wr s
def S(O) rd ,
def T() wr {..}

S~
-~ o

® @

]
(©O—0

Internal Parallelism:

o Conflict graph (above)
obtained from
effect-annotations;
conflicting methods are
connected

o

Two methods accessing
a region conflict if at
least one access is a
write

[¢]

Conflicting tasks may
not be executed at the
same time

223K

% ,‘
7520
S\

HERiTAS

ey

X

UPPSALA
UNIVERSITET

Implementation:

o Mailbox for active
objects

o Each method has a
separate queue

o When R is called, a
corresponding task (Rp)
is added to the R-queue
in the receiving object’s
mailbox

o Furthermore, a
Barrier (|) is added to
all queues of all
conflicting methods (U)

Performance and
Conclusions:

A0y~ A0~ |
Inplf\{ ﬁ L’T[
reverse

sort,

Chain (varying length N) of active
objects, effectless methods. Data
(varying number of values in list)
is sorted and reversed

o Short chain lengths don’t

Thread 2

Thread 1 -- — ,,,,,
Thread 0

Scheduling FExample:

o Tasks Ry, Uy, Ty have
been added to a
mailbox in index-order

o Rp and T have no
barriers in front, thus
can be executed by the
threadpool (above
right) immediately

o Execution order of Uy
and 75 is irrelevant for
program behaviour and
transparent to the
program

Erlang Akka Joelle

12 Actors

102 Actors

1002 Actors

[— v — wovaie = owvae — movaie = oo

allow Erlang and Akka to use more than N cores at a

time, thus limited speedup

o Small tasks (eg. blue lines) lead to poor scalability for all

o In our limited tests:

- On a quad core PC: Joelle scales comparable to the
competition with better absolute runtimes

- On a 64 hardware-thread server: Joelle scales better
for small N's, worse for large Vs, with better or
comparable absolute runtimes.

