
An introduction to
many-core parallel
computing with
OpenCL

Simon McIntosh-Smith
Twitter: @simonmcs

UPMARC summer school
Uppsala 28-29th 2014

Recap
5 simple steps in a basic OpenCL program:

1.  Define the platform = devices + context +
queues

2.  Create and Build the program (dynamic
library of kernels)

3.  Setup memory objects
4.  Define the kernels
5.  Submit commands … transfer memory

objects and execute kernels

We have now covered the basic
platform runtime APIs in OpenCL

arg [0]
value

arg [1]
value

arg [2]
value

arg [0]
value

arg [1]
value

arg [2]
value

In
Order
Queue

Out of
Order
Queue

GPU

Context

__kernel void
dp_mul(global const float *a,
 global const float *b,
 global float *c)
{
 int id = get_global_id(0);
 c[id] = a[id] * b[id];
}

dp_mul
CPU program binary

dp_mul
GPU program binary

Programs

arg[0] value

arg[1] value

arg[2] value

Buffers Images
In

Order
Queue

Out of
Order
Queue

Compute Device

GPU

CPU

dp_mul

Programs Kernels Memory Objects Command Queues

OPENCL KERNEL PROGRAMMING

OpenCL C kernel language
•  Derived from ISO C99

– A few restrictions: no recursion, function pointers,
functions in C99 standard headers (more later)

–  Preprocessing directives defined by C99 are
supported (#include etc.)

•  Built-in data types
–  Scalar and vector data types, pointers
– Data-type conversion functions:

•  convert_type<_sat><_roundingmode>

–  Image types: image2d_t, image3d_t and sampler_t

OpenCL C Language Highlights

Function qualifiers
•  __kernel qualifier declares a function as a kernel

–  I.e. makes it visible to host code
•  Kernels can call other OpenCL functions

–  Not all OpenCL functions have to be marked as __kernels –
they just won't be visible to the host

Address space qualifiers
•  __global, __local, __constant, __private
•  Pointer kernel arguments must be declared with an

address space qualifier
•  __private is default for variables declared inside a

kernel

OpenCL C Language Highlights

Work-item functions ("n" indicates dimension – 0, 1, 2)

•  get_global_size(n) number of work-items
•  get_local_size(n) number of work-items in work-group

•  get_global_id(n) global work-item ID
•  get_local_id(n) work-item ID inside work-group

•  get_work_dim() number of dimensions in use (1,2 or 3)
•  get_group_id(n) ID of work-group

Synchronization functions
•  Barriers - all work-items within a work-group must execute the

barrier function before any work-item can continue
•  Memory fences - provides ordering between memory operations

OpenCL C Language Restrictions

•  Pointers to functions are not allowed
•  Pointers to pointers allowed within a kernel,

but not as an argument to a kernel invocation
•  Bit-fields are not supported
•  Variable length arrays and structures are not

supported
•  Recursion is not supported (yet!)
•  Double types are optional in OpenCL v1.2, but

the key word is reserved
 (note: most implementations support double)

Matrix multiplication: sequential code

void mat_mul(int Order, float *A, float *B, float *C)!
{!
 int i, j, k;!
 for (i = 0; i < Order; i++) {!
 for (j = 0; j < Order; j++) {!
 for (k = 0; k < Order; k++) { !
 // C(i, j) = sum(over k) A(i,k) * B(k,j)!
 C[i*Order+j] += A[i*Order+k] * B[k*Order+j];!
 }!
 }!
 }!
}!

We calculate C=AB, all matrices square, of size "Order" on each side

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each
element of C

Specialized to
square matrices

Matrix multiplication performance

•  Serial C code on CPU (single core).

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz
using the gcc compiler.

Third party names are the property of their owners.

These are not official benchmark results. You
may observe completely different results should
you run these tests on your own system.

Matrix multiplication: sequential code

void mat_mul(int Order, float *A, float *B, float *C)!
{!
 int i, j, k;!
 for (i = 0; i < Order; i++) {!
 for (j = 0; j < Order; j++) {!
 for (k = 0; k < Order; k++) { !
 // C(i, j) = sum(over k) A(i,k) * B(k,j)!
 C[i*Order+j] += A[i*Order+k] * B[k*Order+j];!
 }!
 }!
 }!
}!

Matrix multiplication: OpenCL kernel (1/3)

void mat_mul(int Order,!
 float *A, float *B, float *C)!
{!
 int i, j, k;!
 for (i = 0; i < Order; i++) {!
 for (j = 0; j < Order; j++) {!
 // C(i, j) = sum(over k) A(i,k) * B(k,j)!
 for (k = 0; k < Order; k++) { !
 C[i*Order+j] += A[i*Order+k] * B[k*Order+j];!
 }!
 }!
 }!
}!

__kernel void mat_mul(!
 const int Order,!
 __global float *A, __global float *B, __global float *C)!

Mark as a kernel function and
specify memory qualifiers

__kernel void mat_mul(!
 const int Order,!
 __global float *A, __global float *B, __global float *C)!
{ !
 int i, j, k;!
 for (i = 0; i < Order; i++) {!
 for (j = 0; j < Order; j++) {!
 for (k = 0; k < Order; k++) { !
 // C(i, j) = sum(over k) A(i,k) * B(k,j)!
 C[i*Order+j] += A[i*Order+k] * B[k*Order+j];!
 }!
 }!
 }!
}!

Matrix multiplication: OpenCL kernel (2/3)

i = get_global_id(0);!
j = get_global_id(1);!

Remove outer loops and set
work-item co-ordinates

!
!

!
__kernel void mat_mul(!
 __global float *A, __global float *B, __global float *C)!
{ !
 int i, j, k;!
 for (i = 0; i < Order; i++) {!
 for (j = 0; j < Order; j++) {!
!
 for (k = 0; k < Order; k++) { !
 // C(i, j) = sum(over k) A(i,k) * B(k,j)!
 C[i*Order+j] += A[i*Order+k] * B[k*Order+j];!
 }!
 }!
 }!
}!

Matrix multiplication: OpenCL kernel (3/3)

i = get_global_id(0);!
j = get_global_id(1);!

Get "Order" from total number
of work-items (global size)

!
!

Order = get_global_id(0);

__kernel void mmul(!
 __global float *A,!
 __global float *B,!
 __global float *C)!

Matrix multiplication: OpenCL kernel tweaked

{!
 int k;!
 int i = get_global_id(0);!
 int j = get_global_id(1);!
 int Order = get_global_size(0);!
 float tmp = 0.0f;!
 for (k = 0; k < Order; k++) !
 tmp += A[i*Order+k]*B[k*Order+j];!
 !
 C[i*Order+j] = tmp;!
}!

Rearrange a bit and use a local scalar for intermediate C element
values (a common optimization in Matrix Multiplication functions)

Matrix multiplication host program
#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)
{ // declarations (not shown)
 sz = N * N;
 std::vector<float> h_A(sz);
 std::vector<float> h_B(sz);
 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup
// the problem (not shown)

 cl::Context context(DEVICE);
 cl::Program program(context,
 util::loadProgram("matmul1.cl“,
 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
 <cl::Buffer, cl::Buffer, cl::Buffer>
 (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A),
 end(h_A), true);
 d_B = cl::Buffer(context, begin(h_B),
 end(h_B), true);
 d_C = cl::Buffer(context,
 CL_MEM_WRITE_ONLY,
 sizeof(float) * sz);

 mmul(cl::EnqueueArgs(queue,
 cl::NDRange(N,N)),
 d_A, d_B, d_C);

 cl::copy(queue, d_C, begin(h_C),
 end(h_C));

 // Timing and check results (not shown)
}

Matrix multiplication performance

•  Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You may
observe completely different results should you run
these tests on your own system.

EXPLOITING THE OPENCL
MEMORY HIERARCHY

OpenCL Memory model
•  Private Memory

–  Per work-item

•  Local Memory
–  Shared within a

 work-group

•  Global/Constant
Memory
–  Visible to all

 work-groups

•  Host memory
–  On the CPU

Memory management is explicit:
You are responsible for moving data from

 host → global → local and back

Optimizing matrix multiplication

•  Matrix multiply often benefits from reusing data as much as
possible.

•  So let’s have each work-item compute a sub block of C

•  We'll need to do something new:
–  Cache the sub blocks of A and B in local memory
–  Have to ensure local memory consistency (using barriers)

= + x

A(ib,:) B(:,jb) C(ib,jb) C(ib,jb)

Memory Consistency
•  OpenCL uses a relaxed consistency memory model; i.e.

–  The state of memory visible to a work-item is not guaranteed to be
consistent across the collection of work-items at all times.

•  Within a work-item:
–  Memory has load/store consistency to the work-item’s own view of

memory, i.e. it sees its own reads and writes correctly

•  Within a work-group:
–  Local memory is consistent between work-items at a barrier.

•  Global memory is consistent within a work-group at a
barrier, but not guaranteed across different work-groups!!
–  This is a common source of bugs!

•  Consistency of memory shared between commands (e.g.
kernel invocations) is enforced by synchronization (barriers,
events, in-order queue)

Work-Item Synchronization

•  Within one work-group
void barrier()!
–  Takes optional flags

 CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE
–  A work-item that encounters a barrier() will wait until ALL work-

items in its work-group reach the barrier()
–  Corollary: If a barrier() is inside a branch, then the branch must be

taken by either:
•  ALL work-items in the work-group, OR
•  NO work-item in the work-group

•  Between different work-groups
–  No guarantees as to where and when a particular work-group will be

executed relative to another work-group
–  Cannot exchange data, or have barrier-like synchronization

between two different work-groups! (Critical issue!)
–  Only solution: finish the kernel and start another

Ensure correct order of memory operations
to local or global memory (with flushes or
queuing a memory fence)

Blocked matrix multiply: kernel
#define blksz 16
__kernel void mmul(
 const unsigned int N,
 __global float* A,
 __global float* B,
 __global float* C,
 __local float* Awrk,
 __local float* Bwrk)
{
 int kloc, Kblk;
 float Ctmp=0.0f;

 // compute element C(i,j)
 int i = get_global_id(0);
 int j = get_global_id(1);

 // Element C(i,j) is in block C(Iblk,Jblk)
 int Iblk = get_group_id(0);
 int Jblk = get_group_id(1);

 // C(i,j) is element C(iloc, jloc)
 // of block C(Iblk, Jblk)
 int iloc = get_local_id(0);
 int jloc = get_local_id(1);
 int Num_BLK = N/blksz;

 // calc. upper-left-corner and inc. for A and B
 int Abase = Iblk*N*blksz; int Ainc = blksz;
 int Bbase = Jblk*blksz; int Binc = blksz*N;

 // C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk)
 for (Kblk = 0; Kblk<Num_BLK; Kblk++)
 {
 //Load A(Iblk,Kblk) and B(Kblk,Jblk).
 //Each work-item loads a single element of the two
 //blocks which are shared with the entire work-group

 Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];
 Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 #pragma unroll
 for(kloc=0; kloc<blksz; kloc++)
 Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);
 Abase += Ainc; Bbase += Binc;
 }
 C[j*N+i] = Ctmp;
}

Blocked matrix multiply: kernel
#define blksz 16
__kernel void mmul(
 const unsigned int N,
 __global float* A,
 __global float* B,
 __global float* C,
 __local float* Awrk,
 __local float* Bwrk)
{
 int kloc, Kblk;
 float Ctmp=0.0f;

 // compute element C(i,j)
 int i = get_global_id(0);
 int j = get_global_id(1);

 // Element C(i,j) is in block C(Iblk,Jblk)
 int Iblk = get_group_id(0);
 int Jblk = get_group_id(1);

 // C(i,j) is element C(iloc, jloc)
 // of block C(Iblk, Jblk)
 int iloc = get_local_id(0);
 int jloc = get_local_id(1);
 int Num_BLK = N/blksz;

 // calc. upper-left-corner and inc. for A and B
 int Abase = Iblk*N*blksz; int Ainc = blksz;
 int Bbase = Jblk*blksz; int Binc = blksz*N;

 // C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk)
 for (Kblk = 0; Kblk<Num_BLK; Kblk++)
 {
 //Load A(Iblk,Kblk) and B(Kblk,Jblk).
 //Each work-item loads a single element of the two
 //blocks which are shared with the entire work-group

 Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];
 Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 #pragma unroll
 for(kloc=0; kloc<blksz; kloc++)
 Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);
 Abase += Ainc; Bbase += Binc;
 }
 C[j*N+i] = Ctmp;
}

Load A and B blocks,
wait for all work-
items to finish

Wait for everyone to finish before
going to next iteration of Kblk loop.

It’s getting the indices
right that makes this hard

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)
{ // declarations (not shown)
 sz = N * N;
 std::vector<float> h_A(sz);
 std::vector<float> h_B(sz);
 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup
// the problem (not shown)

 cl::Context context(DEVICE);
 cl::Program program(context,
 util::loadProgram("mmulblock.cl“,
 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
 <int, cl::Buffer, cl::Buffer, cl::Buffer,
 cl::LocalSpaceArg, cl::LocalSpaceArg >
 (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A), end(h_A),true);
 d_B = cl::Buffer(context, begin(h_B), end(h_B),true);
 d_C = cl::Buffer(context,
 CL_MEM_WRITE_ONLY, sizeof(float) * sz);

 cl::LocalSpaceArg Awrk =
 cl::Local(sizeof(float) * N);
 cl::LocalSpaceArg Bwrk =
 cl::Local(sizeof(float) * N);
 mmul(cl::EnqueueArgs(queue,
 cl::NDRange(N,N), cl::NDRange(16,16)),
 N, d_A, d_B, d_C, Awrk, Bwrk);

 cl::copy(queue, d_C, begin(h_C), end(h_C));

 // Timing and check results (not shown)
}

Blocked matrix multiply: Host

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)
{ // declarations (not shown)
 sz = N * N;
 std::vector<float> h_A(sz);
 std::vector<float> h_B(sz);
 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup
// the problem (not shown)

 cl::Context context(DEVICE);
 cl::Program program(context,
 util::loadProgram("mmulblock.cl“,
 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
 <int, cl::Buffer, cl::Buffer, cl::Buffer,
 cl::LocalSpaceArg, cl::LocalSpaceArg >
 (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A), end(h_A),true);
 d_B = cl::Buffer(context, begin(h_B), end(h_B),true);
 d_C = cl::Buffer(context,
 CL_MEM_WRITE_ONLY, sizeof(float) * sz);

 cl::LocalSpaceArg Awrk =
 cl::Local(sizeof(float) * 16*16);
 cl::LocalSpaceArg Bwrk =
 cl::Local(sizeof(float) * 16*16);
 mmul(cl::EnqueueArgs(queue,
 cl::NDRange(N,N), cl::NDRange(16,16)),
 N, d_A, d_B, d_C, Awrk, Bwrk);

 cl::copy(queue, d_C, begin(h_C), end(h_C));

 // Timing and check results (not shown)
}

Blocked matrix multiply: Host

One work-item per element of the C matrix organized into 16 by 16 blocks.

Setup local memory
with blocks of A and B
(16 by 16) that should
fit in local memory.

Matrix multiplication performance
•  Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887 N/A

C(i,j) per work-item, all global 3,926 3,721

Block oriented approach using local mem 119,305

Device is Tesla® M2090 GPU
from NVIDIA® with a max of
16 compute units, 512 PEs
Device is Intel® Xeon® CPU,
E5649 @ 2.53GHz

Third party names are the property of their owners.
These are not official benchmark results. You may observe completely
different results should you run these tests on your own system.

The CuBLAS SGEMM provides an effective
measure of peak achievable performance on the
GPU. CuBLAS performance = 283,366 MFLOPS

USING OPENCL FOR REAL
RESEARCH

Molecular Docking in Bristol

BUDE	 (Bristol	 University	 Docking	 Engine)	 is	 one	 of	 the	 fastest	
and	 most	 accurate	 molecular	 docking	 codes	 in	 the	 world.	
	

BUDE	 is	 being	 used	 to	 find	 new	 drug	 targets	 for	 influenza,	
malaria,	 Alzheimer's,	 Emphysema,	 Insulin	 signalling	 and	 more	
"High Performance in silico Virtual Drug Screening on Many-Core Processors",
S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014.
DOI: 10.1177/1094342014528252

Molecular Docking in Bristol
Performance portable molecular docking with BUDE.

"High Performance in silico Virtual Drug Screening on Many-Core Processors",
S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014.
DOI: 10.1177/1094342014528252

CloverLeaf: PetaàExascale
hydrodynamics mini-app

•  CloverLeaf is a bandwidth-limited, structured
grid code

•  Solves the compressible Euler equations, which
describe the conservation of energy, mass and
momentum in a system

•  Optimised parallel versions exist in OpenMP, MPI,
OpenCL, OpenACC, CUDA and Co-Array Fortran

Results – performance
8.1X

3.7X

6.1X

1.9X

“On the performance portability of structured grid codes on many-core
computer architectures”, S.N. McIntosh-Smith, M. Boulton, D. Curran and
J.R. Price, ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

CloverLeaf sustained bandwidth

“On the performance portability of structured grid codes on many-core
computer architectures”, S.N. McIntosh-Smith, M. Boulton, D. Curran and
J.R. Price, ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4

54%

Lattice Boltzmann (LBM)

•  A versatile approach for solving
incompressible flows based on a
simplified gas-kinetic description of the
Boltzmann equation (used for CFD etc)

•  Ports well to most parallel architectures
•  We targeted one of the most widely used

variants, D3Q19-BGK

“Evaluation of a performance portable lattice Boltzmann code using OpenCL”,
S.N. McIntosh-Smith and D. Curran, IWOCL, May 12-13, 2014 Bristol, UK.
To appear in ACM ICPS, ISBN 978-1-4503-3007-7

D3Q19-BGK LBM

•  To update a cell, need to access 19 of the
27 surrounding cell values in the 3D grid

“Evaluation of a performance portable lattice Boltzmann code using OpenCL”,
S.N. McIntosh-Smith and D. Curran, IWOCL, May 12-13, 2014 Bristol, UK.
To appear in ACM ICPS, ISBN 978-1-4503-3007-7

Methodology
•  Developed a code that was efficient but not over

complicated

•  "Identical" versions in OpenCL and CUDA
–  Single precision grid 1283 (∼2m grid points, 304 MBytes)
–  The OpenCL three dimensional work-group size was fixed at

(128,1,1) for all OpenCL runs on all devices
–  Same arrangement for CUDA version

•  The OpenMP code was as close as possible to the OpenCL/
CUDA versions

•  Ensured the OpenMP code was being vectorised by the
compiler (latest Intel icc)

“Evaluation of a performance portable lattice Boltzmann code using OpenCL”,
S.N. McIntosh-Smith and D. Curran, IWOCL, May 12-13, 2014 Bristol, UK.
To appear in ACM ICPS, ISBN 978-1-4503-3007-7

Performance results for 1283

Single precision results

6.9X
9.9X 8.3X

5.3X

Performance results for 1283

OpenCL single precision results

57%
67%

80%

Reg.
spill/
fill

So perf. portable, but is it fast?
•  On an Nvidia K20, our best 1283 D3Q19-BGK

LBM single precision performance in OpenCL
was 1,110 MLUPS

•  In the literature, the fastest quoted results
are ~1,000 MLUPS (Januszewski and Kostur's
Sailfish program) and 982 MLUPS (Mawson
and Revell)

•  Our results are a 13% improvement over
Mawson-Revell and a 10% improvement over
Januszewski-Kostur

“Evaluation of a performance portable lattice Boltzmann code using OpenCL”,
S.N. McIntosh-Smith and D. Curran, IWOCL, May 12-13, 2014 Bristol, UK.
To appear in ACM ICPS, ISBN 978-1-4503-3007-7

SOME CONCLUDING REMARKS

Conclusions
•  OpenCL has widespread industrial support

•  OpenCL defines a platform-API/framework for heterogeneous
computing, not just GPGPU or CPU-offload programming

•  OpenCL has the potential to deliver portably performant code;
but it has to be used correctly

•  The latest C++ and Python APIs makes developing OpenCL
programs much simpler than before

•  OpenCL is the only parallel programming standard that enables
mixing task parallel and data parallel code in a single program
and load balancing across a wide variety of parallel
hardware. It's fun to use too!!!

OpenCL-related things
•  OpenCL’s Standard Portable Intermediate Representation (SPIR)

–  Based on LLVM’s Intermediate Representation (IR)
–  Makes interchangeable front- and back-ends straightforward

•  OpenCL 2.0
–  Released Nov 2013, only partial implementations so far
–  Lots of other improvements

•  SYCL
–  Single source C++ higher level parallel programming in OpenCL
–  http://www.khronos.org/opencl/sycl/

•  For the latest news on SPIR and new OpenCL versions see:
–  http://www.khronos.org/opencl/

Third party names are the property of their owners.

OpenCL resources

•  Khronos website
–  https://www.khronos.org/opencl/

•  Annual OpenCL workshop, IWOCL
–  http://iwocl.org
–  In May each year (in Boston for 2015)

•  HandsOnOpenCL training course online
–  http://handsonopencl.github.io
– Dozens of exercises and solutions in

C, C++ and Python
–  Includes CUDA to OpenCL tutorial

OpenCL books

OpenCL Programming Guide:
Aaftab Munshi, Benedict Gaster, Timothy G. Mattson and
James Fung, 2011

Heterogeneous Computing with OpenCL
Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry
and Dana Schaa, 2011

I'm hiring!
•  Looking for a postdoc for a 3 year post on

the prestigious FP7 Mont Blanc project
– Can we build an Exascale supercomputer form

European technologies, such as ARM-based CPUs
and GPUs?

–  Post to look at software fault tolerance
techniques for Exascale computing

•  Also looking for PhD students

•  Email me at simonm at cs.bris.ac.uk

